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A common gene expression signature in
Huntington’s disease patient brain regions
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Abstract

Background: Gene expression data provide invaluable insights into disease mechanisms. In Huntington’s disease

(HD), a neurodegenerative disease caused by a tri-nucleotide repeat expansion in the huntingtin gene, extensive

transcriptional dysregulation has been reported. Conventional dysregulation analysis has shown that e.g. in the

caudate nucleus of the post mortem HD brain the gene expression level of about a third of all genes was altered.

Owing to this large number of dysregulated genes, the underlying relevance of expression changes is often lost in

huge gene lists that are difficult to comprehend.

Methods: To alleviate this problem, we employed weighted correlation network analysis to archival gene expression

datasets of HD post mortem brain regions.

Results: We were able to uncover previously unidentified transcription dysregulation in the HD cerebellum that

contained a gene expression signature in common with the caudate nucleus and the BA4 region of the frontal cortex.

Furthermore, we found that yet unassociated pathways, e.g. global mRNA processing, were dysregulated in HD. We

provide evidence to show that, contrary to previous findings, mutant huntingtin is sufficient to induce a subset of stress

response genes in the cerebellum and frontal cortex BA4 region. The comparison of HD with other neurodegenerative

disorders showed that the immune system, in particular the complement system, is generally activated. We also

demonstrate that HD mouse models mimic some aspects of the disease very well, while others, e.g. the activation of

the immune system are inadequately reflected.

Conclusion: Our analysis provides novel insights into the molecular pathogenesis in HD and identifies genes and

pathways as potential therapeutic targets.

Keywords: Neurodegenerative diseases, Huntington’s disease, Transcriptional dysregulation, Network analysis,

Therapeutic targets

Background
Huntington’s disease (HD) belongs to the group of poly-

glutamine (polyQ) repeat expansion diseases, which to-

gether comprise the most common form of inherited

neurodegenerative disorders [1]. It can also be categorized

as a proteinopathy, a disorder in which abnormally folded

proteins cause disease by loss- and/or gain-of-function

mechanisms. Many other neurodegenerative diseases also

belong to this category. For example aggregating proteins

include the amyloid-β peptide (Aβ) and tau (MAPT) in

Alzheimer’s disease (AD) [2] and α-synuclein (SNCA) in

Parkinson’s disease (PD) [3]. The major aggregating

proteins in amyotrophic lateral sclerosis (ALS) are super-

oxide dismutase 1 (SOD1) [4], TDP-43 (TARDBP) [5] and

FUS [6]. However, other diseases that are not associated

with misfolded proteins can also result in major neurode-

generation. Amongst these are brain tumors, e.g. ganglio-

gliomas (GG) [7], which arises from brain ganglion cells,

and inflammatory diseases such as multiple sclerosis (MS)

which can result in a massive loss of neurons [8]. Further-

more, there is evidence that even very heterogeneous

mental illnesses, such as schizophrenia (SCHIZ) are at

least partly associated with neurodegeneration [9].

Whilst many of the above diseases are characterized by

mutations in protein coding regions, mutations can also

exert deleterious effects through RNA molecules. A hexa-

nucleotide repeat expansion in the uncharacterized gene
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C9orf72 is the most common cause of familial and spor-

adic ALS, as well as frontotemporal lobar degeneration

(FTLD) [10,11]. The repeat expansion is located in intron

1 of C9orf72, thereby making it an RNAopathy, i.e. a toxic

gain-of-function of an RNA leading to disrupted protein

and/or RNA homoeostasis [12]. RNA gain-of-functions

also occur in other repeat expansion diseases such as

myotonic dystrophy type 1 (DM1) and type 2 (DM2) [13].

In DM1 the DMPK gene harbors a large repeat expansion

in the 3’ untranslated region [14-16]. In DM2 the repeat

expansion is located in intron 1 of the ZNF9 gene [17].

The splicing factor MBNL1 is recruited to the repeat ex-

pansion in both cases [18], which in turn leads to a disrup-

tion of general mRNA processing resulting in cytotoxicity.

Intriguingly it was recently shown that in HD a short tran-

script of the HTT gene is produced by aberrant splicing,

probably influenced by abnormal binding of the splicing

factor SRSF6 to the CAG repeat expansion [19]. In

addition to the alternative splicing of HTT itself, other ab-

errantly spliced transcripts can be found in HD mouse

model tissue (Gipson TA and Housman DE, unpublished

data).

Transcriptional dysregulation, or a global change in

gene expression is a hallmark of many neurodegenera-

tive diseases, including HD, AD, PD and ALS [20]. For

HD there is some evidence in patients [21-23] and

mouse models [24,25] that these changes occur in the

prodromal stage, which could make them useful to de-

fine disease progression on a molecular level, or even as

potential biomarkers for therapeutics. Intriguingly, mu-

tant huntingtin (HTT) itself was found to exert abnor-

mal DNA binding activities [26]. The authors proposed

that mutant HTT binding could alter DNA structure or

sterically block access by other transcription factors and

therefore be the initial cause of HD transcriptional dys-

regulation. The biggest study to date of human samples

analyzed 44 HD patient and 36 control brains [27]. They

found extensive changes in the caudate nucleus (CN)

and BA4 region (motor functions) of the frontal cortex

(FC-BA4). Almost no changes were found for the BA9

region (association, cognitive functions) of the frontal

cortex (FC-BA9), or the cerebellum (CB). In a follow up

study, the same group showed that the changes seen in

HD patients were largely comparable to changes seen in

HD mouse models [28].

However, standard evaluations of large, multi-

dimensional gene expression datasets need to apply very

strict statistical thresholds to correct for family wise errors

stemming from the very high number of multiple compar-

isons. In doing so, small and/or maybe more heteroge-

neous expression changes may not be detected. Yet these

small changes could contribute to an overall functional

deficit, if they for example are all part of a certain mo-

lecular pathway. Alternatively, they may represent large

changes in a subpopulation of cells. One solution to this

problem is to analyze the data with correlation networks,

which provide a more systemic view, instead of a per gene

assertion. Weighted gene correlation network analysis

(WGCNA) is a package of R functions, which allows one

to construct such networks [29]. In these networks,

groups of genes, which highly correlate in their expres-

sion, are clustered into modules. Next, these modules can

be correlated to external traits, for example disease stage,

age, sex, etc. Because only a small number, usually in the

range of 10 to 30 modules per network, are identified,

multiple comparisons are greatly alleviated. Another huge

advantage is that one can detect “hub genes”, i.e. genes

that are the highest connected genes in a particular mod-

ule and are therefore most likely the biological key drivers.

These hub genes also present bona fide therapeutic targets

and/or biomarkers. WGCNA was successfully used to

analyze many large datasets, noteworthy in the identifica-

tion and cross-species comparison of brain region net-

works [30,31] and in the analysis of gene expression

changes in ALS [32] and AD [33,34].

Here, we used WGCNA to study the transcriptional

dysregulation in HD. To this end we constructed and

compared networks for 4 different regions from patient

brains and analyzed their preservation in gene expres-

sion datasets of other diseases, as well as in mouse

models of HD. We constructed consensus networks of

HD and other diseases to highlight common changes.

These approaches allowed us to identify a common sig-

nature of transcriptional dysregulation in all three brain

regions and to pinpoint potential future therapeutic

targets.

Results
Weighted correlation network construction using WGCNA

in the HD dataset

For a more detailed explanation of the WGCNA package,

the interested reader is referred to the original publication

[29] or the WGCNA homepage: http://labs.genetics.ucla.

edu/horvath/CoexpressionNetwork. As outlined in the

materials and methods section, we constructed weighted,

signed correlation networks from the pre-processed data-

sets. Next, we identified modules that correlated to disease

stage (in the following referred to as correlation with HD).

To this end, we converted the neuropathological stage as-

signment of the samples, as listed in the original publica-

tion [27], to a numerical scale with controls as 1, HD

grade 0 as 2, HD grade 1 as 3 and so forth. ‘Module eigen-

genes’, which represent a summary for all genes within a

module were computed and subsequently correlated with

HD. Negative, or positive correlation indicates that the ex-

pression of the genes in a module is lower, or higher, re-

spectively, in patient compared to control samples. From

here on we focused only on significantly correlated
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modules (Benjamini-Hochberg corrected P-values <0.05).

Using ‘eigengene based connectivity’ (kME) as a measure

of gene co-expression strength in a particular module

(weighted from 0 to 1), we identified the genes with the

highest connectivity in a module (hub genes). We also an-

alyzed the preservation of the significantly correlated

modules in a particular network in the datasets of the

other brain regions. Preservation can be seen as the simi-

larity of co-expression between genes in a module, but

also connectivity patterns of individual modules for the

two data sets. Preservation was calculated using permuta-

tions of the preservation statistics and is represented by a

Z-summary value. High preservation, or high Z-summary

values indicate that modules are densely connected, dis-

tinct and reproducible. Z-summary values tend to be

higher for larger modules, i.e. small modules are very

often found to be only weakly preserved.

In the cerebellum dataset, 2504 genes (about 20.0% of

all genes in the dataset) were assigned in negatively cor-

related and 2230 genes (about 17.8% of all genes in the

dataset) in positively correlated modules (Padj < 0.05)

(Figure 1A and B). This is in marked contrast to what

was found by Hodges and colleagues, who identified only

340 statistically significantly dysregulated probe sets, cor-

responding to 290 genes (HG-U133A chip; P <0.001). For

gene ontology (GO) enrichment and regulatory factor pre-

diction of the modules in the cerebellum network see

Table 1. The eigengene based connectivity (kME) for all

identified modules showed a significant linear positive or

negative relationship with the gene significance for HD.

Figure 1 WGCNA analysis of the HD dataset identifies highly correlated modules for each brain region. (A and B) WGCNA analysis of the

cerebellum dataset. (C and D) WGCNA analysis of the frontal cortex BA4 region dataset. (E and F) WGCNA analysis of the caudate nucleus

dataset. (A, C and E) Hierarchical cluster tree of the average linkage in the dissimilarity topological overlap matrix. Each vertical line correlates to

a gene. The height is a measure for the dissimilarity based on the topological overlap. The band under the dendrograms indicates the correlation

with HD (HD cor) based on the gene significance for each gene. Red is positively correlated with HD stage, blue is negatively correlated.

(B, D and F) Visualization of modules that are highly correlated with HD. Size is the number of genes for each module. Padj gives the Benjamini

Hochberg corrected significance value of correlation with HD for each module. Modules are labeled according to the network (CB - cerebellum,

FC4 - frontal cortex BA4 region and CN - caudate nucleus), the sign of the correlation (neg - negatively correlated and pos - positively correlated) and

ordered by Padj with 1 being the most significantly correlated module, followed by 2, etc.
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Some genes exhibited high kME values and also high gene

significance values indicating these genes are potential

hub genes (Additional file 1A). The cerebellum modules

CBpos5 and CBneg2 were highly preserved in both the

frontal cortex and caudate nucleus. Modules CBpos4,

CBpos5 and CBneg4 were better preserved in the frontal

cortex, than in the caudate nucleus dataset (Figure 2A

and B). Figure 3A and B illustrate the connectivity be-

tween the top 50 hub genes for the CBpos5 and CBneg2

modules (see also Additional file 2). 33 (66%) of the top 50

hub genes of the CBneg1 module were also statistically

significantly dysregulated, as determined by Hodges and

colleagues. Additionally, only modules CBneg2 (15/50 =

30%) and CBneg3 (14/50 = 28%) showed considerable

overlap of module hub genes and dysregulated genes. In

total, 46 (15.9%) of the statistically significantly dysregu-

lated genes were not sorted into modules that were corre-

lated with HD. The CBneg1 module is highly negatively

correlated with HD (Figure 1B), but GO analysis showed

no significant enrichment (Table 1). However, in depth

analysis of the molecular function of the hub genes in this

module revealed several genes involved in synaptic func-

tion. For example CBLN1 is a cerebellum specific precur-

sor of cerebellin, which is enriched in the post-synapses of

Purkinje cells. Further neuronal related hub genes were

SLC17A7, SCN1B and PDE10A. The other modules that

were negatively correlated with HD in cerebellum are

highly enriched for mitochondrial and proteasomal genes,

indicating an attenuated function of these two processes

(Figure 3A, Additional file 2 and Table 1). The positively

correlated cerebellum modules are enriched for transcrip-

tional regulation, chromatin binding/remodeling/modi-

fication, RNA binding/processing and metallothioneins

(Table 1). Analysis of the CBpos5 module revealed a very

high enrichment in protein folding/chaperone genes, as

well as chromatin assembly and mRNA processing genes

(Table 1). Intriguingly, 14 of the top 50 hub genes of the

CBpos5 module are involved in protein folding, all of

which share very high connectivity (Figure 3A). Notably,

there was no indication that genes involved in inflamma-

tion or the immune response are correlated with HD in

the cerebellum.

Table 1 Gene ontology enrichment for the cerebellum network

Module cor GO-term (DAVID) Potential regulators

CBpos1 up metal binding/zinc-finger (0.84, 0.89) MYOD (0.0314)2, ZIC2 (0.0314)2, E2F1/E2F4 together
with DP1/DP2, or RB (0.0314)2, NFY (0.0314)2

CBpos2 up DNA binding/zinc-finger (3.97, 0.003) miR124 (0.054)1

chromatin binding/remodeling (1.82, 0.096)

CBpos3 up ubiquitin protein ligase binding (1.1, 0.49)

CBpos4 up metal binding/zinc-finger (6.98, 0.000)

chromatin modification (4.8, 0.004)

RNA binding/processing (3.41, 0.03)

CBpos5 up protein folding/chaperones (6.77, 0.000) HSF1 (0.09)1

chromatin assembly (3.19, 0.003) HSF1 (0.000)2, NRF1 (0.001)2, USF1 (0.001)2,
E4BP4 (0.024)2

mRNA processing (2.95, 0.034)

CBpos6 up metallothionein (4.24, 0.003) miR124 (0.027)1, let7 (0.027)1, SOX2 (0.027)1,
MYOG (0.027)1, HSF1 (0.044)1

CBneg1 down synapse (2.14, 0.33)

CBneg2 down mitochondrion (10.44, 0.000) NRF1 (0.108)1

proteasome (3.13, 0.000) E4F1 (0.000)2, PAX3 (0.006)2, ATF (0.007)2,
ELK1 (0.012)2

CBneg3 down mitochondrion (2.77, 0.007) SF1 (0.000)2, ERR1 (0.001)2, PAX4 (0.001)2,
TCF3 (0.002)2, ZBTB14 (0.046)2

CBneg4 down mitochondrion (2.85, 0.005)

CBneg5 down endoplasmic reticulum (1.02, 0.95)

CBneg6 down cytoplasmic vesicle (0.88, 0.99)

HTT down mitochondrion (5.3, 0.000)

Gene ontology (GO) enrichment for the HD cerebellum network. Genes in the identified modules were analyzed using DAVID. The sign of the correlation (cor)

with HD and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the respective fold enrichment, the second number the

adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly enriched GO-term was

identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were identified using 1GO-Elite, or 2WebGestalt. Adjusted

P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted in bold. HTT is part of the CBneg2 module in the

cerebellum network. The GO-term enrichment for 100 genes with the highest correlation with HTT is shown.
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We could not identify any significantly correlated

modules in the frontal cortex BA9 region dataset, the

same result as obtained by Hodges and co-workers (data

not shown). By contrast, we found significant changes in

the BA4 region of the frontal cortex (Figure 1C and D).

Here, 2939 (23.5%) genes were assigned to negatively

and 1981 (15.8%) genes to positively correlated modules

(Padj < 0.05) (Figure 1D). For gene ontology (GO) enrich-

ment and regulatory factor prediction of the modules in

the frontal cortex BA4 region network see Table 2. As

for the cerebellum network, the modules showed signifi-

cant linear relationships between eigengene connectivity

and gene significance for HD (Additional file 1B). Preser-

vation analysis indicated that most frontal cortex BA4 re-

gion modules were equally well preserved in the caudate

nucleus, or cerebellum dataset, respectively (Figure 2C

and D). However, the FC4neg3 module was slightly less

preserved in cerebellum, compared to caudate nucleus;

modules FC4pos3, FC4pos4 and FC4neg4 were slightly

better preserved in cerebellum (Figure 2C and D). Module

Figure 2 Preservation analysis shows only few tissue specific modules. The Z-summary is a measure for module preservation. Values less

than 2 (red lines) indicate no preservation, between 2 and 10 (blue lines) module structures are preserved and above 10 the module structure is

highly preserved. Preservation analysis of cerebellum modules in the caudate nucleus (A) and frontal cortex BA4 region dataset (B). Preservation

analysis of frontal cortex BA4 region modules in the cerebellum (C) and caudate nucleus dataset (D). Preservation analysis of caudate nucleus

modules in the cerebellum (E) and frontal cortex BA4 region dataset (F).
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FC4pos4, although it was just short of being significantly

correlated with HD (Padj =0.064) (Figure 1D), is, like the

CBpos5 module in the cerebellum network, highly

enriched for protein folding/chaperone genes (Tables 1

and 2, Additional file 3C and Figure 4F). The GO enrich-

ment analysis of the other positively correlated modules

more or less mirrored the cerebellum network with the

exception of a high enrichment for inflammatory response

and NFκB/IκB genes in the FC4pos1 module (Table 2).

This finding was further supported by the fact that several

transcription factors, which regulate immune response/

inflammatory pathways, were identified as hub genes

(Figure 3C). Amongst these were CEBPB, CEBPD, BCL6,

MT1G, NFKBIA, IFITM1, IFITM2, IFITM3, S100A8, IL4R

and TNFRSF1A. The FC4pos1 module was also enriched

for genes implicated in angiogenesis, e.g. SAT1, ANGPTL4

and JMJD6 (Table 2 and Figure 3C). Notably, as for cere-

bellum, none of the negatively correlated modules was sig-

nificantly enriched for synaptic/neuronal genes (Table 2).

However, hub gene analysis of the FC4neg1 module (GO

enrichment for synapse 1.86, Padj = 0.063) showed several

genes involved in synaptic/neuronal function (GABRG2,

SCN2B, RASGRF1, KCNJ9, GRIN2A, NRXN1, GPR176)

(Additional file 3D). Again, as in cerebellum, mitochon-

drial and proteasomal genes were negatively correlated

with HD. Furthermore, genes implicated in protein trans-

port, glycolysis and another set of protein folding/

chaperone genes were assigned to negatively correlated

modules (Table 2). The overlap of hub genes and statisti-

cally significantly dysregulated genes as determined by

Hodges and colleagues was as follows: FC4pos1 20 of 49 =

40.8%; FC4pos2 3 of 50 = 6.0%; FC4pos3 38 of 44 = 86.4%;

FC4pos4 1 of 50 = 2.0%; FC4neg1 28 of 50 = 56.0%;

FC4neg2 10 of 50 = 20%; FC4neg3 10 of 45 = 22.2%;

FC4neg4 3 of 50 = 6.0%; FC4neg5 28 of 50 = 56.0%. In

total, 217 (28.9% of 750 genes) of the significantly dys-

regulated genes in the frontal cortex BA4 region were

not sorted into modules that were correlated with HD.

As in the original publication, we observed the largest

changes in the caudate nucleus (compare Figure 1A, C

and E), with 3798 (30.4%) genes assigned to negatively

and 5349 (42.8%) genes assigned to positively correlated

Figure 3 Visualization of hub genes in network modules. (A - F) The 50 most connected genes (nodes) and the 500 strongest gene-gene

interactions (edges) in each module are shown. The width and the color saturation of the lines (edges) correspond to the weight of the interactions.

The orange highlighted nodes correspond to genes that were also statistically significantly dysregulated [27]. Hub genes have a high gene significance

value, as well as high eigengene based connectivity (kME). The correlation of both is shown in Additional file 1. (A) and (B) show hub genes from two

cerebellum modules. (C) and (D) show hub genes from two frontal cortex BA4 region modules. (E) and (F) show hub genes from two caudate nucleus

modules. The remaining hub genes for the other modules of the three networks are shown in Additional files 2, 3 and 4.
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modules (Padj < 0.05) (Figure 1F). While the correlation

of modules in the cerebellum and frontal cortex BA4

networks was largely comparable, the correlation of the

caudate nucleus modules was higher, highlighting the

prominent pathology in the striatum of HD patients

(compare Figure 1B, D and F). For gene ontology (GO)

enrichment and regulatory factor prediction of the mod-

ules in the caudate nucleus network see Table 3. We

again observed a very strong linear relationship between

the eigengene based connectivity and the gene signifi-

cance for HD, indicating approximate scale free topology

of the network and existence of hub genes (Additional

file 1C). Overall, preservation of caudate nucleus mod-

ules was better in the frontal cortex (BA4) than in cere-

bellum (Figure 2E and F). Again, this finding most

probably reflects the degree of pathology in the different

tissues. The CNpos6 module was the only module that

was equally well preserved in both cerebellum and frontal

cortex BA4. This module is highly enriched for inflam-

matory response genes (Table 3). The CNpos5 module

seems to be caudate nucleus specific, as it was only

weakly preserved in both, cerebellum and frontal cortex

BA4 despite being a rather large module with 1388

genes. GO analysis showed enrichment for cilium re-

lated genes (Table 3), while the hub genes were enriched

for genes involved in extracellular matrix organization,

e.g. CYR61, CSGALNACT1, ANXA2, AGT, COL21A1,

EFEMP1 and ECM2 (Additional file 4D). The highly

negatively correlated CNneg1 module was enriched for

genes involved in neuronal function, especially for genes

involved in synaptic function/plasticity and ion channels

(Table 3). This finding was reflected in the hub gene ana-

lysis of the CNneg1 module, in which about 50% of the

identified hub genes are implicated to play a role in synap-

tic function (Additional file 4I). Furthermore, all CNneg1

hub genes were statistically significantly dysregulated as

Table 2 Gene ontology enrichment for the frontal cortex (BA4 region) network

Module cor GO-term (DAVID) Potential regulators

FC4pos1 up inflammatory response (6.64, 0.000) MEF2 (0.041)1, NFkB (0.041)1, miR34 (0.050)1, let7 (0.041)1

metallothionein (4.02, 0.04) STAT3 (0.005)2, STAT5B (0.005)2, JUN (0.040)2

regulation of transcription (3.58, 0.018)

regulation of apoptosis (3.25, 0.02)

vasculature development (2.7, 0.021)

cation homeostasis (2.68, 0.014)

IκB/NFκB (2.65, 0.02)

FC4pos2 up RNA binding/splicing (2.36, 0.037) E2F (0.006)2, TLX2 (0.006)2, XBP1 (0.008)2, YY1 (0.011)2,
HSF1 (0.021)2, LEF1 (0.021)2, MYC (0.021)2,
SOX5 (0.025)2, AR (0.031)2

FC4pos3 up amino acid catabolic process (5.52, 0.005) miR155 (0.018)1

fatty acid metabolism (3.25, 0.011) MEF2 (0.038)2

FC4pos4 up protein folding/chaperones (3.75, 0.001) miR1 (0.009)1, HSF1 (0.009)1

HSF1 (0.000)2, NFIL3 (0.033)2, STAT1 (0.037)2,
SF1 (0.037)2, NFY (0.039)2

FC4neg1 down protein transport (2.07, 0.03) EVI1 (0.011)2, E4F1 (0.045)2, XBP1 (0.045)2, ATF2 (0.045)2

FC4neg2 down membrane proteins (1.49, 0.2)

FC4neg3 down fibronectin (1.6, 0.84)

FC4neg4 down zinc-finger (1.74, 0.84)

mitochondrion (6.01, 0.000)

proteasome/ubiquitin system (5.01, 0.000) NRF1 (0.036)1

FC4neg5 down glycolysis (3.5, 0.001) ELK1 (0.000)2, SP1 (0.000)2, SF1 (0.001)2, E4F1 (0.001)2,
TCF11 (0.005)2, ATF (0.007)2, JUN (0.007)2,
NRF1 (0.007)2, CREB (0.028)2

protein folding/chaperones (3.04, 0.015)

protein transport (3.0, 0.002)

HTT n.a. cytoskeleton (1.43, 0.18)

Gene ontology (GO) enrichment for the frontal cortex BA4 region network. Genes in the identified modules were analyzed using DAVID. The sign of the

correlation (cor) with HD and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the respective fold enrichment, the

second number the adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly

enriched GO-term was identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were identified using 1GO-Elite, or
2WebGestalt. Adjusted P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted in bold. HTT is part of a module,

which is not correlated with HD in the frontal cortex BA4 region network. The GO-term enrichment for 100 genes with the highest correlation with HTT is shown.

The GO-term enrichment for the frontal cortex network with BA4 and BA9 regions combined is shown in Additional file 11.
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determined by Hodges and co-workers. The CNneg2 mod-

ule represented the negatively correlated gene clusters, like

e.g. mitochondrial and proteasomal genes, which we also

observed in cerebellum and frontal cortex (Tables 1, 2, 3

and Figure 4E). In addition, this module was enriched for

chaperone and spliceosome genes and genes required for

DNA repair and translation initiation (Table 3). Conse-

quently, also its hub genes were mostly enriched for mito-

chondrial genes (Figure 3F). Modules that were positively

correlated with HD in the caudate nucleus network were,

amongst others, enriched for transcriptional regulators,

chromatin modifiers and genes involved in mRNA pro-

cessing (modules CNpos1 and CNpos2, Table 3). Espe-

cially genes functioning in the development of blood

vessel, glial cells, epithelial cells and astrocytes clustered in

the hub genes of the CNpos2 module (Additional file 4A).

Also, all hub genes in the CNpos1 and CNpos2 modules

were statistically significantly dysregulated [27] (Figure 3E

and Additional file 4A). Hub gene and GO analysis

showed a very high enrichment for inflammatory

response/immune system genes in the CNpos6 and

CNpos8 modules (Table 3 and Additional file 4E and G).

Noteworthy, 6 complement genes (C1R, C1S, C1QA,

C1QB, C3 and C5AR1) were assigned hub gene status

in these modules including the central component C3

(Additional file 4G). However, only C3 was previously

found to be significantly dysregulated (Additional file 4E

and G). The caudate nucleus network fit the analysis by

Hodges and colleagues very well, as in total only 193

(5.0% of 3825 genes) of the significantly dysregulated

genes were not sorted into modules that were correlated

with HD.

Comparison of the three human brain region networks

To investigate the similarity of transcriptional dysregula-

tion between tissues, we compared the significantly posi-

tively and negatively correlated genes in the three

networks (Figure 4A), as well as the conservation of hub

genes (Figure 4B-F). Using the caudate nucleus network

as the basis, we found that both cerebellum and frontal

Figure 4 Network comparisons between different tissues in HD reveal a high number of similarly correlated genes, as well as common

hub genes in all three brain regions. Venn diagrams show the overlap of networks (A) or hub genes (B to F) in the respective modules. Only

modules with an overlap of more than 5 hub genes (10%) with modules from other tissues are shown. (A) Venn diagrams highlight the overlap

of positively or negatively correlated genes in the networks of the three tissues. All positively, or negatively correlated genes of the significantly

correlated modules (Figure 1) for each network were combined and compared to their respective assignment in the other networks. The

intersections show the number of genes that were assigned to modules with the same sign of correlation. Caudate nucleus modules CNpos1

(B), CNpos2 (C) and CNpos6 (D) are positively correlated with HD and have common hub genes with cerebellum and frontal cortex BA4

modules. Caudate nucleus module CNneg2 (E) is negatively correlated with HD and also shares common hub genes with cerebellum and

frontal cortex BA4 modules. The positively correlated frontal cortex BA4 region module FC4pos4 (F) overlaps with cerebellum, but not caudate

nucleus modules.
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cortex BA4 networks exhibited considerable similarities

of significantly correlated genes (Figure 4A). More than

1200 genes were correlated in the same way in all three

brain regions; the correlations of 1563 genes were con-

served between caudate nucleus and frontal cortex BA4

and 1724 genes were similarly correlated in caudate nu-

cleus and cerebellum (Figure 4A). Gene ontology enrich-

ment analysis showed that metallothioneins and genes

involved in the stress response and angiogenesis were

commonly positively correlated with HD in all three

networks (Table 4). Genes implicated in mitochondrial

function, glycolysis, intracellular protein transport, pro-

teasome and synaptic vesicles were commonly nega-

tively correlated with HD in all three networks (Table 4).

Furthermore, we found extensive conservation of hub

genes in modules that were positively correlated with HD

(Figure 4B to D). However, only one set of modules, which

were negatively correlated with HD, exhibited common

hub genes (Figure 4E). Interestingly, the CNneg1 module

of the caudate nucleus network, which represented the

Table 3 Gene ontology enrichment for the caudate nucleus network

Module cor GO-term (DAVID) Potential regulators

CNpos1 up regulation of transcription (6.18, 0.000) YY1 (0.000)2, ELK1 (0.001)2, GABPB1 (0.002)2,
SP1 (0.002)2, NRF1 (0.002)2, E2F (0.007)2, IRF1 (0.011)2,
GTF3A (0.032)2, SOX9 (0.033)2

chromatin modification (3.85, 0.003)

mRNA processing (3.71, 0.004)

CNpos2 up regulation of transcription (5.94, 0.001) NFAT (0.004)2

cell migration (4.09, 0.004)

lipid metabolism (2.51, 0.001)

CNpos3 up RNA binding (0.65, 1.0)

CNpos4 up chromatin organization (2.45, 0.008) EGR2 (0.010)2, MYC (0.040)2, TCF3 (0.040)2, NR2F2 (0.040)2,
TCF12 (0.040)2, SP1 (0.040)2, EGR1 (0.040)2, EGR4 (0.040)2

CNpos5 up cilium (2.79, 0.003)

CNpos6 up inflammatory response (8.33, 0.000) STAT5A (0.000)2, STAT3 (0.000)2, STAT5B (0.000)2,
BACH2 (0.002)2, NFAT (0.005)2, JUN (0.020)2, NFE2 (0.035)2

CNpos7 up regulation of transcription (3.0, 0.045)

CNpos8 up inflammatory response (14.15, 0.000) ELF1 (0.000)2, STAT1/STAT2 (0.017)2, IRF1 (0.017)2

icosanoid metabolism (1.73, 0.001)

CNpos9 up myelination (3.06, 0.002)

oligodendrocyte/glial differentiation (2.4, 0.054)

CNneg1 down synapse (12.23, 0.000) miR16 (0.018)1, NRF1 (0.03)1REST (0.000)2, EGR1 (0.000)2,
SF1 (0.000)2, CREB1 (0.000)2, JUN (0.000)2, EGR4 (0.000)2,
MYOD1 (0.000)2, TCF3 (0.000)2, RORA (0.000)2, ATF1 (0.000)2,
E4F1 (0.000)2, SP1 (0.000)2, ESRRA (0.001)2, TCF11 (0.002)2,
PAX4 (0.002)2, TFAP4 (0.003)2, MAZ (0.003)2, HAND1 (0.006)2,
EGR2 (0.007)2, NRF2 (0.007)2, ATF3 (0.008)2, RFX1 (0.008)2,
POU3F1 (0.008)2, LEF1 (0.011)2, POU1F1 (0.019)2, MYB (0.027)2,
TCF12 (0.041)2, NFE2 (0.041)2, MEIS1 (0.044)2, SREBF1 (0.050)2

ion channels (4.61, 0.000)

regulation of synaptic plasticity (4.58, 0.000)

protein transport (2.89, 0.011)

protein targeting to mitochondrion (2.75, 0.007)

CNneg2 down mitochondrion (20.31, 0.000) YY1 (0.005)1, ETS1 (0.005)1, NRF1 (0.005)1ELK1 (0.000)2

proteasome/protein catabolic process (5.83, 0.000)

mitochondrial ribosome (4.54, 0.000)

chaperones (3.17, 0.012)

spliceosome (3.0, 0.002)

DNA repair (2.47, 0.027)

translation initiation (1.95, 0.007)

CNneg3 down hemoglobin complex (1.74, 0.024)

HTT down neuron projection (1.93, 0.56)

Gene ontology (GO) enrichment for the caudate nucleus network. Genes in the identified modules were analyzed using DAVID. The sign of the correlation (cor)

with HD and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the respective fold enrichment, the second number the

adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly enriched GO-term was

identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were identified using 1GO-Elite, or 2WebGestalt. Adjusted

P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted in bold. HTT is part of the CNneg1 module in the

caudate nucleus network. The GO-term enrichment for 100 genes with the highest correlation with HTT is shown.
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“neuron/synaptic” module had only 7 hub genes overlap

within several cerebellum modules and only 3 hub genes

overlap in the frontal cortex BA4 region network, indicat-

ing its tissue specific character (data not shown). The

CBpos5 cerebellum module and the FC4pos4 frontal cor-

tex BA4 module were both enriched for chaperone genes

(Tables 1 and 2). Consequently, we identified many

chaperone genes, which had hub gene status in both

networks (Figure 4F).

Meta analysis of the caudate nucleus network with other

disorders

Next, we analyzed the preservation of the caudate nucleus

network modules in gene expression datasets of other dis-

orders (Figure 5). We used our caudate nucleus network,

which was derived from the most affected brain tissue in

HD and compared it to other highly affected tissues

(Table 5). In addition to other neurodegenerative disorders

(Alzheimer’s disease (AD), amyotrophic lateral sclerosis

(ALS), multiple sclerosis (MS), Parkinson’s disease (PD)

and schizophrenia (SCHIZ)), we also included muscle

related diseases (myotonic dystrophy type 1/type 2 (DM1,

DM2) and Duchenne Muscular Dystrophy (DMD)), di-

lated cardiomyopathy (DCM) and cancers (renal cell

carcinoma (RCC) and ganglioglioma (GG)). When we

analyzed the preservation of the caudate nucleus modules

[27] in another HD dataset (HD-II) [35], we observed very

high Z-summary scores for most modules, indicating a

good reproducibility and thus robustness of the HD net-

works. The CNpos3 and CNpos4 modules were only

assigned a few genes (Figure 1F), which most probably

was the reason for their low preservation score (Figure 5A).

The CNpos7 and CNneg3 modules had an average num-

ber of genes assigned to them. However, they appeared to

be rather dataset specific, as we generally observed low Z-

summary scores (Figure 5A). Other diseases that result in

pronounced neurodegeneration, e.g. AD, ALS, MS, PD,

SCHIZ or GG also exhibited high preservation scores for

most modules. As controls for our preservation analysis

we used the RCC, DMD and DCM data. In these datasets,

Z-summary scores were low, apart from the two “inflam-

matory” modules CNpos6 and CNpos8, which were highly

Table 4 Gene ontology enrichment for conserved genes between HD networks

Overlap GO-term (DAVID) Potential regulators

Positively correlated genes

CN and FC-BA4 inflammatory response (5.6, 0.001) MYC/MAX (0.010)2, STAT3 (0.010)2, ETS2 (0.020)2

epithelial to mesenchymal transition (1.18, 0.026)

CN and CB regulation of transcription (5.2, 0.000)

mRNA processing (3.69, 0.001)

apical junction complex (1.91, 0.027)

FC-BA4 and CB zinc-finger (1.17, 0.44)

all three networks metallothionein (5.1, 0.000) FOXF2 (0.002)2, NFIL3 (0.010)2, LEF1 (0.017)2, HSF1 (0.017)2,
ATF2 (0.022)2, HIF1A (0.026)2, SP1 (0.042)2

stress response/chaperones (2.62, 0.02)

angiogenesis (2.61, 0.039)

Negatively correlated genes

CN and FC-BA4 synaptic transmission (4.8, 0.000) REST (0.004)2, EGR4 (0.015)2, SP1 (0.015)2, ATF1 (0.022)2,
MEIS1 (0.022)2, ELK1 (0.022)2, ESRRA (0.040)2, ATF3 (0.046)2,
E4F (0.046)2, SF1 (0.046)2, LEF1 (0.046)2

ion channels (4.65, 0.000)

protein catabolic process (4.23, 0.008)

CN and CB mitochondrion (8.46, 0.000) SF1 (0.002)2, E4F (0.020)2

intracellular protein transport (3.02, 0.023)

vesicle mediated transport (2.19, 0.013)

FC-BA4 and CB coenzyme metabolic process (1.86, 0.98) ELK1 (0.007)2, E4F (0.007)2

all three networks mitochondrion (6.01, 0.000) CREB (0.000)2, ATF3 (0.001)2, SF1 (0.015)2, ERR1 (0.015)2,
TCF11 (0.015)2, ELK1 (0.018)2, ATF4 (0.018)2, SREBF1 (0.018)2,
ATF6 (0.019)2, E4F (0.024)2, JUN (0.026)2, EGR1 (0.039)2, NRF1 (0.049)2

glycolysis (2.74, 0.003)

intracellular protein transport (2.59, 0.028)

proteasome (1.97, 0.001)

synaptic vesicle (1.82, 0.018)

Gene ontology (GO) enrichment for conserved genes between HD networks. Genes were analyzed using DAVID and the over-represented GO-terms are shown.

The first number in brackets after the GO-term is the respective fold enrichment, the second number the adjusted P-value, as determined by DAVID. All significantly

enriched (adjusted P <0.05) GO-terms are shown. In cases where no significantly enriched GO-term was identified, the GO-term with the highest fold enrichment is

shown. Potential regulators of a module were identified using 1GO-Elite, or 2WebGestalt. Adjusted P-values are given in brackets after the name.
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preserved in virtually all datasets (Figure 5A and B).

Interestingly, the highest correlated (with HD) modules

CNpos1 and CNneg1 showed only moderate preserva-

tion in MS. However, the two “inflammatory” modules

again were very highly preserved between the HD and

MS datasets (Figure 5A). For the muscle wasting dis-

ease myotonic dystrophy, type 1 showed higher preser-

vation scores than type 2. But notably both were

characterized by a lack of preservation of the CNneg1

“neuron/synaptic” module, yet high preservation of the

CNneg2 and CNpos1 modules (Figure 5A and B). This

finding once more highlights the aforementioned suc-

cessful separation of the synaptic/neuronal (CNneg1)

transcriptional dysregulation from the more ubiquitous

dysregulated genes (CNneg2) in our networks.

Meta analysis of the caudate nucleus network with mouse

models of HD

Many models of HD exist, amongst which the murine

models are the best studied [36,37]. However only lim-

ited data on transcriptome wide dysregulation is publicly

available and the cross-species comparison additionally

complicates meta analyses. To gain a first impression

how the species comparison might affect the preserva-

tion analysis we compared only the caudate nucleus sam-

ples from control subjects with the wild type striatum

Figure 5 Preservation analysis of HD caudate nucleus network modules in other diseases and in HD mouse models highlights

common transcriptional changes. (A) Preservation analysis of HD caudate nucleus network modules in various diseases. The Z-summary values

are shown as a heat map from white (−1) to brown (75). Colors next to the modules indicate correlation (cor) with HD, as shown in (B), together

with a short summary table of Table 3. HD-II = Huntington’s disease dataset 2; AD = Alzheimer’s disease; ALS = Amyotrophic lateral sclerosis; MS =multiple

sclerosis; PD = Parkinson’s disease; SCHIZ = Schizophrenia; RCC = renal cell carcinoma; GG = ganglioglioma; DM1, DM2 =myotonic dystrophy

type 1, type 2; DMD = Duchenne Muscular Dystrophy; DCM = dilated cardiomyopathy. For details of the datasets see Table 5. (C and D) A HD

caudate nucleus network with only control samples as the input for the preservation analysis was generated (n = 32). (C) Preservation analysis

of these human caudate modules in a dataset of only wild type mouse samples from the R6/2 dataset (n = 9), or all wild type mouse samples,

respectively (n = 22) (excluding the Q80 data, due to the different type of microarray). (D) The median Z-summary values from the analysis in

(C) for modules of certain size ranges were calculated and are shown as a heat map from white (−1) to brown (15). (E) Preservation analysis

of HD caudate nucleus network modules in HD mouse models. The Z-summary values are shown as a heat map from white (−1) to brown (15). Colors

next to the modules indicate correlation with HD, as shown in (B). Q80 = Hdh480Q; Q92 = HdhQ92; Q150 = HdhQ150; mth =months.
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mouse samples. To this end, we computed a network for

the human control samples and calculated the preserva-

tion Z-summary score for its modules in the R6/2 wild

type samples, or all mouse wild type data except the Q80

dataset, respectively (Figure 5C and D). We only included

genes that were conserved between both species. Both

meta analyses of control human caudate nucleus and wild

type mouse striatum data were very comparable and we

obtained median Z-summary values of less than 5 for

the preservation of modules of defined sizes (Figure 5C

and D). This led us to hypothesize that Z-summary

values above this value would indicate high cross-

species preservation and would be correlated to effects

induced by mutant huntingtin. The Q80 dataset was

obtained with a different type of microarray than the

other mouse datasets (Table 5), in which only about 50% of

the genes were conserved and therefore Z-summary values

were very low (Figure 5E). In general, for the other mouse

datasets, preservation was better in fully symptomatic

animals (Figure 5E, compare time points for Q92 and

YAC128), with absolute age of the animals being irrelevant.

Given our data for the control/wild type cross-species

comparison (Figure 5C and D), the negatively correlated

modules of the human HD caudate nucleus dataset were

very highly preserved in the mouse models, while the posi-

tively correlated modules were in general less highly pre-

served (Figure 5E).

To reveal further similarities between gene expression

in the human HD samples and other disorders or the

mouse models, respectively, we computed consensus net-

works. In this type of network, only genes, which are simi-

larly regulated in both disorders or species and which are

assigned to modules that are correlated with the trait of

interest in both datasets, are analyzed. In our preservation

analysis we observed very high Z-summary values for the

PD dataset (Figure 5A). Accordingly, we also identified

consensus modules, which were highly correlated both

with HD and PD disease states (Figure 6A and B). Gene

Table 5 Microarray datasets used in this study

Set Accession ctr/patient Tissue Array Overlap Reference

main HD GSE3790 26/38 cerebellum GPL96 100% [27]

16/18 BA4 region of frontal cortex

12/18 BA9 region of frontal cortex

32/36 caudate nucleus

AD GSE26927 7/11 entorhinal cortex GPL6255 94.2% [35]

ALS 9/10 cervical spinal cord

HD-II 10/9 ventral head of the caudate nucleus

MS 10/8 superior frontal gyri

PD 8/12 substantia nigra

SCHIZ 8/9 temporal cortex left, BA22 region

DM1 GSE7014 5/10 skeletal muscle GPL570 100% [81]

DM2 5/20 skeletal muscle

DMD GSE6011 14/22 quadriceps muscle GPL96 100% [82]

DCM GSE3585 5/7 heart GPL96 100% [83]

RCC GSE781 5/12 kidney GPL96 100% [84]

GG E-MEXP-1690 6/6 brain GPL96 100% [85]

Set Accession WT/HD Tissue Array Overlap Reference

Q80 GSE10263 3/3 striatum GPL81 51.2% [28]

Q150 GSE10263 4/4 striatum GPL1261 81.9%

Q92 GSE7958 3/3 (3 mth) striatum GPL1261 81.9%

3/3 (18 mth)

R6/2 GSE10263 9/9 striatum GPL1261 81.9%

YAC128 GSE19677 4/4 (12 mth) 3/6 (24 mth) striatum GPL1261 81.9% [24]

The abbreviations for the datasets are as follows: main HD =main Huntington’s disease dataset; AD = Alzheimer’s disease; ALS = Amyotrophic lateral sclerosis;

HD-II = Huntington’s disease dataset 2; MS =multiple sclerosis; PD = Parkinson’s disease; SCHIZ = schizophrenia; DM1, DM2 =myotonic dystrophy type 1, type 2;

DMD = Duchenne muscular dystrophy; DCM = dilated cardiomyopathy; RCC = renal cell carcinoma; GG = ganglioglioma; Q80 = Hdh480Q; Q150 = HdhQ150;

Q92 = Hdh
Q92. Accession is the accession number of the EMBL-EBI ArrayExpress, or NCBI Gene Expression Omnibus (GEO). Ctr/patient and WT/tg gives the sample

numbers after outlier removal for control (ctr) or patient samples and wild type (WT) or HD mouse model samples (HD), respectively. For details of outlier removal

procedure see materials and methods. Array lists the microarray type used for the particular study; for details see the GEO database. Overlap gives the percentage

of genes, which are detected on the particular chip in comparison to the main HD array (GPL96).
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ontology enrichment and hub gene analysis showed that

these modules, which were positively correlated with HD

and PD, were enriched in genes implicated in NFκB sig-

naling, neurogenesis and lipid synthesis (Figure 6C, Table 6

and Additional file 5). The negatively correlated module

in the HD/PD consensus network was enriched for genes

involved in synaptic and mitochondrial function, as well

as calmodulin binding proteins (Figure 6D and Table 6).

In addition, there was a high overlap of hub genes of con-

sensus network modules with the hub genes that we iden-

tified in the caudate nucleus dataset (Figure 6E-G).

Interestingly, several Alzheimer’s disease related genes

(PSEN1, SORL1, FGFR1, BMP7, FYN, BCL2, SCD, NPC2,

PTBP1, TNFRSF1A, ITGB1, LHPP, LRP2, LRPAP1, LPL,

L1CAM, CNNM1 and HSPA12A) had hub gene status in

this HD/PD consensus network (Figure 6E-G). Next, we

analyzed consensus networks of the HD caudate nucleus

dataset with the datasets of other disorders, the same we

had used in the preservation analysis. We did not find sig-

nificantly correlated modules (with disease) in the consen-

sus networks for HD with AD, ALS, MS and SCHIZ.

However, we could identify significantly correlated

modules with the two cancer datasets (Additional files 6

and 7) and the two types of myotonic dystrophies

Figure 6 WGCNA analysis of the HD/PD consensus dataset indicates commonly dysregulated pathways. (A) Visualization of modules that

are highly correlated with Huntington’s (HD) and Parkinson’s (PD) disease state. Size is the number of genes for each module. Padj gives the

Benjamini Hochberg corrected significance value of correlation with HD/PD for each module. (B) Correlations of eigengene based connectivity

(kME) versus the gene significance for HD and PD. The two modules with the highest absolute correlation are shown for each disease dataset.

cor = correlation. (C and D) Visualization of hub genes in HD/PD consensus network modules. The 50 most connected genes (nodes) and the

500 strongest gene-gene interactions (edges) in each module are shown. The width and the color saturation of the lines (edges) correspond to

the weight of the interactions. The PDpos2 module is visualized in Additional file 5. (E - G) Hub gene comparison of HD/PD consensus modules versus

modules of the HD caudate nucleus (CN) dataset. Venn diagrams show the overlap of hub genes in the respective consensus modules with

HD caudate nucleus modules. Only consensus modules with an overlap of 5 or more genes to CN modules are shown. For analysis of a HD/GG

consensus network see Additional file 6; HD/RCC see Additional file 7; HD/DM1 see Additional file 8; HD/DM2 see Additional file 9.

Neueder and Bates BMC Medical Genomics 2014, 7:60 Page 13 of 23

http://www.biomedcentral.com/1755-8794/7/60



Table 6 Gene ontology enrichment for the consensus networks in human datasets

Module cor GO-term (DAVID) Potential regulators

Parkinson’s disease (PD)

PDpos1 up IκB kinase/NFκB (3.59, 0.032)

PDpos2 up lipid synthesis (2, 0.01)

PDneg1 down synapse (5.87, 0.000) miR16 (0.036)1

mitochondrion (4.6, 0.000) ESRRA (0.001)2, SF1 (0.003)2

calmodulin binding (3.12, 0.044)

Myotonic dystrophy type 1 (DM1)

DM1pos1 up regulation of neurogenesis (1.55, 0.99) MEF2 (0.040)2, E2F (0.040)2, NR3C1 (0.040)2,
PITX2 (0.040)2, ATF6 (0.040)2, VDR (0.040)2, ATF1 (0.040)2,
TP53 (0.041)2

DM1neg1 down axon (1.18, 0.98) POU2F1 (0.011)2, POU1F1 (0.034)2, IRF2 (0.048)2

DM1neg2 down enzyme activator activity (2.52, 0.049)

DM1neg3 down synapse (2.29, 0.008) SF1 (0.001)2, REST (0.032)2

Myotonic dystrophy type 2 (DM2)

DM2pos1 up lysosome (3.03, 0.043)

DM2pos2 up regulation of transcription (1.51, 0.99)

DM2pos3 up tubulin binding (1.64, 0.52)

DM2pos4 up sarcomer (1, 1.0)

DM2neg1 down mitochondrion (3.09, 0.01)

DM2neg2 down dendrite (1.91, 0.51) NRF1 (0.009)1, ETS1 (0.054)1

Ganglioglioma (GG)

GGpos1 up inflammatory response (6.32, 0.002) NFκB (0.022)1, miR124 (0.022)1, miR106b (0.022)1, MYOG (0.066)1

cell adhesion/extracellular matrix (4.13, 0.002) ELF1 (0.000)2, IRF8 (0.008)2, MYB (0.008)2, ELK1 (0.010)2,
SPI1 (0.010)2, CEBPA (0.016)2, NFAT (0.029)2, IRF1 (0.034)2,
STAT5A (0.034)2, AHR (0.043)2, SOX5 (0.049)2, TP53 (0.049)2

GGneg1 down axon (11.88, 0.000) REST (0.000)2, SF1 (0.000)2, TCF3 (0.000)2, ESRRA (0.000)2,
MYOD (0.000)2, RFX1 (0.000)2, RORA (0.000)2, EGR1 (0.000)2,
JUN (0.000)2, TCF11 (0.000)2, ATF3 (0.000)2, LEF1 (0.000)2,
PAX4 (0.000)2, E4F1 (0.000)2, CREB (0.000)2, HLF (0.001)2,
MAZ (0.001)2, SP1 (0.001)2, NFIL3 (0.001)2, BACH1 (0.002)2,
ATF2 (0.002)2, ATF1 (0.002)2, TFAP4 (0.002)2, TCF8 (0.003)2,
ZNF238 (0.004)2, NFE2 (0.005)2, HSF1 (0.006)2, MIF (0.010)2,
CUTL1 (0.012)2, SREBF1 (0.016)2, NF1 (0.020)2, MEIS1 (0.020)2,
HSF2 (0.021)2, NFE2L2 (0.021)2, PCAF (0.023)2, GCF1 (0.034)2,
ITGAL (0.034)2, ATF4 (0.035)2, MAF (0.038)2, TAL1 (0.043)2,
NR1H4 (0.044)2, GATA2 (0.044)2, SOX9 (0.046)2

synapse (11.64, 0.000)

microtubuli based transport (5.18, 0.000)

calmodulin binding (4.87, 0.000)

cytoskeleton (3.63, 0.000)

neuropeptide (1.96, 0.012)

signaling from G-protein families (1.49, 0.025)

Renal cell carcinoma (RCC)

RCCpos1 up inflammatory response (12.47, 0.000) NFκB (0.06)1, E2F (0.081)1

regulation of IκB kinase/NFκB (5.54, 0.000) IRF8 (0.000)2, IRF1 (0.000)2, ETS2 (0.000)2, ELF1 (0.000)2,
SPI1 (0.000)2, ELF2 (0.001)2, STAT1 (0.001)2, E2F (0.001)2,
ETS1 (0.007)2, GABPA (0.007)2, ELK1 (0.010)2, STAT5B (0.021)2,
FOXO4 (0.022)2, TP53 (0.024)2, AHR (0.025)2, ETV4 (0.026)2,
STAT3 (0.032)2, SMAD1 (0.037)2, IRF7 (0.037)2, AR (0.040)2

angiogenesis (5.17, 0.004)

caspase recruitment (4.8, 0.002)

regulation of transcription (4.03, 0.003)

regulation of apoptosis (3.09, 0.004)

extracellular matrix (2.81, 0.005)

chromatin (2.6, 0.023)

RCCpos2 up semaphorin/CD100 antigen (1.45, 0.023)
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(Additional file 8 and 9). Taken together, in these con-

sensus networks, the negatively correlated modules

were mostly enriched for genes involved in neuronal

and mitochondrial function, the positively correlated

modules were mostly enriched for inflammatory path-

way genes in the two cancers and for regulators of

transcription and neurogenesis in DM1 and DM2

(Additional files 6, 7, 8 and 9 and Table 6). This largely

mirrored the preservation analysis (Figure 5). We also

could identify significantly correlated modules in the

R6/2 and HdhQ150 datasets (Figures 7 and 8). The

negatively correlated modules for both mouse models

were enriched for synaptic genes (Figures 7C and D, 8D

and Table 7) and many of these also had hub genes sta-

tus in the human CNneg1 module (Figures 7F and 8E).

GO analysis of the positively correlated module in the

human HD/R6/2 consensus network showed genes in-

volved in lipid metabolism and regulation of neurogen-

esis (Figure 7E and Table 7). In the positively correlated

module of the human HD/HdhQ150 consensus net-

work, we found an enrichment for extracellular matrix

genes and regulators of cell development (Figure 8C and

Table 7). Furthermore, the positively correlated modules

for both mouse models exhibited extensive overlap of hub

genes with positively correlated modules in the human

caudate nucleus dataset (Figures 7G and 8F).

Discussion
In this study we use weighted correlation networks to

analyze gene expression data from different brain re-

gions of HD patients and compared them to other disor-

ders and HD mouse models. In summary, we found

comparable dysregulation to previously reported changes

[27] in the BA4 and BA9 regions of the frontal cortex

and the caudate nucleus. However, in contrast to previ-

ous findings, our analysis of the cerebellum detected ex-

tensive transcriptional dysregulation, to a similar extent

to that seen in the BA4 region of the frontal cortex. Subse-

quent in depth comparison of the brain region specific

networks revealed an underlying common transcriptional

signature in all three brain regions: a negative correlation

with HD for mitochondrial function, glycolysis, intracellu-

lar protein transport, proteasome and synaptic vesicles

and a positive correlation with HD for metallothioneins

and genes involved in stress response pathways and angio-

genesis. Moreover, meta analyses of the caudate nucleus

network and other disorders showed similarities for these

disorders with HD, in particular with a high enrichment

for inflammatory pathway genes. Lastly, we compared well

studied HD mouse models to the human gene expression

dataset, which implied that whilst the mouse models

mimic some aspects of the disease very well, certain as-

pects, for example induction of the inflammatory re-

sponse, were only poorly reflected.

Yet, there are certain limitations and considerations

for data interpretation of the current study. As with all

post mortem tissues, RNA quality might be a problem.

However, the authors of the original publication used

rigorous standards to ensure comparable RNA quality

and microarray reads [27]. In addition, we used a con-

nectivity based outlier test to remove samples that didn’t

pass our quality control [38] (see also materials and

methods section). A further consideration is that the post

mortem samples provide a snapshot of end stage disease

gene expression, which might not necessarily reflect the

underlying changes at or before disease onset or during

disease progression. We consequently found the best pres-

ervation of human striatal gene expression changes in late

stage mouse models (Figure 5E). Collection of patient

samples, e.g. from peripheral tissues such as muscle at dif-

ferent disease stages might shed more light on the regula-

tion of gene expression during disease progression. What’s

more, the massive amount of neurodegeneration, greater

than 90% in the striatum for grade 4 brains [39], poses the

danger that changes in tissue/cell type composition are

compared rather than changes in gene expression. Hodges

and colleagues addressed this issue with laser-capture

micro-dissection of control and patient tissue (grade 1)

followed by the analysis of the same number of neurons

for both. They found similar trends for gene expression

changes in the captured neurons as compared to the

tissue-based analysis and therefore, concluded that these

changes occurred before cell death [27]. Our preservation

and consensus network analyses showed that the mouse

models very well mirror the “synaptic/neuronal” CNneg1

module of the human caudate nucleus network and in fact

we observed the highest preservation scores for this mod-

ule (Figure 5E). Furthermore, we found high enrichment

Table 6 Gene ontology enrichment for the consensus networks in human datasets (Continued)

RCCneg1 down mitochondrion (31.99, 0.000) CREB (0.006)1, NRF1 (0.006)1, miR16 (0.068)1

protein catabolic process/proteasome (2.29, 0.037) SF1 (0.000)2, ESRRA (0.000)2, E4F1 (0.006)2, JUN (0.030)2,
ATF3 (0.030)2, NRF1 (0.047)2

synaptic vesicle (1.34, 0.029)

Gene ontology (GO) enrichment for the consensus network analysis of the HD caudate nucleus dataset with various diseases. Genes in the identified modules

were analyzed using DAVID. The sign of the correlation (cor) and the over-represented GO-terms are shown. The first number in brackets after the GO-term is the

respective fold enrichment, the second number the adjusted P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05) GO-terms are shown.

In cases where no significantly enriched GO-term was identified, the GO-term with the highest fold enrichment is shown. Potential regulators of a module were

identified using 1GO-Elite, or 2WebGestalt. Adjusted P-values are given in brackets after the name. Regulators that were identified by both tools are highlighted

in bold.
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for synaptic and neuronal genes in the negatively corre-

lated modules in the R6/2 and HdhQ150 consensus net-

works (Figures 7, 8 and Table 7). Given that very little

striatal neurodegeneration occurs in both mouse models

[40-42], the observed gene expression changes in the hu-

man datasets are most probably not due to differences in

tissue composition and could therefore, at least partly, be

the underlying cause for neuronal cell death. As for all

bioinformatic predictions of dysregulated pathways in vivo

validation is the logical next step. Regrettably, we do not

have access to human HD brain tissue in sufficient quan-

tity and quality to test the predictions of our analysis. For

many, although not all of the predicted dysregulated path-

ways, there is an extensive literature that provides evidence

for attenuated function in HD mouse models and HD pa-

tients (reviewed for example in [43,44]). Given that many

of our predicted dysregulated pathways have been corrob-

orated through the research reported by others, we expect

that some of the novel predicted pathways will be con-

firmed in future studies as being affected in HD.

In a previous publication, Horvath and colleagues used

a network based approach to compare the same HD pa-

tient caudate nucleus gene expression dataset to the

modular structure of the transcriptome in normal hu-

man brains [30,38]. The focus of the study was however

on the biologically meaningful relationship between

samples, which can be distinguished with a connectivity

based analysis. Nevertheless, they identified a module

Figure 7 WGCNA analysis of the human HD/R6/2 consensus dataset indicates commonly dysregulated pathways. (A) Visualization of

modules that are highly correlated with Huntington’s disease (HD) state and genotype of R6/2 mice. Size is the number of genes for each

module. Padj gives the Benjamini Hochberg corrected significance value of correlation with human HD/R6/2 for each module. (B) Correlations of

eigengene based connectivity (kME) versus the gene significance for human HD and R6/2. The two modules with the highest absolute correlation are

shown for each dataset. cor = correlation. (C - E) Visualization of hub genes in human HD/R6/2 consensus network modules. The 50 most connected

genes (nodes) and the 500 strongest gene-gene interactions (edges) in each module are shown. The width and the color saturation of the lines

(edges) correspond to the weight of the interactions. (F and G) Hub gene comparison of human HD/R6/2 consensus modules versus modules of the

HD caudate nucleus (CN) dataset. Venn diagrams show the overlap of hub genes in the respective consensus modules with HD caudate

nucleus modules. Only consensus modules with an overlap of 5 or more genes to CN modules are shown.
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that had considerable similarity with the salmon “neur-

onal, synaptic and signal transduction” module of the

normal human transcriptome and which was altered in

HD. This is in very good agreement with our data, where

we identified a homologous module (CNneg1) in the

caudate nucleus network.

It is noteworthy to mention that a linear relationship

between the correlation of a gene with disease and dif-

ferential expression analysis does not necessarily exist.

Therefore, although a gene can be highly correlated with

a particular trait, the change in expression level can be

relatively small. With standard dysregulation analysis,

gene expression changes in a subpopulation of cells might

be lost in a background of non-affected cells. With network

analysis, we were able to find highly comparable GO en-

richments and hub gene structures for the frontal cortex

BA4 region even when analyzed together with the un-

affected BA9 region. This implies that a weighted gene net-

work approach can detect gene expression changes in a

sub-population of cells, even against a huge background of

expression signals of the same genes in unaffected tissue.

The only major difference in analysis of the combined tis-

sues was a reduction in the correlation of the modules with

HD (Figures 1C and D, Table 3 and Additional files 10

and 11). We observed relatively small, yet statistically

significant correlations of modules in the cerebellum

with HD when compared to caudate nucleus, a finding,

which is similar to that found in an HD mouse model

Figure 8 WGCNA analysis of the human HD/HdhQ150 consensus dataset indicates commonly dysregulated pathways. (A) Visualization

of modules that are highly correlated with Huntington’s disease (HD) state and genotype of HdhQ150 mice. Size is the number of genes for each

module. Padj gives the Benjamini Hochberg corrected significance value of correlation with human HD/HdhQ150 for each module. (B) Correlations of

eigengene based connectivity (kME) versus the gene significance for human HD and HdhQ150. The two modules with the highest absolute

correlation are shown for each dataset. cor = correlation. (C and D) Visualization of hub genes in human HD/HdhQ150 consensus network

modules. The 50 most connected genes (nodes) and the 500 strongest gene-gene interactions (edges) in each module are shown. The width

and the color saturation of the lines (edges) correspond to the weight of the interactions. (E and F) Hub gene comparison of human

HD/HdhQ150 consensus modules versus modules of the HD caudate nucleus (CN) dataset. Venn diagrams show the overlap of hub genes in

the respective consensus modules with HD caudate nucleus modules.
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[45]. One explanation for this effect could be that only

a sub-population of cells in the cerebellum, yet to be

determined, is affected.

In all three brain regions, we found genes involved in the

function of mitochondria, glycolysis, intracellular protein

transport, proteasome and synaptic vesicles to be com-

monly negatively correlated with HD, and metallothioneins

and genes involved in stress response pathways and angio-

genesis to be commonly positively correlated with HD

(Table 4). This led us to hypothesize that the HD mutation

causes a common transcriptional signature (Figure 5). Fur-

thermore, the preservation of modules between each of the

three brain region networks was generally very high, with

only a few tissue specific modules (Figure 2). The CNpos5

module, specific to the caudate nucleus network, is poten-

tially very interesting by virtue of its large size and correl-

ation with HD (Figure 2E and F) and provides a good

example of the drawbacks of gene ontology enrichment

analysis. Historically driven, the gene ontology databases

do not include the central nervous system specific func-

tions of genes and are, as all large databases, plagued with

incompletion, imprecision and a bias towards certain, well

studied pathways [46]. So the only enriched functional

cluster for this module contained genes implicated in

cilium function (Table 3). Also, most probably because of

the same aforementioned reasons, an upstream regulator

was not identified. Yet, one of the advantages of connectiv-

ity based network analysis is the ranking of genes accord-

ing to their co-regulation with other genes. This allows one

to identify hub genes, which often are the biological key

players in a particular module [47]. And indeed, 7 of the

top 50 hub genes of the CNpos5 module have a probable

function in extracellular matrix organization (CSGAL-

NACT1, CYR61, ANXA2, AGT, COL21A1, EFEMP1 and

ECM2).

In addition to the newly identified transcriptional signa-

ture in the cerebellum, we found highly positively corre-

lated modules enriched for genes involved in inflammation

for both the cortex BA4 region and caudate nucleus

(Tables 2 and 3). This is probably not surprising given

the widespread gliosis that occurs in the brains of HD

patients [48], however it was not identified in the ori-

ginal analysis [27]. A gene expression network study in

late-onset AD identified an immune system/microglia

module that was highly correlated with AD pathology

[49]. In our comparison of HD with other disorders, the

two “inflammatory” modules CNpos6 and CNpos8 were

largely preserved in most disorders (Figure 5A) raising the

possibility that treatments available for some of these

could also be applied to HD [50-52]. Recently, mutant

HTT was found to induce a cell-autonomous response in

microglia [53] and astrocytes [54], which are first indi-

cations that neuroinflammation in HD is a potential

contributing factor and not purely the consequence of

neurodegeneration. Especially in the caudate nucleus

network, we identified components of the complement

system as being positively correlated with HD and many

of these also had hub gene status (Additional file 4E

and G). It has been previously reported that the com-

plement system is abnormally activated in the brains of

HD patients [55]. The complement system is regulated

by the innate, as well as the adaptive immune system

and is expressed in most cell types of the brain, thus it

might be an important factor in neurodegenerative dis-

eases [56]. Taken together, our data and previous findings

suggest that targeting neuroinflammation, in particular ac-

tivation of the complement system could be beneficial to

slow down disease progression in HD.

Whether the abnormal folding of mutant HTT and/or

the appearance of aggregates are sufficient to induce a

cellular stress response, in particular through induction

of steady state levels of molecular chaperones, is a long-

standing question. To the best of our knowledge, our

network analysis is the first indication that the expres-

sion of mutant HTT is correlated with higher levels of

molecular chaperones in humans. We identified a sig-

nificantly positively correlated module in the cerebellum

network (CBpos5, Figures 1B and 3A, Table 1), which is

Table 7 Gene ontology enrichment for the consensus

networks in mouse datasets

Module cor GO-term (DAVID) Transcription
factor

HdhQ150

Q150pos1 up extracellular matrix (1.71, 0.65)

Q150neg1 down synaptic transmission/synapse
(8.81, 0.000)

CREB (0.045)1

neuron projection/axon
(2.4, 0.019)

mitochondrion (2.1, 0.007)

R6/2

R6/2pos1 up fatty acid metabolism
(1.98, 0.13)

SOX9 (0.049)2

R6/2neg1 down synaptic transmission
(6.77, 0.000)

gated channel activity
(2.3, 0.02)

neurotransmitter transport
(2.08, 0.005)

R6/2neg2 down ion transport (1.68, 0.64)

Gene ontology (GO) enrichment for the consensus network analysis of the HD

caudate nucleus dataset with HD mouse models. Genes in the identified

modules were analyzed using DAVID. The sign of the correlation (cor) and the

over-represented GO-terms are shown. The first number in brackets after the

GO-term is the respective fold enrichment, the second number the adjusted

P-value, as determined by DAVID. All significantly enriched (adjusted P <0.05)

GO-terms are shown. In cases where no significantly enriched GO-term was

identified, the GO-term with the highest fold enrichment is shown. Potential

regulators of a module were identified using 1GO-Elite, or 2WebGestalt.

Adjusted P-values are given in brackets after the name.
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highly enriched for protein folding/chaperone genes. We

also found a similar module in the cortex BA4 network,

that was just short of being significantly correlated

(FC4pos4, Figure 1D, Table 2 and Additional file 3C). In

contrast, we did not detect a similar module in the caud-

ate nucleus network. It is tempting to speculate that the

higher levels of these chaperones counteract the patho-

genic effects of mutant HTT and protect these tissues

(correlation P-value of chaperone modules CB < FC-

BA4 <CN; pathogenesis CB < FC-BA4 <CN). We of course

appreciate that further studies are needed, e.g. to inves-

tigate whether changes at the mRNA level are trans-

lated to changes at the protein level by assessing the

protein levels of certain chaperones in different brain

regions. In the frontal cortex BA4 region network we

also identified a chaperone gene containing module that

was negatively correlated with HD (FC4neg5, Table 2)

highlighting the complex regulation of the proteostasis

network and its potential suppression through other

mechanism caused by mutant HTT. Together these

data support the therapeutical avenue of drugs that boost

the proteostasis network, which was shown numerous

times in animal models to antagonize the progression of

HD pathogenesis [57]. Given that the proteostasis net-

works in mammals does not seem to be impaired during

aging [58], this approach might prove beneficial even in

older patients.

As briefly addressed in the introduction, aberrant

binding of an mRNA processing factor to the mutant

HTT transcript results in the production of a HTT exon

1 fragment [19]. It might be expected that such an RNA

toxicity based mechanism would have additional wide-

spread consequences on global alternative splicing, simi-

lar to sequestration of MBNL1 in myotonic dystrophy.

In fact, an unpublished study has identified various alter-

natively spliced transcripts in HD mouse model tissue

(Gipson TA and Housman DE, unpublished data) and

an increase of the 4R/3R tau mRNA ratio has been ob-

served [59]. Intriguingly, we identified at least one mod-

ule that was significantly enriched for genes involved in

RNA binding/mRNA processing in all three brain region

networks (Tables 1, 2 and 3), which had not been discov-

ered in the original publication. In all cases the modules

were positively correlated with HD indicative of an up-

regulation of some parts of the RNA processing machin-

ery. It will be very interesting to see in future studies,

which splicing factors are mis-regulated and the conse-

quences this has on general RNA processing in HD.

The similarities between HD and other neurodegener-

ative diseases point towards common pathogenic mecha-

nisms (Figures 5, 6 and Additional files 6, 7, 8 and 9).

Apart from the previously mentioned inflammatory

component, we observed very high preservation scores

for the CNneg2 module of the caudate nucleus network

(Figure 5A). This module likely represents the commonly

down-regulated genes in HD, rather that changes in tissue

composition due to a loss of neurons (see Results section).

GO enrichment analysis showed that processes like mito-

chondrial function, the proteasome, stress response, etc.

are probably affected (Table 3). There is extensive litera-

ture in PD about mitochondrial dysfunction and the in-

volvement of parkin and PINK1 in quality control and

maintenance of mitochondria [60]. Interestingly, PINK1 is

a hub gene in the frontal cortex BA4 module that was

enriched for genes involved in mitochondrial function

(FC4neg5, Figure 1F and Table 2). As already mentioned

in the results section, several genes altered in Alzheimer’s

disease are hub genes in the HD/PD consensus network

(Figure 6). Collectively these data suggest that some key

proteins could underpin the functional deficits observed

in various disorders.

The in depth analysis of the hub genes in the different

networks, in particular the common ones in all three

brain regions uncovered previously identified therapeutic

targets (Figure 5). In model systems of HD, for example

subcutaneous administration of FGF2 increased neuro-

genesis [61] and overexpression of metallothioneins con-

ferred neuroprotection against polyglutamine induced

excitotoxicity [62]. Furthermore, predicted upstream regu-

lators of the identified network modules e.g. HSF1 [63],

NFAT [64], XBP1 [65], ELK1 [66], JUN [67], REST [68],

or CREB1 [69] were all shown to modulate neurotoxicity

in HD. This clearly shows the power of weighted cor-

relation network analysis for the prediction of thera-

peutic targets. Therefore, modulation of transcription

factors, not yet implicated in HD, like certain members

of the STAT transcription factor family (immune response),

TCF3 (immune response), TCF12 (lineage-specific gene ex-

pression, initiation of neuronal differentiation), EGR1

(differentiation, mitogenesis), EGR2/4 (immune response),

IRF1 (immune response, apoptosis), GABPB1 (mitochon-

drial function), or PAX4 (development, tumorigenesis)

could lead to new strategies towards slowing down patho-

genesis in Huntington’s disease.

Conclusions
Using weighted gene correlation network analysis we dem-

onstrate that the Huntington’s disease mutation causes a

common signature of gene expression changes in patient

brain tissue. We have identified as yet unknown extensive

transcriptional dysregulation in the cerebellum of HD pa-

tients, similar to that which we have observed in the

frontal cortex and caudate nucleus. Additionally, we found

that yet unassociated pathways, e.g. global mRNA process-

ing, were dysregulated in HD. Meta analyses of the HD

networks and other disorders showed similarities for these

disorders with HD, in particular with a high enrichment

for inflammatory pathway genes. Lastly, we compared well
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studied HD mouse models to the human gene expression

dataset, which implied that whilst the mouse models

mimic some aspects of the disease very well, certain as-

pects, for example induction of the inflammatory response,

were only poorly reflected. Taken together, these ap-

proaches allowed us to gain novel insights into the mo-

lecular pathogenesis of HD and to pinpoint potential

future therapeutic targets.

Methods
Microarray datasets and data pre-processing

All datasets were obtained from the EMBL-EBI ArrayEx-

press [70], or NCBI Gene Expression Omnibus (GEO)

[71] websites. Accession numbers for the datasets and ex-

perimental details can be found in Table 5. Microarray

raw intensity files were MAS5 normalized (Affymetrix

Expression Console, Affymetrix, CA, USA) [72] and log2

transformed to obtain the raw data datasets. We used only

the HG-U133A data for the main HD dataset [27]. For the

neurodegenerative diseases dataset [35], the array files

were normalized using the Rosetta error model (Rosetta

Biosoftware, WA, USA) and log2 transformed to obtain

the raw data dataset. All raw datasets were collapsed to

a one probe per gene level using the R function collap-

seRows [73]. Microarray probes were matched to gene

names and Entrez gene IDs (NCBI) of homo sapiens

genome build hg19 (Consensus CDS, NCBI), if the anno-

tation was not provided by the affymetrix array annotation

file (Affymetrix Expression Console, Affymetrix, CA,

USA). Probes with ambiguous gene annotations were

removed. Outlier samples were removed by a completely

unbiased method, which ignores phenotypic traits. To this

end the Euclidian distance between samples in a network

and their connectivity was calculated. Subsequently, sam-

ples with a standardized connectivity of less than −2.5

were removed.

Weighted gene co-expression network analysis (WGCNA)

All networks were independently constructed from the

log2 transformed, pre-processed datasets. In principle, the

workflow of the original publications was used [29].

Briefly, the pair wise weighted Pearson correlations be-

tween all pairs of genes across all samples were calculated.

A signed adjacency matrix was calculated by raising the

co-expression matrix to a soft-threshold power to reach

approximate scale free topology of the network (R2 > 0.9).

The powers used were: 15 for cerebellum, 9 for caudate

nucleus, 13 for frontal cortex (BA4), 17 for frontal cortex

(BA9) and 13 for frontal cortex (BA4 and BA9 combined).

A signed topology overlay matrix was calculated based on

the transformed connection strengths, which gives a bio-

logically meaningful measurement of the similarity of the

co-expression of two genes with all other genes in the net-

work. Highly similarly expressed genes were grouped by

applying average linkage hierarchical clustering on the

topology overlay matrix. Modules were subsequently iden-

tified by the dynamic hybrid tree cut algorithm [74]. Mod-

ule eigengenes can be seen as representing the first

principal component of a module. Modules with highly

correlated module eigengenes were merged (r >0.8). To

identify biological meaningful modules, we correlated the

module eigengenes to the HD stage assignment of the

samples [27]. Raw P-values were adjusted for multiple

comparisons with the Benjamini and Hochberg correction

using the Bioconductor package multtest [75].

Consensus network construction

Consensus networks were essentially constructed with the

same methodology as described above for weighted gene

co-expression network analysis. Briefly, outlier samples

were removed from the collapsed raw datasets. Networks

were constructed only from genes that were detected by

both array types, if applicable. Powers for transformation

of the co-expression matrices were (see Table 5 for abbre-

viations): 10 for AD, 19 for ALS, 28 for DM1, 8 for DM2,

23 for GG, 12 for MS, 16 for PD, 15 for RCC, 9 for

SCHIZ, 32 for YAC128, 20 for R6/2 and 20 for HdhQ150.

Modules with highly correlated module eigengenes were

merged (r >0.6). Module eigengenes were subsequently

matched to external traits as described before and cor-

rected for multiple hypotheses testing.

Module preservation statistics

The WGCNA package includes statistical tests to analyze

module preservation across different datasets [76]. Preser-

vation is the similarity of interconnections between genes

in a module, but also connectivity patterns of individual

modules for the two data sets, i.e. high preservation is evi-

dence for densely connected, distinct, and reproducible

modules. We calculated 200 permutations of the preserva-

tion statistics and generated a Z-summary value by aver-

aging them. The Z-summary indicates if a module is

strongly preserved (Z-summary score >10), moderately

preserved (Z-summary score 2 < × <10), or not preserved

(Z-summary score <2).

Identification and visualization of hub genes

We used the eigengene based connectivity kME as a

measure of module membership. Genes with a high mod-

ule membership measure are referred to as intramodular

hub genes. These genes are representative for the entire

module and most likely are biological key players in the

respective module. To visualize module structures, we ex-

tracted the 50 genes with the highest module membership

(nodes) and the strongest 500 gene-gene connections

(edges) amongst these from the signed topology overlay

matrix. We used Cytoscape [77] to visualize the networks
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with the strength of the gene-gene correlation as a co-

factor.

Enrichment of upstream regulators and pathway analysis

To analyze enrichment of upstream regulators, like e.g.

transcription factors or micro RNAs, we used GO-Elite

[78], or WebGestalt [79]. For both, we used the gene

lists for the identified network modules as input and all

genes in a network as the denominator for the analysis

with GO-Elite. The EnsMart65Plus database for homo

sapiens was used in the GO-Elite analyses.

Gene ontology analysis

Gene ontology analysis was carried out with the Database

for Annotation, Visualization and Integrated Discovery

(DAVID) Bioinformatics Resource [80]. A list of all genes

in the network analysis was used as a custom background

for the gene ontology enrichment analysis. We summa-

rized all gene ontology terms (GO-term) of similar sub-

terms into an overarching term. Fold enrichment and

Benjamini-Hochberg corrected P-values are shown for the

respective GO-term cluster.

Availability of data files

The raw datafiles used in this study [24,27,28,35,81-85]

were obtained from the EMBL-EBI ArrayExpress [70], or

NCBI Gene Expression Omnibus (GEO) [71] websites.

All WGCNA network files, module associations, preser-

vation statistics and consensus data files generated in

this publication are available upon request (andreas.

neueder@kcl.ac.uk or andreas.neueder@web.de).

Additional files

Additional file 1: Illustrates the correlation between gene significance
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