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ABSTRACT Analysis-by-synthesis linear predictive coding (AbS-LPC) is widely used in a variety of low-

bit-rate speech codecs. The existing steganalysis methods for AbS-LPC low-bit-rate compressed speech

steganography are specifically designed for one certain category of steganography methods, thus lacking

generalization capability. In this paper, a common method for detecting multiple steganographies in low-bit-

rate compressed speech based on a code element Bayesian network is proposed. In an AbS-LPC low-bit-rate

compressed speech stream, spatiotemporal correlations exist between the code elements, and steganography

will eventually change the values of these code elements. Thus, the method presented in this paper is

developed from the code element perspective. It consists of constructing a code element Bayesian network

based on the strong correlations between code elements, learning the network parameters by utilizing a

Dirichlet distribution as the prior distribution, and finally implementing steganalysis based on Bayesian

inference. Experimental results demonstrate that the proposed method performs better than the existing

steganalysis methods for detecting multiple steganographies in the AbS-LPC low-bit-rate compressed

speech.

INDEX TERMS AbS-LPC, compressed speech, steganography, steganalysis, Bayesian inference.

I. INTRODUCTION

Information hiding, also called steganography, is an ancient

but effective technique of embedding secret information

into innocent carriers without perception. Although its his-

tory can date back to 440 BC [1], the steganographic

carriers have been developing over time [2]. In the past

years, the carriers have evolved from images [3]–[5] to

almost all media forms (e.g., videos [6], [7], audios [8], [9],

texts [10], [11], network protocol [12], [13]). In recent

years, with the rapid increase in bandwidth requirements

and the trend of increasing network convergence, network

streaming media services for communication have under-

gone unprecedented development. Since Voice over Internet

The associate editor coordinating the review of this manuscript and
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Protocol (VoIP) technology has been widely used for

real-time communication, it serves as a suitable car-

rier for transmitting secret information over the Internet.

VoIP steganography is a means of imperceptibly embedding

secret information into VoIP-based cover speech. There are

many VoIP speech codecs, including G.711, G.723.1, G.726,

G.728, G.729, internet Low Bitrate Codec (iLBC), and the

Adaptive Multi-Rate (AMR) codec. Most of them, including

G.723.1, G.729, AMR and iLBC, are low-bit-rate speech

codecs that use analysis-by-synthesis linear predictive coding

(AbS-LPC). At present, most methods of speech steganog-

raphy utilize AbS-LPC low-bit-rate speech codecs to embed

secret information for covert communication. Although the

ability to conduct covert communication can be convenient

in the contexts of both daily life and work, it also pro-

vides opportunities for criminal activity. Thus, for certain
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FIGURE 1. Three major categories of steganography methods for AbS-LPC
low-bit-rate compressed speech. Embedding position 1 corresponds to
steganography using the pitch synthesis filter. Embedding position 2
corresponds to steganography using the LPC synthesis filter. Embedding
position 3 corresponds to steganography using the code elements in the
compressed speech stream.

sensitive agencies, it is necessary to evaluate compressed

speech streams to determine whether they carry hidden secret

information.

There are threemajor categories of steganographymethods

for AbS-LPC low-bit-rate compressed speech, depending on

the embedding position of the secret information, as shown

in Fig. 1. Methods in the first category use the pitch synthesis

filter to hide information [14]–[19]. Methods in the sec-

ond category use the LPC synthesis filter for information

hiding [20]–[24]. Methods in the third category hide infor-

mation in the code elements (CEs) of the compressed speech

stream [25]–[32].

For the detection of hidden secret information in AbS-

LPC low-bit-rate compressed speech, speech steganaly-

sis technology has developed in tandem with speech

steganography technology. Current steganalysis methods for

AbS-LPC low-bit-rate compressed speech can be divided into

three categories corresponding to the different categories of

steganography methods. Methods in the first category are

designed to detect steganography based on the pitch synthesis

filter [33]–[41]. Methods in the second category detect

steganography based on the LPC synthesis filter [42]–[44].

Methods in the third category detect CE-based steganogra-

phy [45], [46].

All of the current steganalysis methods have a feature-

based design and consist of the same three steps. First,

multiple features are extracted from the AbS-LPC low-bit-

rate compressed speech data. Second, multi-feature fusion

is performed, and dimensionality reduction is implemented

on the high-dimensional fused features. At last, a support

vector machine (SVM) is employed for classification. There

are two main characteristics of these steganalysis methods.

One is that they use a steganalysis framework based on

SVM classification. The other is that they are specifically

designed for one certain category of steganography methods

and lack generality. Thus, for thorough detection, steganaly-

sis methods for multiple categories of steganography need to

be performed on a single compressed speech stream, which

is a cumbersome and time-consuming process. Therefore,

there is a need to develop a common method to achieve

the simultaneous detection of multiple steganography meth-

ods. Some existing general steganalysis methods are based

on uncompressed domain features, such as mel-frequency

cepstral coefficient (MFCC) features [47]–[49]. Although

these methods can be used for the general steganalysis of

AbS-LPC low-bit-rate compressed speech, they are designed

for the detection of steganography in uncompressed speech

files. Since these methods do not incorporate the AbS-LPC

principle, their detection accuracies for steganography in

AbS-LPC low-bit-rate compressed speech are unsatisfac-

tory. Therefore, a common method for detecting multiple

steganographies in AbS-LPC low-bit-rate compressed speech

is needed.

All steganography methods for AbS-LPC low-bit-rate

compressed speech will eventually modify the CEs in the

compressed speech stream. For instance, steganography

methods in the first category will modify the CEs related

to pitch, and these in the second category will modify the

CEs related to the LPC. According to this, a common method

for detecting multiple steganographies in AbS-LPC low-bit-

rate compressed speech is proposed from the CE perspective.

A code element Bayesian network (CEBN) is built based

on the strong spatiotemporal correlations between the CEs.

The network parameters are learned by utilizing a Dirichlet

distribution as the prior distribution, and steganalysis is then

implemented based on Bayesian inference.

In this paper, a new steganalysis method based on Bayesian

inference is proposed, which is distinct from the traditional

methods based on SVM classification. In the traditional

methods, the features of each speech segment are extracted.

However, these features cannot satisfactorily describe speech

segments of short durations, resulting in low detection accura-

cies. By contrast, in the proposed steganalysis method based

on Bayesian inference, the network parameters are learned

for each speech frame, and the speech duration will not affect

the conditional probabilities of the network nodes. Thus, high

detection accuracies can be ensured even when the speech

segment duration is short. Moreover, all of the CEs’ val-

ues and their strong spatiotemporal correlations are mapped

into the CEBN, thereby enabling effective steganalysis for

AbS-LPC low-bit-rate compressed speech steganography.

The remainder of this paper is organized as follows.

Section II reviews the related work on steganalysis.

Section III analyses the spatiotemporal correlations between

the CEs and describes the construction of the code element

spatiotemporal correlation network (CESCN). The proposed

Bayesian-inference-based steganalysis method for AbS-LPC

low-bit-rate compressed speech steganography is detailed in

Section IV, followed by the presentation and evaluation of

the experimental results in Section V. Finally, the paper is

concluded in Section VI.

II. RELATED WORK

For the detection of steganography methods in the first

category (i.e., those using the pitch synthesis filter), many
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SVM-based steganalysis algorithms have been proposed.

Ding et al. extract three and five categories of histogram

features related to the pulse position distribution to train SVM

classifiers in [33] and [34], respectively. Miao et al. [35]

utilize the Markov transition probabilities, joint entropies,

and conditional entropies of the pulse positions as the features

considered for classification. Tian et al. [36] achieve better

performance at low embedding rates than the two methods

presented in [33], [34] by utilizing the probability distri-

butions, Markov transition probabilities and joint probabil-

ities of the pulse positions as the features considered for

classification. Ren et al. [37] find that steganography based

on the modulation of the pulse positions during the fixed

codebook search process causes the probability of same pulse

positions (PSPP) in the same track to increase. Based on

this phenomenon, they propose a set of steganalysis features

based on the PSPP. Since PSPP features describe only the dis-

tributions of pulses being in the same position in two tracks,

Tian et al. [38] employ probability distributions, Markov

transition probabilities and joint probabilities to charac-

terize pulse pairs and use the adaptive boosting tech-

nique to reduce the feature dimensionality. Based on the

above features, they propose three classification schemes to

achieve steganalysis for unknown embedding rates in [39].

Li et al. [40] propose a steganalysis method for pitch period

modification steganography based on a codebook correlation

network model, in which the conditional probabilities of

strongly correlated nodes are used as features and princi-

pal component analysis (PCA) is applied for dimensionality

reduction before training the SVM classifier. Ren et al. [41]

propose a steganalysis method based on the matrix of the

second-order differences in pitch delay (MSDPD) and obtain

calibrated MSDPD features through recompression to further

improve the detection accuracy.

For the detection of steganography methods in the sec-

ond category (i.e., those using the LPC synthesis filter),

Li et al. [42], [43] propose two SVM-based steganalysis

methods for QIMS, using independent and joint VQ code-

books, respectively. In [42], they train an SVM classifier

for each VQ codebook by exploiting the distribution his-

togram of the corresponding LSP CE and the state transi-

tion probability of that histogram between adjacent frames

as features. In [43], they construct a quantization codeword

correlation network (QCCN) model based on the intra-frame

and inter-frame correlation indices between the LSP CEs.

Then, they use the transition probabilities of the QCCN edges

as high-dimensional features for classification and reduce

their dimensionality via PCA. In addition, Yang and Li [44]

present a novel steganalysis method based on a Codeword

Bayesian Network (CBN). The CBN is constructed based on

the probability distribution and the steganography-sensitive

transition relationships of codewords.

For the detection of steganography methods in the third

category (i.e., those using the CEs in AbS-LPC low-bit-rate

compressed speech streams), Tian et al. [45] present a dis-

tributed steganalysis scheme based on four types of features:

histograms, differential histograms, Markov transition matri-

ces and differential Markov transition matrices. Each feature

type is utilized to train a different SVM classifier. Thus, four

classifiers are trained for each CE, and the best feature type

for each CE is used for classification. As an alternative to the

SVM-based steganalysis method in [45], Huang et al. [46]

propose a steganalysis method based on second statistical

detection and regression analysis. This method can detect

the hidden information and estimate the embedding rate in

addition to determining whether a speech signal contains any

hidden information in the first place. However, the detection

accuracy of this method is lower than that of the SVM-based

method.

Current steganalysis methods are designed based on the

selection of a certain coding method or CE to identify fea-

tures that will perform well in the classification process

for identifying the corresponding type of steganography.

However, they cannot detect multiple steganographies at the

same time. In this paper, we propose a common method for

AbS-LPC low-bit-rate compressed speech steganography

from the perspective of CE. The proposed method considers

the information contained in all CEs along with the AbS-LPC

speech coding principles.

III. ANALYSIS OF THE SPATIOTEMPORAL

CORRELATIONS OF THE CES IN ABS-LPC

LOW-BIT-RATE COMPRESSED

SPEECH STREAMS

Current AbS-LPC low-bit-rate compressed speech codecs

essentially adopt the coding scheme shown in Fig. 1, although

they have slight differences in their implementation details.

G.723.1 uses multi-pulse maximum likelihood quantiza-

tion coding in the high-rate 6.3 kbit/s mode and alge-

braic code-excited linear prediction (ACELP) coding in the

low-rate 5.3 kbit/s mode, and the frame size is 30 ms.

G.729 uses conjugate-structure ACELP coding, and the frame

size is 10 ms. AMR uses ACELP coding with 8 rates,

and the frame size is 20 ms. In this paper, we will use

G.723.1 in the high-rate 6.3 kbit/s mode as the speech codec

to illustrate the proposed method. Each frame in a com-

pressed G.723.1 speech stream consists of 24 CEs: three LPC

VQ index CEs, VQ1, VQ2 and VQ3; four adaptive codebook

lag CEs, ACL0, ACL1, ACL2 and ACL3; four combined

adaptive and fixed gain CEs, GAIN0, GAIN1, GAIN2 and

GAIN3; five pulse position index CEs, POS0, POS1, POS2,

POS3 and MPOS; four pulse sign index CEs, PSIG0, PSIG1,

PSIG2 and PSIG3; and four grid index CEs, GRID0, GRID1,

GRID2 and GRID3.

A. ANALYSIS OF THE SPATIOTEMPORAL CORRELATIONS

OF THE CES

A speech signal can be divided into unvoiced and voiced

speech segments according to the phonemes it contains.

Voiced speech carries most of the energy in a speech sig-

nal and has an obvious periodicity in the time domain.

Unvoiced speech is similar to white noise and has no obvious
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FIGURE 2. The joint intra-frame probability distributions of selected CE
pairs. (a) ACL0 and ACL2. (b) VQ1 and VQ3. (c) PSIG0 and PSIG2. (d) PSIG1
and PSIG3.

periodicity. A speech signal is a non-stationary signal, but it

can approximately be seen as stable over a period of 30 ms,

i.e., exhibits short-term stability. The frame sizes of the com-

monly usedAbS-LPC low-bit-rate compressed speech codecs

all lie in this range. Therefore, there are intra-frame correla-

tions between the CEs in a compressed speech stream. For

instance, ACL0 and ACL2, which represent the pitch periods,

have similar values in the same frame. We randomly collect

3000 speech segments with a speech length of 10s from the

Internet to analyse the spatiotemporal correlations of the CEs.

The joint intra-frame probability distributions for several

CE pairs are shown in Fig. 2.

A strong correlation between two CEs will result in an

uneven distribution in terms of the joint probability. The joint

probabilities of ACL0 and ACL2 on and near the diagonal

are much greater than those at other coordinates in Fig. 2(a),

indicating a strong intra-frame correlation between ACL0

and ACL2. Similarly, the joint probabilities of VQ1 and

VQ3 at some coordinates are much greater than those at

others in Fig. 2(b), indicating a strong intra-frame correlation

between these two CEs. By contrast, in Fig. 2(c), the joint

probability distribution of PSIG0 and PSIG2 is relatively

smooth, which indicates that the correlation between them

is weak. Similarly, as seen from Fig. 2(d), the correlation

between PSIG1 and PSIG3 is also weak, as reflected by

the relatively smooth joint probability distribution of these

CEs. To further objectively evaluate the joint probability

distributions of the CEs, we divide the joint probabilities of

each CE pair above into three regions, labelled as ‘‘I’’, ‘‘II’’

and ‘‘III’’, respectively. Let the average value of the joint

probabilities of two CEs be denoted by u. ‘‘I’’ represents the

proportion of the joint probabilities that are less than 0.5u,

‘‘II’’ represents the proportion between 0.5u and 1.5u,

TABLE 1. The proportions of several joint intra-frame CE probabilities
separated into three regions.

FIGURE 3. The joint inter-frame probability distributions of selected CEs.
(a) ACL0. (b) VQ2. (c) PSIG0. (d) PSIG1.

and ‘‘III’’ represents the proportion of joint probabilities

larger than 1.5u. Table 1 shows the proportions of the joint

intra-frame CE probabilities in these three regions corre-

sponding to Fig. 2.

As seen from the data in Table 1, more than half of the

joint probabilities of ACL0 and ACL2 and of VQ1 and VQ3

are larger than 1.5u, whereas those of PSIG0 and PSIG2 and

of PSIG1 and PSIG3 are mainly distributed around u. These

findings further indicate that the correlations between ACL0

and ACL2 and between VQ1 and VQ3 are stronger than those

between PSIG0 and PSIG2 and between PSIG1 and PSIG3.

In addition, because of the local periodicity of speech sig-

nals, different frames may exactly correspond to periodically

repeating speech signals. Therefore, there are also inter-frame

correlations between the CEs. To illustrate these correlations,

we analyse the joint probability distributions of several CEs

between adjacent frames, as shown in Fig. 3.

As seen from Fig. 3(a), the joint probability distribution

of ACL0 between adjacent frames is quite uneven, as is that

of VQ2 in Fig. 3(b), whereas those of PSIG0 in Fig. 3(c)

and PSIG1 in Fig. 3(d) are smoother. These findings indicate

that ACL0 and VQ2 have strong inter-frame correlations,

whereas PSIG0 and PSIG1 have weak inter-frame correla-

tion. Table 2 shows the proportions of the joint inter-frame
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TABLE 2. The proportions of several joint inter-frame CE probabilities
separated into three regions.

FIGURE 4. The code element spatiotemporal correlation network
(CESCN). It contains 24 CE vertices, 276 intra-frame correlation
edges and 576 inter-frame correlation edges.

CE probabilities in the three regions described previously

corresponding to Fig. 3.

As seen from the data in Table 2, more than half of the

inter-frame joint probabilities for ACL0 and VQ2 are larger

than 1.5u, whereas those for PSIG0 and PSIG1 are mainly

distributed around u, thus further indicating that the inter-

frame correlations of ACL0 and VQ2 are stronger than those

of PSIG0 and PSIG1.

B. MODELLING THE SPATIOTEMPORAL CORRELATIONS

OF THE CES

According to the analysis above, spatiotemporal correlations

exist between the CEs in AbS-LPC low-bit-rate compressed

speech streams. For convenience of description, the 24 CEs

are denoted here by Ci (i = 1, 2, . . . , 24). A correlation net-

work that describes the spatiotemporal correlations between

the CEs can be built from these 24 CEs. We call this net-

work the code element spatiotemporal correlation network

(CESCN) in this paper. It is constructed as shown in Fig. 4.

The CESCN is a directed graph composed of vertices

and edges, where the vertices represent the 24 CEs and the

edges represent the intra-frame and inter-frame correlations

between the CEs. Mathematically, the CESCN is described

as D =< V ,E >, where V and E are defined as follows:
{

V = {vi[m]|i ∈ {1, 2, . . . , 24},m ∈ {0, 1, 2, . . .}}

E = {
〈

vi[p], vj[q]
〉

|vi[p] ∈ V , vj[q] ∈ V }
(1)

where V is the vertex set of D, and each element vi[m]

representsCi in themth frame.E is the edge set ofD, and each

TABLE 3. Bit allocation of the CEs in a G.723.1 stream in the high-rate
6.3 kbit/s mode.

element
〈

vi[p], vj[q]
〉

represents a directed edge from vertex

vi[p] to vertex vj[q]. When i 6= j and q = p,
〈

vi[p], vj[q]
〉

represents an intra-frame edge. When q > p,
〈

vi[p], vj[q]
〉

represents an inter-frame edge. Since the strengths of the

inter-frame correlations are affected by time, i.e., a larger

time interval results in weaker inter-frame correlations, only

the correlations between adjacent frames are considered to

simplify the analysis. In other words, we analyse only correla-

tions for which q−p ∈ {0, 1}. Therefore, the CESCN contains

852 correlation edges: 276 intra-frame correlation edges and

576 inter-frame correlation edges. Since the CESCN con-

tains too many correlation edges to be conducive to analysis,

we wish to simplify it further. According to the analysis

presented in Section III-A, the strengths of the correlations

between each pair of CEs (i.e ., corresponding to each edge)

are different. Therefore, edges representing weak correlations

can be removed to simplify the CESCN.

To quantify the correlation strength, we define the correla-

tion index for Ci and Cj as

Ic(Ci,Cj) =

ri
∑

ci=0

rj
∑

cj=0

∣

∣p(Ci = ci)p(Cj = cj)

−p(Ci = ci, Cj = cj)
∣

∣ (2)

where ri and rj are the maximum values of Ci and Cj, respec-

tively. p(Ci = ci) and p(Cj = cj) represent the marginal

probabilities of Ci = ci and Cj = cj, respectively. And

p(Ci = ci,Cj = cj) represents the joint probability of Ci = ci
and Cj = ci. If Ci and Cj are independent of each other, these

probabilities satisfy p(Ci = ci)p(Cj = ci) = p(Ci = ci,

Cj = ci) for any ci and cj, that is, Ic = 0. In other words,

a stronger correlation between Ci and Cj results in a larger

value of Ic. Table 3 shows the bit allocation of the 24 CEs.

As seen from the data in Table 3, the bit allocations of

the different CEs vary significantly. Both POS0 and POS2
are allocated 16 bits each, with a range of [0, 65535]. The

joint probability distribution of POS0 and POS2 is thus rep-

resented by a 65536×65536 matrix, the accurate calculation

of which would require billions of speech frames. Therefore,

we divide the values of the CEs into multiple value intervals

to calculate the joint distribution. Each interval corresponds

to the calculation of one probability in the joint distribution.

First, the histogram distribution of a CE is calculated from
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TABLE 4. Strong correlation edges and the corresponding correlation
indices of CESCN.

the 3000 speech segments chosen for analysis, as mentioned

above. Second, the values of the CE are sorted in descend-

ing order according to this histogram distribution. Finally,

the sorted values are uniformly partitioned into T intervals.

Note that a CE whose maximum value is less than T is not

divided. We use T = 256 to analyse the spatiotemporal

correlations between the CEs and calculate the correlation

indices for the 852 correlation edges. Ic = 0.5 is used as the

criterion to determinewhether an edge represents a strong or a

weak correlation. If Ic is larger than 0.5, the edge represents a

strong correlation; otherwise, it represents a weak correlation.

The strong correlation edges and their indices as calculated

for the 3000 speech segments chosen for analysis are shown

in Table 4.

As seen from the data in Table 4, the simplified CESCN

contains 4 strong intra-frame correlation edges and 7 strong

inter-frame correlation edges. There are no strong spa-

tiotemporal correlations between CEs in different categories,

whereas there are strong spatiotemporal correlations among

VQ1, VQ2 and VQ3 as well as between ACL0 and ACL2.

This is because the LPC VQ index CEs (VQ1, VQ2 and VQ3)

are the results of short-term analysis of the speech signals,

whereas the adaptive codebook lag CEs (ACL0 and ACL2)

are the results of long-term analysis. ACL1 and ACL3 are the

differential adaptive codebook lags between the current sub-

frame and the previous sub-frame, which are determined from

ACL0 and ACL2. Therefore, the spatiotemporal correlation

between ACL1 and ACL3 is weak. Since the other CEs are

used to express the residual signal after the short-term and

long-term predictions, their spatiotemporal correlations are

weak as well.

IV. CODE ELEMENT BAYESIAN NETWORK AND

STEGANALYSIS

A Bayesian network is a probability graph whose topological

structure is that of a directed acyclic graph. The network

consists of network nodes, directed edges and conditional

probability tables (CPTs). The CESCN described above is

similar to a Bayesian network. Thus, we will further construct

a code element Bayesian network (CEBN) for steganaly-

sis based on the strong spatiotemporal correlation edges in

the CESCN.

A. CEBN CONSTRUCTION

Since one speech frame is used as the embedding unit’

in AbS-LPC low-bit-rate compressed speech steganography,

we construct the CEBN based on individual speech frames.

The CEBN construction process is as follows:

1) Take the type of the current speech frame, i.e ., cover

speech (denoted by 0) or stego speech (denoted by 1), as the

root node C.

2) Take the values of the 24 CEs as the child nodes of C.

Since the spatiotemporal correlations among GRID0, GRID1,

GRID2, and GRID3 are weak and the corresponding number

of bits for these CEs is very small (1 bit for each), these

4 nodes are merged into one node with a bit allocation of 4,

denoted by GRID. Similarly, ACL1 and ACL3 are merged

into one node with a bit allocation of 4, denoted by ACL.

After merging, there are 20 child nodes and, thus, 20 edges

fromC to these 20 child nodes. The values of each node corre-

spond to the intervals of the corresponding CEs as identified

through the spatiotemporal correlation analysis of the CEs

that is described in Section III-A.

3) Use the 4 strong intra-frame correlation edges ACL0-

ACL2, VQ1-VQ2, VQ1-VQ3 and VQ2-VQ3 to form 4 edges:

from ACL0 to ACL2, from VQ1 to VQ2, from VQ1 to VQ3

and from VQ2 to VQ3, respectively. Since the correlation

index for the edge from VQ2 to VQ3 is larger than that for

the edge from VQ1 to VQ3, which means that VQ3 is more

strongly affected by VQ2 than by VQ1, the edge from VQ1

to VQ3 is removed.

4) Use the 7 strong inter-frame correlation edges ACL0-

ACL0, ACL0-ACL2, ACL2-ACL0, ACL2-ACL2, VQ1-VQ1,

VQ2-VQ2 and VQ3-VQ3 to form 7 edges: from ACL0 to

ACL0’, from ACL0 to ACL2’, from ACL2 to ACL0’, from

ACL2 to ACL2’, from VQ1 to VQ1’, from VQ2 to VQ2’ and

fromVQ3 to VQ3’, respectively. ACL0’, ACL2’, VQ1’, VQ2’

and VQ3’ are the child nodes of ACL0, ACL2, VQ1, VQ2 and

VQ3, respectively, and represent the values in the subsequent

adjacent frame.

Since the correlation index for the edge from ACL0 to

ACL0’ is larger than that for the edge from ACL2 to ACL0’,

the edge from ACL2 to ACL0 is removed. Similarly, the edge

fromACL0 to ACL2’ is removed. In addition, ACL0’, ACL2’,

VQ1’, VQ2’ and VQ3’ are influenced by the speech frame

type. Therefore, 5 directed edges from C to ACL0’, ACL2’,

VQ1’, VQ2’ and VQ3’ are added to the network.

Following the above process, the CEBN is constructed as

shown in Fig. 5.

B. CEBN PARAMETER LEARNING

For ease of description, the nodes in Fig. 5 are denoted by

the random variables X1,X2, . . . ,X26, respectively, where X1
corresponds to the root node and the others correspond to

the child nodes, and their possible values are denoted by

x1, x2, . . . , x26, respectively. The joint probability distribu-

tion of the CEBN is defined as follows:

P(X1,X2, . . . ,X26) =

26
∏

i=1

P(Xi|Pa(Xi)) (3)

where Pa(Xi) represents the parent nodes of Xi and

P(Xi|Pa(Xi)) represents the conditional probability of Xi.
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FIGURE 5. The code element Bayesian network (CEBN). It contains
26 nodes representing information on all CEs, including not only the
values of the 24 CEs but also their spatiotemporal correlations.

Let Ki be the total number of possible values of Xi, and let

θij be the set of probabilities corresponding to these possible

values. Let θij = (θij1, θij2, . . . , θijk , . . . , θijKi ), where θijk is

defined as follows:

θijk = P(Xi = xik |Pa(Xi) = Pa(Xi)j) (4)

where xik is the kth possible value of Xi and Pa(Xi)j is the

jth possible value of Xi’s parent nodes. The CEBN parameter

learning process is essentially the process of learning θijk .

In this paper, the parameters are learned through Bayesian

analysis. That is, the posterior distribution π (θ |χ) is consid-

ered to be determined by both the prior distribution π (θ ) and

the sample information χ . In general, the conjugate distribu-

tion is used as the prior distribution. Therefore, the prior and

posterior distributions both have the same form. We select a

Dirichlet distribution as the prior distribution. Then, π (θij) is

given by

π (θij) = Dir(αij1, αij2, · · · , αijKi )

=

Ŵ(
Ki
∑

k=1

αijk ))

Ki
∏

k=1

Ŵ(αijk )

Ki
∏

k=1

θijk
αijk (5)

where Ŵ(·) is the gamma function and αijk is a hyper-

parameter. Let βijk be a number that satisfies Xi = xik and

Pa(Xi) = Pa(Xi)j in the sample χ . Since π (θ |χ) follows the

conjugate distribution, π (θij|χ ) is given by

π (θij|χ ) = Dir(αij1 + βij1, αij2 + βij2, . . . , αijKi + βijKi )

=

Ŵ(
Ki
∑

k=1

(αijk + βijk ))

Ki
∏

k=1

(αijk + βijk )

Ki
∏

k=1

θijk
(αijk+βijk ) (6)

FIGURE 6. Comparison of the joint probabilities for several nodes under
the cover and stego conditions. (a) Joint probability distributions for
ACL0’ under the cover and stego conditions for the steganography
method of [19]. (b) Joint probability distributions for VQ2’ under the cover
and stego conditions for the steganography method of [20].
(c) Comparison of the joint probabilities for PSIG3 under the cover and
stego conditions for the steganography method of [29].

The maximum posterior estimate θ̂ijk of θijk is the network

parameter given by

θ̂ijk =
αijk + βijk

Ki
∑

k=1

(αijk + βijk )

(7)

The network parameters for each random variable consti-

tute the CPT of the corresponding node. Since the CPTs are

too large to be presented as tables, we instead show some of

them as plots. We learned the cover conditional probabilities

and the stego conditional probabilities for several nodes based

on the same 3000 speech segments selected for analysis as

mentioned above. Three steganography methods [19], [20],

[29] were used to learn three categories of stego condi-

tional probabilities corresponding to the three categories of

AbS-LPC low-bit-rate compressed speech steganography

methods discussed previously. The results for several nodes

are shown in Fig. 6.
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In Fig. 6, we can see that the conditional probabilities

for a given node are different under the cover and stego

conditions and that some of these differences are large. These

results illustrate that the CEBN can reflect the changes in

the conditional probabilities before and after steganography.

Thus, the CEBN can be regarded as an effective classifier for

steganalysis.

C. STEGANALYSIS BASED ON THE CEBN

After constructing the CEBN and learning the CPTs, we clas-

sify speech frames based on Bayesian inference. Specifi-

cally, we exploit the values of the child nodes to infer the

probability of the root node. Given a speech segment with

N frames, the cover and stego probabilities for each frame

can be computed. Let pcoveri and p
stego
i be the cover and

stego probabilities, respectively, of the ith frame. In theory,

pcoveri > p
stego
i when the speech frame is a cover frame,

and pcoveri < p
stego
i when the speech frame is a stego frame.

Nevertheless, it is difficult to correctly classify every frame of

a speech segment. Therefore, we do not use the frame-level

results to judge whether there is secret information hidden in

the speech segment. Instead, we introduce a steganography

index J , expressed as J = N stego/N , to reflect the steganogra-

phy strength of a speech segment, where N stego is the number

of frames in the segment that are judged to be stego frames.

We randomly selected 50 original PCM speech segments to

be used as cover speech segments and for the generation

of 5 types of stego speech segments, with 5 embedding rates

of 100%, 80%, 60%, 40%, and 20%. Three steganography

methods [19], [20], [29], as mentioned above, were used,

and the corresponding steganography indices were computed.

The results are shown in Fig. 7.

As shown in Fig. 7, a higher embedding rate results in

a larger J . In other words, a larger J indicates a greater

probability that secret information is hidden in a speech

segment. The steganography index J reflects the difference

between stego and cover segments. In this paper, we intro-

duce a steganography index threshold Jthr based on which

to classify cover and stego speech segments. For a given

speech segment, if J > Jthr , then it is considered a stego

speech segment; otherwise, it is considered a cover speech

segment. Suppose that there are M speech segments in

the training dataset. Let the steganography index sets of

these M speech segments before and after steganography

be denoted by JC = {Jc1, Jc2, . . . , Jcj . . . , JcM } and JS =

{Js1, Js2, . . . , Jsj . . . , JsM }, respectively. Then, Jthr satisfies

the following equation:

Jthr = arg max
Jthr∈JS∪JC

{CNT (JS : Jsj > Jthr )

+CNT (JC : Jcj ≤ Jthr )} (8)

where CNT (JS : Jsj > Jthr ) and CNT (JC : Jcj ≤ Jthr ) are

the numbers of correctly classified stego and cover speech

segments, respectively. After obtaining Jthr , we can judge

whether secret information is hidden in a speech segment of

unknown type.

FIGURE 7. Comparison of the steganography indices of cover speech
segments and corresponding stego speech segments with different
embedding rates. (a) Steganography indices for the steganography
method of [19]. (b) Steganography indices for the steganography method
of [20]. (c) Steganography indices for the steganography method of [29].

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENTAL SET-UP

We collected 7000 speech segments from the Internet, includ-

ing samples from seven human voice categories, to form

the speech database. Each category contains 1000 speech

segments. The seven categories are Chinese man, Chinese

woman, English man, English woman, French, German and

Japanese. Each human voice category contains samples from

more than five individuals. The duration of each speech

segment is 10s, and each segment is formatted as a mono

PCM file with an 8,000 Hz sampling rate and 16-bit quan-

tization. The G.723.1 (6.3 kbit/s) codec is used as the low-

bit-rate speech codec. The speech segments in each category

are divided into a training dataset and a testing dataset at a

3:2 ratio. In other words, 4200 speech segments are used to

learn the network parameters and calculate the steganography

index threshold Jthr , and 2800 speech segments are used to

assess the detection accuracy.

To evaluate the performance of the proposed CEBN-based

steganalysis method, the methods of [19], [20], [22], [24],

[29] are selected as representative steganography methods.
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TABLE 5. The general detection accuracies of CEBN and MFCC for the five steganography methods at different embedding rates.

As far as we known, there is no general method designed

for the detection of steganographies in AbS-LPC low-

bit-rate compressed speech. The MFCC-based steganalysis

method [49] can detect any type of steganographies based

on the decoded audio/speech data in theory. In this sense,

we think that this method is also a general method. In order

to evaluate our method thoroughly, we also compared our

method with it. There is no steganalysis method that is

specifically designed for the steganography method of [29],

whereas the MSDPD-based method of [41] is specifically

designed for the steganography method of [19]. In addition,

the QCCN-based method of [43] and the CBN-based method

of [44] are specifically designed for the steganography meth-

ods of [20], [22] and [24]. Therefore, the MSDPD-, QCCN-

and CBN-based methods are selected as specialized steganal-

ysis methods for comparison with the proposed method. For

ease of description, the five steganography methods of [19],

[20], [22], [24], [29] are denoted by Stego-19, Stego-20,

Stego-22, Stego-24 and Stego-29, respectively, and the

CEBN-, MFCC-, MSDPD-, QCCN- and CBN-based ste-

ganalysis methods are simply denoted by CEBN, MFCC,

MSDPD, QCCN and CBN, respectively.

B. PERFORMANCE ANALYSIS OF THE GENERAL

STEGANALYSIS MODELS AT DIFFERENT

EMBEDDING RATES

One way to improve steganographic security is to reduce the

embedding rate at which secret information is embedded into

speech samples. Table 5 shows the general detection accu-

racies of CEBN and MFCC at 10 different embedding rates

when the speech length is 10s and the network complexity

is T = 256.

As seen from the data in Table 5, the detection accuracies

of CEBN and MFCC increase with a increasing embedding

rate. A higher embedding rate results in larger modifications

to the CEs and causes the correlation characteristics of the

CEs to change more significantly. Therefore, the Bayesian

network can more easily distinguish these changes, and the

detection accuracy of CEBN is higher. Similarly, a higher

embedding rate results in a larger difference in the MFCC

features used for classification between the cover and stego

samples. Therefore, the accuracy of MFCC increases with

an increasing embedding rate. When the embedding rate

is 60% or above, the detection accuracies of CEBN for

Stego-19 are higher than 90%, whereas when the embedding

rate is 20% or below, the detection accuracies are lower

than 70%. By contrast, the detection accuracies of MFCC

for Stego-19 are lower than 62% at all embedding rates.

Moreover, CEBN achieves good performance for the detec-

tion of Stego-20, Stego-22, Stego-24, and Stego-29. The

detection accuracies of CEBN for Stego-20 and Stego-29 are

higher than 80% at embedding rates of 30% or above, while

those of MFCC are lower than 61%. In summary, CEBN

performs better than MFCC does at all embedding rates.

When the embedding rate is 80% or above, the general detec-

tion accuracies of CEBN for all five steganography methods

are higher than 92% and are significantly higher than those

of MFCC. These results demonstrate that the proposed

method achieves effective general steganalysis performance

for all three steganography categories.

C. PERFORMANCE ANALYSIS OF THE GENERAL

STEGANALYSIS MODELS FOR DIFFERENT

SPEECH LENGTHS

For a more comprehensive performance evaluation, we anal-

yse the impact of the speech length on the general steganalysis

performance. We tested the detection accuracies of CEBN

andMFCC for each of the three steganographymethods at ten

different speech lengths with an embedding rate of 100% and

a network complexity of T = 256. The experimental results

are shown in Table 6.

As seen from the data in Table 6, the detection accura-

cies of CEBN for all five steganography methods are higher

than 87% for each speech length, and the detection accuracies

decrease with decreasing speech length. When the speech

length is 1s, the detection accuracy of CEBN is 87.14% for

Stego-24 and is higher than 91% for Stego-19, Stego-20,

Stego-22 and Stego-29, while that of MFCC is lower than

54% for each of the five steganography methods. These

results demonstrate that the proposed method performs well

at short speech lengths. More specifically, the impact of the

speech length on the general steganalysis performance of the

proposed Bayesian-inference-based method is less than that

for the SVM-classification-based method.
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TABLE 6. The general detection accuracies of CEBN and MFCC for the three steganography methods at different speech lengths.

FIGURE 8. General detection accuracies of CEBN with different network complexities for the five steganography methods. (a) Stego-19. (b) Stego-20.
(c) Stego-22. (d) Stego-24. (e) Stego-29.

D. PERFORMANCE ANALYSIS OF THE PROPOSED

GENERAL STEGANALYSIS MODEL WITH DIFFERENT

NETWORK COMPLEXITIES

In this section, we analyse the impact of the network com-

plexity on the general steganalysis results. As seen from the

CEBN construction process in Section IV-A, T determines

the size of the CPTs in the CEBN. A larger T results in a more

complex network. We tested the general steganalysis results

of CEBN for all three steganography methods using seven

T values of 4, 8, 16, 32, 64, 128 and 256. The experimental

results are shown in Fig. 8.

As seen from the results in Fig. 8, the accuracy of the

CEBN results increases with increasing T . This is because

the larger the CPT size is, the better the CEBN can reflect

the changes in the conditional probabilities before and after

steganography. The detection accuracies of CEBN for all five

steganography methods are higher than 86% when T is 64 or

above. Moreover, the detection accuracies remain higher

than 70% with a T of 16. This finding proves that the pro-

posed method can achieve a satisfactory detection accuracy

even with a low network complexity.

E. PERFORMANCE ANALYSIS OF THE SPECIALIZED

STEGANALYSIS MODELS

Usually, only one steganographymethod is used to hide secret

information. That is, all stego speech samples are generated

with the same steganography method. For each of the general

steganalysis methods (MFCC and CEBN), we trained three

specialized steganalysis models, one for each steganography

method, and we compare their performances with those of the

corresponding general models and of the three inherently spe-

cialized methods (QCCN, CBN and MSDPD) in this section.

Fig. 9 shows the receiver operating characteristic (ROC)

curves of the general and specialized steganalysis models for

an embedding rate of 30%, a speech length of 10s and a

network complexity of T = 256, where G-MFCC, S-MFCC,

G-CEBN and S-CEBN denote the steganalysis results of

the general MFCC, specialized MFCC, general CEBN and

specialized CEBN models, respectively.

As seen from the results in Fig. 9, the specialized steganal-

ysis methods perform better than the corresponding gen-

eral steganalysis methods do, i.e., S-MFCC performs better

than G-MFCC, and S-CEBN performs better than G-CEBN.

In Fig. 9(a), we can see that for Stego-19, the specialized

steganalysis method MSDPD performs better than G-CEBN

and worse than S-CEBN, whereas QCCN and CBN are inef-

fective for Stego-19. Fig. 9(b)(c)(d) shows the results for

Stego-20, Stego-22, and Stego-24, respectively. Similarly,

the specialized steganalysis methods QCCN and CBN per-

form better than G-CEBN and worse than S-CEBN, whereas

MSDPD is ineffective for Stego-20, Stego-22, and Stego-24.

As seen in Fig. 9(e), QCCN and CBN also perform well

for Stego-29. This is because Stego-29 modifies the LPC

VQ index CEs. Both G-CEBN and S-CEBN perform bet-

ter than QCCN and CBN do for Stego-29, and MSDPD is

ineffective for this steganography method. Overall, for the

detection of each of the five steganography methods, G-

CEBN, S-CEBN and the corresponding specialized steganal-

ysis method perform better than both G-MFCC and S-MFCC

do. In summary, although G-CEBN performs slightly worse

than QCCN, CBN and MSDPD do for the steganography
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FIGURE 9. The ROC curves of the general steganalysis models (G-MFCC and G-CEBN) and the specialized steganalysis models (S-MFCC,
S-CEBN, QCCN, CBN and MSDPD) for the five steganography methods with an embedding rate of 30%, a speech length of 10s and a
network complexity of T = 256. (a) Stego-19. (b) Stego-20. (c) Stego-22. (d) Stego-24. (e) Stego-29.

methods for which they are specifically designed, G-CEBN

works well for all five steganography methods, while QCCN,

CBN and MSDPD are effective only for their corresponding

steganography methods.

VI. CONCLUSION

In this paper, we propose a common method for

detecting multiple steganographies in AbS-LPC low-bit-

rate compressed speech. The correlations between the CEs

are analysed from the spatiotemporal perspective, and a

CEBN is constructed based on the strong correlations. The

experimental results demonstrate that the proposed method

performs better than the existing steganalysis methods for

detecting multiple steganographies in AbS-LPC low-bit-rate

compressed speech. The proposed method can achieve a

satisfactory detection accuracy when the network complexity

is low. In the future, we will further investigate steganalysis

based on Bayesian networks for steganographies in com-

pressed video stream.
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