
A COMMON OPERATIONAL SOFTWARE (ACOS) APPROACH
TO A SIGNAL PROCESSING DEVELOPMENT SYSTEM

*
Y.S. Wu

U.S. Naval Research Laboratory
Washington, D.C. 20375 USA

ABSTRACT

A Signal processing problem with moderate
complexity must be segmented into "smaller'
algorithms, intimately linked, to be executed by
processing resources. Problems arising from such
partitioning and interconnection of these consti-
tuent parts are not well understood. It is fur-
ther complicated by the parallel execution of the
elementary operations (primitives) which require
the formation of queues and synchronization of
the queue with respect to each operation. A
software development system has been completed
to program and to design the signal processor
systems for underwater acoustics applications.
This is the first operational signal processing
software development system of its kind which
enables the system designer to program in signal
processing graph notations. The implied hierar-
chical architecture will lead to the interface to
VLSI cell libraries for direct mask generation. A
complete computer aided design approach to
closely—coupled signal processing systems is
described.

Introduction
A signal processing problem with moderate

complexity must be segmented into 'smaller" untis
of work or algorithms, intimately linked, to be
executed by processing resources. Problems
arising from such partitioning and interconnection
of such constituent parts are not well understood.
It is further complicated by the parallel execution
of the elementary operations (primitives) that
require the formation of queues and synchroni-
zation of the execution of the queue with respect
to each operation in either hardware or software.
A computer-aided design approach becomes a
necessity for development, study and simulation
of these signal processing systems. To address
this need, a common operational software (ACOS)
support system has been developed by the US
Naval Research Laboratory (NRL), Washington,
D.C. for the production of modular signal proces-
sing software for acoustic signal processing
applications. The ACOS system provides the
following facilities:

Signal Processing Graph Notation (SPGN)
Program generator for SPGN
Runtime support for graph executions

*
The author is at present an academic visitor at

the Imperial College of Science & Technology,
London, UK.

25.3

• A library of signal processing primitives
An ACOS user first writes a number of

procedures in graph notation. They specify
control processing or signal processing functions
to be performed to meet application requirements.
The user specifies how procedures are related to
another by defining a set of graphs. These
graphs specify the topological connections among
primitives such as "Filter," "FFT," "Line Integra-
tion" etc., which can be viewed as the nodes of
graphs by identifying primitives and queues to be
used to exchange data between pairs of primitive
executions or between an execution and external
sources. This user software, comprised of nodes
and graphs, is processed by the program genera-
tor and the SPL/l Compiler, and loaded into the
target hardware. SPL/l is a standard US
Navy programming language.

The program generator takes the respon-
sibility for generating or executing, as appro-
priate, programs to manage storage and to initiate
data transfers and to execute complex functions.
The ACOS SHELL (SHELL is a term borrowed
from the UNIX Operating System and UNIX is a
Trademark of Bell Laboratories) controls and
manages the access to hardware resources and is
the runtime signal processing controller. Thus,
the underlying hardware architecture is hidden
from the user. The SHELL is accessed only by
software generated by the ACOS program genera-
tor and the programmer is never aware of the
distribution of functions between the SHELL and
the hardware. At runtime the hardware executes
the nodes under the supervision of the SHELL.
Tasks are executed by the SHELL in response to
the presence of data in the queues specified in
graphs. An instance of a graph is created at
runtime by starting the graph. Starting the
graph causes the SHELL to begin monitoring the
graph-specified queues. Upon discovering the
presence of sufficient data in one or more than
one of the queues, the SHELL will cause exe-
cution of graph-specified nodes.

Although ACOS is designed for the acoustic
signal processing applications, it is of sufficient
generality for use in other signal processing
applications such as radar and image processing.
In addition, because architecture details are
buried in the primitive definitions and the SHELL
implementation, the resulting operational software
is highly machine transportable. Eventually,
ACOS nodes and graphs could be mapped into
VLSI layouts for direct hardware mask genera-
tion.

1172 U.S. Government work not protected by U.S. copyright. ICASSP 83, BOSTON



25.3
etc.

is an SPL/l

ICASSP 83, BOSTON 1173

Signal Processing Graph Notation (SPGN)
The theory of directed graphs has been well

established. Indeed, several good text books are
in existence t2,3)• However, its application to
signal processing and, in particular, the
programming of signal processing systems have
not received wide attention. The signal
processing community traditionally concentrates on
algorithm studies but not the topology and the
decomposition of these algorithms. Although
computer scientists have been attacking parallel
or concurrent processing problems during the
past two decades for a general class of problems,
there is a total lack of interest, understanding
and appreciation of signal processing applications
by the computer science community. ACOS
represents the first opportunity for support
software existed to bridge the gaps of the appro-
priate interdisciplinary research areas for com-
puter aided signal processing system design and
implementation.

With directed graphs, as expressed in SPGN.
a graph consists of a set of vertices {V}, a set
of edges {e.} and a mapping that maps every
edge onto an1 ordered pair of vertices (direction).
To be consistent with the electrical network
theory terminology, SPGN considers a set of
"nodes" interconnected by a set of "queues,
(branches for the analog network) and each node
represents some form of signal processing opera-
tion as depicted in Fig. 1. Each node can also
be a directed subgraph which contains a set of
nodes and queues.

A set of ACOS SPGN elements have been
defined. A majority of SPGN elements are declara-
tion statements. These are:

GRAPH
MODE
PRIMITIVE
SUBGRAPH
Variable
QUEUE
Command Program

In addition, a NODE statement is used to map
declarations onto the graph topology and an
INVOKE statement is needed for the command
programs which will be described later. An
ENDGRAPH statement is included to complete the
specification. The signal processing graph nota-
tion is specified in the ACOS User's Guide4.

Command Programs and Control Primitives
User specifications of SPGN NODEs and

QUEUEs determine the graph topology of a given
signal processing application. It is relatively
simple to program. However, the dynamic
behavior of the graph is controlled automatically
with manipulation of input/output QUEUEs at each
NODE. Therefore, a command program (COMPROG)
is required for the control and mode change
purposes. When an instance of the GRAPH is
initiated, the corresponding COMPROG activates
the path of execution by "firing" interconnected
nodes in a proper sequence. The ACOS graph
topology is the initial static configuration. The
COMPROG can alter the initial configuration
dynamically by creating application specific configura-
tion for exectuion. In other words, the execution
of the COMPROG causes data to flow through the
GRAPH to perform the signal processing function
as specified. Theoretically, one can generate
application independent GRA PHs; however,
COMPROG is always application dependent. The
command program starts and stops graphs. It
connects and disconnects input/output queues. It
also assumes the critical roles of application
control and mode changes.

As originally conceived, there should be a
corresponding control graph for each signal
processing graph. It was hoped that command
programs could also be programmed in graph
notations and high level control primitives. Very
little experience existed in this approach. ACOS
opted to have the command programs programmed
in SPL/l and to learn by experience the control
primitives required. It was also believed that the
control primitives should be a finite set, while the
signal processing primitive library is limited but
extensible.

An ACOS command program
program with special statements to:

Start Graph
Stop Graph
Enqueue
Dequeue
Read queue
Connect Trigger
Disconnect Trigger
Add Trigger
Wait Trigger

Fig. 1 Signal Processing Flow Graph

A node represents a transfer function and is
completely implementation-free. There are two
types of queues: the data queue and the trigger
queue. Data queue is the buffered data between
signal processing operations, whereas triggered
queue is an "event signal," which allows synchroni-
zation of asynchronous sequence of operations. A
node contains a primitive or a subgraph (such as
FFT or Beamform). Node executions are
controlled by its input/output data queues: input
queues must reach certain "thresholds" and
output queues must have "capacity" to receive
data before the node is ready for execution. A
queue valve can be specified and controlled to
enable or to disable the associated queue.



The command program with the ACOS runtime
support program, SHELL, will allocate storage,
set-up the initial graph configuration and proces-
ses subsequent changes in configuration during
graph execution.

SHELL—ACOS Runtime Support
The SHELL provides the hardware and

operating system interface for ACOS. It instru-
mented a 'shell" to shelter the user from the
runtime environment. It initializes graphs,
schedules nodes and manages the queues for the
command program to direct the graph execution.
Special command program statements listed above
are SHELL services. SHELL monitors two types
of activities: graphs to be executed and queues
to be stored. As previously mentioned, firing of
a node is caused by the data flow requirements
and then, the node executes the associated primi-
tive under the control of SHELL.

SHELL was implemented at first in SPL/l.
Some high duty-cycle services were migrated into
assembly—code programs (approximately 30%) to
gain efficiency. Further migration into microcode
and hardware is possible. Ultimately, SHELL
service routines could become command program
statements. It defines a set of control primitives.
Then, the command programs can be programmed
in these control primitives for interpretive execu-
tions.

Architecture Implications
— The node or its underpinning primitive
constitutes the minimum processing element such
as filter banks, FFT devices etc. These elements
are interconnected with some memory modules for
buffered queues and controlled by a fixed se-
quence or by a control processor. In ACOS
SPGN, it is allowed that a node can be a sub—
graph. Therefore, each node (or processing
element) should have sufficient intelligence to
conform with the ACOS application topology as
shown in Fig. 2. Note that the interconnection
"Ether" is transparent to the user.

(QUEUES I

DATA TRANSPORT ETHER

I ___
I CONTROL IG,PROC
LPRIMITIvEs rRIMITIVES

Fig. 2 A Node
Despite the claims by ACOS enthusiasts that

ACOS SPGN embraces the data flow concept, the
natural hardware mapping of Fig. 2 is the conven-
tional Von—Neumann architecture. It does not fit
the Newcastle definition of data flow. SPGN is
queue-driven, i.e. data driven but without data
dependency.

The lowest level architecture, Level 0, is a
low level signal processing primitive or a signal
processing arithmetic unit. The Level 1 archi-

25.3

tecture is a node capable of subgraph executions.
A control processor must be included to execute
the command programs and control primitives.
The hardware realization of Level 1 architecture
has been examined by this author and
others.6'7'8'9 Several Level 1 processors are
commercially available. These are in the general
class of "array processors" including a (or
several) pipe—lined signal processing arithmetic
unit as shown in Fig. 3.

STORAG El

IJTA TRANSPORT ETH1

CONTROL ISIC PROC. LEVEL
PROCESSOR lARI, LNIy 9

__________ VEL 0) ______
Fig. 3 Level 1 Architecture

Analysis and experiences indicated that the
through—put of the Level 1 architecture is limited
by the capability of the control processorJ6 In
today's available semi—conductor technology,
storage capacity and arithmetic speed impose no
constraint on Level 1 design. In ACOS methodo-
logy, this implies that the largest subgraph (or
graph) that can be realized in a Level 1 proces-
sor, is determined by the number of nodefirings
per unit time in its control processor. Higher
level architures can be obtained by partitioning
the application into Level 1 subgraphs (nodes),
and these Level 1 nodes are controlled and se-
quenced by an additional control processor execu-
ting a Level 2 command program. To be com-
pletely general, a hierarchical relationship is
shown in Fig. 4 for the Level n architecture.

[STORAGE 1

[DATA TRANSPORT E

___ 1 __
CONTROL i LEVEL

PROCESSORj I ______
Fig. 4 Level n Architecture

The ACOS methodology makes no assumption
on hardware implementation. In fact, there is no
distinction between software and hardware archi-
tectures. As to physical realizations at various
levels, primitive library functions are allowed to
migrate from high level language programs to
special purpose hardware (10,11) when perfor-
mance requirements justify the cost of a par-
ticular design decision, and the distribution of
storage at various levels will influence the design
of the data transport ether.

1174 ICASSP 83, BOSTON



Future Research
All top—down analysis systems fall short on

synthesis. ACOS represents a systematic and
structured methodology for signal processing
system development. ACOS is a tool for system
synthesis. At present, ACOS has demonstrated
that a practical Naval acoustic system can be
designed and programmed in SPGN. It forms the
basis for the development approach for all future
US Naval acoustic signal processing systems.
However, it still requires ad hoc partitioning of
algorithms to obtain the initial SPGN topology.
Graph theoretic simulation techniques can be
applied to investigate the queuing and synchro-
nization strategies for decomposing relatively
complex problems such as adaptive (or optimum)
processing and multi—dimensional compression
algorithms. Hopefully, a general simulation model
can be formulated as part of the SPGN design and
analysis aids. Recent work in formalism for
describing a system as a set of sequential proces-
ses and distinct resources (12,13) probably can
support this formulation. Because the path of
graph execution determines the dynamic configu-
ration of ACOS applications, partition for reliabil-
ity to allow alternate or redundant paths should
be an interesting study. Through design auto-
mation, it should be feasible to map ACOS Level
0 architecture to VLSI cell libraries. The ACOS
interface to VLSI/VHSIC design automation sys-
tems is an area of investigaion that will lead to
high pay-offs in direct mask generation for future
DOD technology developments.

Acknowledgement
For the past ten years, it has been a honor

to be associated with the evolution of the US
Navy signal processor development and to witness
its impact on the Navy R&D community. ACOS
may symbolize only a way station in this "long
march." The author wishes to express his grati-
tute to all his comrades who have supported this
effort with dedication and technical excellence,
many of whom are no longer with the program.
In particular, he would like to thank W.R. Smith,
E. Freeman, G.R. Lloyd, R.J. Harrington, P.A.
Rigsbee, S.X. Weinstein, and S.L. Zuckerman for
the privilege of leading an outstanding technical
team that could never have been assembled before
in the Navy computing community; E.E. Wald and
D. Kaplan whose determination and hard labor
nursed ACOS to maturity; Capt. C.M. Rigsbee,
USN (ret) and Capt. Christopher Robbins, USN
for their unflinching management support.
Efforts and participations from colleagues of other
Navy laboratories and contractor personnel are
also greatfully acknowledged.

Reference
1. SPL/l Language Reference Manual, Naval

Research Laboratory, Washington, D.C.
February, 1977

2. Christofides, N. "Graph Theory—An
Algorithmic Approach" Academic Press, New
York, London (1975)

3. Harary F., Norman, R.Z. & Cartwright, D.
"Structural Models: An Introduction to the
Theory of Directed Graphs" Wiley, New York
(1965)

4. Anker, D.S. et al "ACOS User's Guide"
(Draft) Naval Research Laboratory"
Washington, D.C. 17 March 1982

5. Treleaven, P.C. et al "Data Driven and
Demand Driven Computer Architecture" Univ.
Newcastle upon Tyne Computing Laboratory
Report #168, Newcastle upon Tyne, June
1981

6. Wu, Y.S. 1'Architectural Considerations of A
Signal Processor Under Microprogram
Control" AFIPS Vol. 40 pp 675—682 Apri! 1972

7. Kratz, G. L. et al "A Microprogrammed
Approach to Signal Processing" IEEE Trans.
Comput. C-3 (No. 8) pp 808-817 Aug. 1974

8. Wu, Y.S. "Microprogramming Applications to
Signal Processing A rchitecture"—Micro—
Architecture of Computer Systems, R.W.
Hartenstein and R. Zuks
(eds) North Holland, Amsterdam (1975)

9. Liu, B. and Peled, A "Digital Signal
Processing" Wiley, New York (1979)

10. Wu, Y.S. and Lloyd, G.R. "System Func-
tional Migration" AIAA Computer Conference
(invited paper) Los Angeles, Ca. Dec 1977

11. Van Dam, A, Stabler, G and Harrington, R.
"Intelligent Satellites For Interactive
Graphics" Proc. IEEE Vol 62, no. 4, pp
483—492, April 1974

12. Lauer, P.E. et al "COSY—A System Speci-
fication Language Based on Paths and
Processes" Acta Informatica, Vol 12 pp
109—158 1979

13. Hoare, C. A. R. "Communicating Sequential
Processes" CACM Vol 21, No. 8, Aug 1978

ICASSP 83, BOSTON 1175

25.3


