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A Common q-Analogue of Two
Supercongruences

Victor J. W. Guo and Wadim Zudilin

Abstract. We give a q-congruence whose specializations q = −1 and q = 1
correspond to supercongruences (B.2) and (H.2) on Van Hamme’s list (in:
p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and
Applied Mathematics, vol 192. Dekker, New York, pp 223–236, 1997):

(p−1)/2
∑

k=0

(−1)k(4k + 1)Ak ≡ p(−1)(p−1)/2 (mod p3) and

(p−1)/2
∑

k=0

Ak ≡ a(p) (mod p2),

where p > 2 is prime,

Ak =

k−1
∏

j=0

(

1/2 + j

1 + j

)3

=
1

26k

(

2k

k

)3

for k = 0, 1, 2, . . . ,

and a(p) is the pth coefficient of the modular form q
∏

∞

j=1(1 − q4j)6 (of

weight 3). We complement our result with a general common
q-congruence for related hypergeometric sums.
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1. Introduction

The formula of Bauer [1] from 1859,

∞
∑

k=0

(−1)k(4k +1)Ak =
2

π
, where Ak =

1

26k

(

2k

k

)3

for k = 0, 1, 2, . . . , (1.1)

is one of traditional targets for different methods of proofs of hypergeometric
identities. Its special status is probably linked to the fact that it belongs to a
family of series for 1/π of Ramanujan type, after Ramanujan [21] brought to
life in 1914 a long list of similar looking equalities for the constant but with
a faster convergence. Identity (1.1) is a particular instance of 4F3 hypergeo-
metric summation (known to Ramanujan) but there are several proofs of it,
including the original one [1] of Bauer, that do not require any knowledge of
hypergeometric functions. One notable—computer—proof of (1.1) was given
in 1994 by Ekhad and Zeilberger [2] using the Wilf–Zeilberger (WZ) method
of creative telescoping.

It was observed in 1997 by Van Hamme [28] that many Ramanujan’s
and Ramanujan-like evaluations have nice p-adic analogues; for example, the
congruence

(p−1)/2
∑

k=0

(−1)k(4k + 1)Ak ≡ p(−1)(p−1)/2 (mod p3) (1.2)

(tagged (B.2) on Van Hamme’s list) is valid for any prime p > 2 and corre-
sponds to the equality (1.1). The congruence (1.2) was first proved by Morten-
son [19] using a 6F5 hypergeometric transformation; it later received another
proof by one of these authors [29] via the WZ method [in fact, using the very
same ‘WZ certificate’ as in [2] for (1.1)]. Notice that (1.2) is an example of
supercongruence meaning that it holds modulo a power of p greater than 1.

Another entry on Van Hamme’s 1997 list [28], tagged (H.2), is the con-
gruence

(p−1)/2
∑

k=0

Ak ≡

{

−Γp(1/4)4 (mod p2) if p ≡ 1 (mod 4),

0 (mod p2) if p ≡ 3 (mod 4),
(1.3)

again for any p > 2 prime, and Γp(x) is the p-adic Gamma function. Van
Hamme not only observed but also proved (1.3) in [28], and it was later gen-
eralized by Sun [23,24, Theorem 2.5], Guo and Zeng [12, Corollary 1.2], Long
and Ramakrishna [17], Liu [15,16, Theorem 1.5] in different ways. For exam-
ple, Long and Ramakrishna [17, Theorem 3] gave the following generalization
of (1.3):

(p−1)/2
∑

k=0

Ak ≡

⎧

⎨

⎩

−Γp(1/4)4 (mod p3) if p ≡ 1 (mod 4),

−
p2

16
Γp(1/4)4 (mod p3) if p ≡ 3 (mod 4).

(1.4)
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Recently, these authors [14, Theorem 2] proved that, for any positive odd
integer n, modulo Φn(q)2,

(n−1)/2
∑

k=0

(q; q2)2k(q2; q4)k

(q2; q2)2k(q4; q4)k
q2k

≡

⎧

⎪

⎨

⎪

⎩

(q2; q4)2(n−1)/4

(q4; q4)2(n−1)/4

q(n−1)/2 if n ≡ 1 (mod 4),

0 if n ≡ 3 (mod 4).

(1.5)

Here and in what follows, Φn(q) denotes the nth cyclotomic polynomial; the
q-shifted factorial is given by (a; q)0 = 1 and (a; q)n = (1 − a)(1 − aq) . . .
(1 − aqn−1) for n � 1 or n = ∞, while [n] = [n]q = 1 + q + · · · + qn−1 stands
for the q-integer. Van Hamme [27, Theorem 3] also proved that

(

−1/2

(p − 1)/4

)

≡ −
Γp(1/4)2

Γp(1/2)
(mod p2);

in view of Γp(1/2)2 = −1 for p ≡ 1 (mod 4), by letting q → 1 in (1.5) for n = p
we immediately obtain (1.3).

One feature of (1.3) (not highlighted in [28]) is its connection with the
coefficients

a(p) =

{

2(a2 − b2) if p = a2 + b2, a odd,

0 if p ≡ 3 (mod 4),
(1.6)

of CM modular form q
∏

∞

j=1(1 − q4j)6 of weight 3, namely, the congruence

a(p) ≡ −Γp(1/4)4 (mod p2) for primes p ≡ 1 (mod 4).

This served as a main motivation in [14] for not only establishing (1.5) but
also speculating on possible q-deformation of modular forms.

For some other recent progress on q-analogues of supercongruences, the
reader is referred to [4,5,7–11,13,20,22,26,29]. In particular, the authors [13]
introduced and executed a new method of creative microscoping to prove (and
reprove) many q-analogues of classical supercongruences and also raised some
problems on q-congruences. Using this method, the first author [6] gave a
refinement of (1.5) modulo Φn(q)3 for n ≡ 3 (mod 4), in other words, a q-
analogue of (1.4) for p ≡ 3 (mod 4).

A goal of this note is to present the following new q-analogue of Van
Hamme’s supercongruence (1.3).

Theorem 1.1. Let n be a positive odd integer. Then

(n−1)/2
∑

k=0

(1 + q4k+1) (q2; q4)3k
(1 + q) (q4; q4)3k

qk

≡

[n]q2(q3; q4)(n−1)/2

(q5; q4)(n−1)/2

q(1−n)/2

{

(mod Φn(q)2Φn(−q)3) if n ≡ 1 (mod 4),

(mod Φn(q)3Φn(−q)3) if n ≡ 3 (mod 4).

(1.7)
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Note that Φn(q)Φn(−q) = Φn(q2) for odd indices n.
The n ≡ 3 (mod 4) case of Theorem 1.1 confirms a conjecture of these

authors [13, Conjecture 4.13], which states that, for n ≡ 3 (mod 4),

(n−1)/2
∑

k=0

(1 + q4k+1) (q2; q4)3k
(1 + q) (q4; q4)3k

qk
≡ 0 (mod Φn(q)2Φn(−q)).

It is not difficult to verify that

(3/4)(p−1)/2

(5/4)(p−1)/2
≡ −

p

16
Γp (1/4)

4
(mod p2)

for p ≡ 3 (mod 4), where (a)n = a(a + 1) . . . (a + n − 1) denotes the rising
factorial (also known as Pochhammer’s symbol). Therefore, the q-congruence
(1.7) reduces to (1.4) for p ≡ 3 (mod 4) when n = p and q → 1, and it reduces
to (1.3) for p ≡ 1 (mod 4) when n = p and q → 1. Moreover, letting n = p
and q → −1 in (1.7), we immediately get (1.2). Thus, Theorem 1.1 presents
a common q-analogue of supercongruences (1.2) and (1.3). We point out that
other different q-analogues of (1.2) have been given in [7,8].

Recently, Mao and Pan [18] (see also Sun [25, Theorem 1.3]) proved that,
if p ≡ 1 (mod 4) is a prime, then

(p+1)/2
∑

k=0

(−1/2)3k
k!3

≡ 0 (mod p2). (1.8)

In this note, we prove the following q-analogue of (1.8).

Theorem 1.2. Let n > 1 be an odd integer. Then

(n+1)/2
∑

k=0

(1 + q4k−1) (q−2; q4)3k
(1 + q) (q4; q4)3k

q7k

≡

[n]q2(q; q4)(n−1)/2

(q7; q4)(n−1)/2

q(n−3)/2

{

(mod Φn(q)3Φn(−q)3) if n ≡ 1 (mod 4),

(mod Φn(q)2Φn(−q)3) if n ≡ 3 (mod 4).

The n ≡ 1 (mod 4) case of Theorem 1.2 also confirms a conjecture of the
first author and Schlosser [11, Conjecture 10.2].

For n prime, letting q → 1 in Theorem 1.2 we obtain the following gen-
eralization of (1.8).

Corollary 1.3. Let p be an odd prime. Then

(p+1)/2
∑

k=0

(−1/2)3k
k!3

≡ p
(1/4)(p−1)/2

(7/4)(p−1)/2

{

(mod p3) if p ≡ 1 (mod 4),

(mod p2) if p ≡ 3 (mod 4).

On the other hand, for n prime and q → −1 in Theorem 1.2, we are led
to the following result:

(p+1)/2
∑

k=0

(−1)k(4k − 1)
(−1/2)3k

k!3
≡ p(−1)(p+1)/2 (mod p3). (1.9)
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It should be mentioned that a different q-analogue of (1.9) was given in [13,
Theorem 4.9] with r = −1, d = 2 and a = 1 (see also [11, Section 5]).

Moreover, for the summation formula
∞
∑

k=0

(− 1
2 )3k

k!3
= 12

Γ(3/4)4

π3
,

we have the following q-analogue.

Theorem 1.4. We have
∞
∑

k=0

(1 + q4k−1) (q−2; q4)3k
(1 + q−1) (q4; q4)3k

q7k =
(q2; q4)∞(q5; q4)2

∞
(q6; q4)∞

(q3; q4)∞(q4; q4)2
∞

(q7; q4)∞

.

Both Theorems 1.1 and 1.2 are particular cases of a more general result,
which we state and prove in the next section, while Theorem 1.4 follows from
a classical q-identity.

2. A Family of q-Congruences from the q-Dixon Sum

In this section we establish the following family of one-parameter q-congruences.

Theorem 2.1. Let n � 1 be an odd integer and ℓ an integer with 0 � ℓ �

(n − 1)/2. Then
n−1
∑

k=0

(1 + q4k−2ℓ+1) (q2−4ℓ; q4)3k
(1 + q1−2ℓ) (q4; q4)3k

q(6ℓ+1)k

≡

(1 − q2n) (q3−6ℓ; q4)(n−1)/2+ℓ

(1 − q2−4ℓ) (q5−2ℓ; q4)(n−1)/2+ℓ

q(2ℓ−1)((n−1)/2+ℓ)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(mod Φn(q)2Φn(−q)3)

if n + 2ℓ ≡ 1 (mod 4),

(mod Φn(q)3Φn(−q)3)

if n + 2ℓ ≡ 3 (mod 4).

(2.1)

Note that the q-congruence (2.1) remains true when the sum is over k
from 0 to (n − 1)/2 + ℓ, since (q2−4ℓ; q4)k/(q4; q4)k ≡ 0 (mod Φn(q2)) for
(n − 1)/2 + ℓ < k � n − 1. Furthermore, when ℓ = 0 and ℓ = 1 (hence n ≥ 3)
the theorem reduces to Theorems 1.1 and 1.2, respectively.

The following easily proved q-congruence (see [11, Lemma 3.1]) is neces-
sary in our derivation of Theorem 2.1.

Lemma 2.2. Let n be a positive odd integer. Then, for 0 � k � (n − 1)/2, we

have

(aq; q2)(n−1)/2−k

(q2/a; q2)(n−1)/2−k
≡ (−a)(n−1)/2−2k (aq; q2)k

(q2/a; q2)k
q(n−1)2/4+k (mod Φn(q)).

Like the proofs given in [13], we start with the following generalization
of (1.7) with an extra parameter a.
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Theorem 2.3. Let n > 1 be an odd integer and 0 � ℓ � (n − 1)/2. Then

n−1
∑

k=0

(1 + q4k−2ℓ+1) (aq2−4ℓ; q4)k(q2−4ℓ/a; q4)k(q2−4ℓ; q4)k

(1 + q1−2ℓ) (aq4; q4)k(q4/a; q4)k(q4; q4)k
q(6ℓ+1)k

≡
(1 − q2n) (q3−6ℓ; q4)(n−1)/2+ℓ

(1 − q2−4ℓ) (q5−2ℓ; q4)(n−1)/2+ℓ

× q(2ℓ−1)((n−1)/2+ℓ)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(mod Φn(−q)(1 − aq2n)(a − q2n))

if n + 2ℓ ≡ 1 (mod 4),

(mod Φn(q2)(1 − aq2n)(a − q2n))

if n + 2ℓ ≡ 3 (mod 4).

(2.2)

Proof. Performing the parameter substitutions q �→ q4, a �→ q2−4ℓ, b �→ bq2−4ℓ

and c �→ cq2−4ℓ in the q-Dixon sum [3, Appendix (II.13)], we obtain

∞
∑

k=0

(1 + q4k−2ℓ+1) (q2−4ℓ; q4)k(bq2−4ℓ; q4)k(cq2−4ℓ; q4)k

(1 + q1−2ℓ) (q4/b; q4)k(q4/c; q4)k(q4; q4)k

(

q6ℓ+1

bc

)k

=
(q6−4ℓ; q4)∞(q2ℓ+3/b; q4)∞(q2ℓ+3/c; q4)∞(q4ℓ+2/bc; q4)∞

(q4/b; q4)∞(q4/c; q4)∞(q5−2ℓ; q4)∞(q6ℓ+1/bc; q4)∞

. (2.3)

Since n is odd, putting b = q−2n and c = q2n in (2.3) we see that the left-hand
side terminates and is equal to

(n−1)/2+ℓ
∑

k=0

(1 + q4k−2ℓ+1) (q2−4ℓ−2n; q4)k(q2−4ℓ+2n; q4)k(q2−4ℓ; q4)k

(1 + q1−2ℓ) (q4−2n; q4)k(q4+2n; q4)k(q4; q4)k
q(6ℓ+1)k

=

n−1
∑

k=0

(1 + q4k−2ℓ+1) (q2−4ℓ−2n; q4)k(q2−4ℓ+2n; q4)k(q2−4ℓ; q4)k

(1 + q1−2ℓ) (q4−2n; q4)k(q4+2n; q4)k(q4; q4)k
q(6ℓ+1)k,

while the right-hand side becomes

(q2ℓ−2n+3; q4)(n−1)/2+ℓ(q
6−4ℓ; q4)(n−1)/2+ℓ

(q4−2n; q4)(n−1)/2+ℓ(q5−2ℓ; q4)(n−1)/2+ℓ

=
(1 − q2n) (q3−6ℓ; q4)(n−1)/2+ℓ

(1 − q2−4ℓ) (q5−2ℓ; q4)(n−1)/2+ℓ
q(2ℓ−1)((n−1)/2+ℓ).

This proves that the q-congruence (2.2) holds modulo 1 − aq2n or a − q2n.

On the other hand, by Lemma 2.2, for 0 � k � (n − 1)/2 + ℓ, modulo
Φn(q) we have
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(aq1−2ℓ; q2)(n−1)/2+ℓ−k

(q2/a; q2)(n−1)/2+ℓ−k

=
(aq1−2ℓ; q2)ℓ(aq; q2)(n−1)/2−k

(qn+1−2k/a; q2)ℓ(q2/a; q2)(n−1)/2−k

≡ (−a)(n−1)/2−2k (aq1−2ℓ; q2)ℓ(aq; q2)k

(qn+1−2k/a; q2)ℓ(q2/a; q2)k
q(n−1)2/4+k

= (−a)(n−1)/2−2k (aq1−2ℓ; q2)k(aq2k−2ℓ+1; q2)ℓ

(qn+1−2k/a; q2)ℓ(q2/a; q2)k
q(n−1)2/4+k

≡ (−a)(n−1)/2+ℓ−2k (aq1−2ℓ; q2)k

(q2/a; q2)k
q(n−1)2/4+k+(2k−ℓ)ℓ,

where we used qn ≡ 1 (mod Φn(q)) in the last step. Using the above q-
congruence we can easily check that, for odd n > 1 and 0 � k � (n − 1)/2 + ℓ,
sum of the kth and ((n − 1)/2 + ℓ − k)th summands on the left-hand side
of (2.2) is congruent to 0 modulo Φn(−q) (or modulo Φn(q2) if n ≡ 3 − 2ℓ
(mod 4)). It follows that

(n−1)/2+ℓ
∑

k=0

(1 + q4k−2ℓ+1) (aq2−4ℓ; q4)k(q2−4ℓ/a; q4)k(q2−4ℓ; q4)k

(1 + q1−2ℓ) (aq4; q4)k(q4/a; q4)k(q4; q4)k
q(6ℓ+1)k

≡ 0

{

(mod Φn(−q)) if n + 2ℓ ≡ 1 (mod 4),

(mod Φn(q2)) if n + 2ℓ ≡ 3 (mod 4).

Clearly, the right-hand side of (2.1) is congruent to 0 modulo Φn(−q) if n +
2ℓ ≡ 1 (mod 4) and modulo Φn(q2) if n + 2ℓ ≡ 3 (mod 4). Therefore, the
q-congruence (2.2) holds modulo Φn(−q) if n + 2ℓ ≡ 1 (mod 4) and modulo
Φn(q2) if n + 2ℓ ≡ 3 (mod 4). Since the polynomials 1 − aq2n, a − q2n and
Φn(−q) (or Φn(q2)) are pairwise coprime, we complete the proof of (2.2). �

Proof of Theorem 2.1. We assume that n > 1, since the n = 1 case (making
ℓ = 0 only possible) is trivial. The limits of the denominators on both sides
of (2.2) as a → 1 are relatively prime to Φn(q2), since k is in the range
0 � k � (n − 1)/2 + ℓ. On the other hand, the limit of (1 − aq2n)(a − q2n) as
a → 1 contains the factor Φn(q2)2. �

Proof of Theorem 1.4. Take b = c = ℓ = 1 in Eq. (2.3). �

3. Discussion

The method of creative microscoping used in our proofs indicates the origin
of q-congruences from infinite q-hypergeometric identities; for example, the
q-congruence (1.7) corresponds to the identity

∞
∑

k=0

(1 + q4k+1) (q2; q4)3k
(1 + q) (q4; q4)3k

qk =
(q2; q4)2

∞
(q3; q4)2

∞

(1 + q) (q; q4)2
∞

(q4; q4)2
∞

, (3.1)
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which is just a particular instance of (2.3). Note that the limiting cases as
q → −1 and q → 1 of (3.1) give the formulas (1.1) and

∞
∑

k=0

( 1
2 )3k
k!3

=
Γ(1/4)4

4π3
=

8L(f, 1)

π
=

16L(f, 2)

π2
(3.2)

where

f(τ) = q
∞
∏

j=1

(1 − q4j)6 =
∞
∑

n=1

a(n)qn, with q = exp(2πiτ),

is the CM modular form from the introduction and L(f, s) denotes its
L-function. This means that the q-identity (3.1) presents a common q-extension
of evaluations (1.1) and (3.2)—the fact that makes it less surprising that the
q-congruence (1.7) simultaneously extends (1.2) and (1.3).

The intermediate use of parametric q-hypergeometric identities in our
proof of Theorem 2.1 based on the q-Dixon sum suggests that different q-
congruences underlying (3.1) are possible. This is indeed the case when we
analyze the formula (3.1) as the a = 1 specialization of

∞
∑

k=0

(1 + q4k+1) (aq; q2)k(q/a; q2)k(−q; q2)2k(q2; q4)k

(1 + q) (q2; q2)2k(−aq2; q2)k(−q2/a; q2)k(q4; q4)k
qk

=
(−q; q2)2

∞
(aq3; q4)2

∞
(q3/a; q4)2

∞

(1 + q) (−aq2; q2)∞(−q2/a; q2)∞(q2; q2)2
∞

(3.3)

which originates from a q-analogue of Watson’s 3F2 sum [3, Appendix (II.16)].
When we choose a = qn (or a = q−n) in (3.3), for n > 1 odd, we get the
sum terminating after (n− 1)/2 terms on the left-hand side of (3.3), while the
right-hand side vanishes if n is of the form 4m + 3 and it becomes equal to

(−q; q2)2
∞

(q4m+4; q4)2
∞

(q2−4m; q4)2
∞

(1 + q) (−q4m+3; q2)∞(−q1−4m; q2)∞(q2, q4; q4)2
∞

= [4m + 1]
(q2; q4)2m
(q4; q4)2m

if n = 4m + 1. This means that modulo (a − qn)(1 − aqn) we have

N
∑

k=0

(1 + q4k+1) (aq; q2)k(q/a; q2)k(−q; q2)2k(q2; q4)k

(1 + q) (q2; q2)2k(−aq2; q2)k(−q2/a; q2)k(q4; q4)k
qk

≡

⎧

⎨

⎩

[4m + 1]
(q2; q4)2m
(q4; q4)2m

if n = 4m + 1,

0 if n ≡ 3 (mod 4),

for any N ≥ (n − 1)/2. The limiting a → 1 case of the congruences can be
shown to be

(n−1)/2
∑

k=0

(1 + q4k+1) (q2; q4)3k
(1 + q) (q4; q4)3k

qk
≡

⎧

⎨

⎩

[4m + 1]
(q2; q4)2m
(q4; q4)2m

if n = 4m + 1,

0 if n ≡ 3 (mod 4),

(3.4)
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modulo Φn(q)2Φn(−q). This is quite similar in spirit to (1.5), though still far
from constructing q-analogues for the coefficients a(p) in (1.6) of the modular
form f(τ). The latter means that a hunt for q-rational functions, which equal
the left-hand side of (1.5) or (3.4) modulo Φn(q)2 and specialize to a(n) as
q → 1 (at least for n prime), is still on its way. Such q-rational functions
are also expected to be self-reciprocal, that is, invariant under the involution
q �→ 1/q, as all the left- and right-hand sides in (1.5), (1.7), (3.4) and also (2.1)
are.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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