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The structures, the phase diagrams, and the appearance of a neutron resonance

signaling an unconventional superconducting state provide phenomenological evi-

dence relating the cuprates, the Fe-pnictides/chalcogenides as well as some heavy

fermion and actinide materials. Single- and multi-band Hubbard models have been

found to describe a number of the observed properties of these materials so that it

is reasonable to examine the origin of the pairing interaction in these models. In

this review, based on the experimental phenomenology and studies of the pairing

interaction for Hubbard-like models, it is proposed that spin-fluctuation mediated

pairing is the common thread linking a broad class of superconducting materials.
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I. INTRODUCTION

Fisk et al.
1 have noted that a striking aspect of superconducting materials is the “remark-

able amount of phase space they inhabit: superconductivity is everywhere but sparse. So

the central question in superconductivity and the search for new superconducting materials
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is whether there is anything common to the known superconductors.” This review addresses

this question by examining common features of the cuprate and iron superconductors as

well as some heavy fermion and actinide superconductors to see what they tell us about the

pairing mechanism in these materials.2

We begin in Sec. II by looking at the crystal structures, the phase diagrams, the coexis-

tence and interplay of antiferromagnetism and superconductivity and a neutron scattering

spin resonance which is observed in the superconducting phase. One finds that these mate-

rials come in families which have quasi-2D layers containing square arrays of d- or f -electron

cations. Their temperature-doping and magnetic field phase diagrams show antiferromag-

netism in close proximity, or in some cases coexisting, with superconductivity. A variety of

experiments show that the antiferromagnetism and superconductivity are strongly coupled.

A spin resonance peak, which is observed in inelastic neutron scattering experiments in the

superconducting phase, provides evidence of unconventional pairing. The similarity of the

structures, the phase diagrams, the interplay of antiferromagnetism and superconductivity,

and the unconventional nature of the superconductivity seen in these materials suggest they

share a common underlying physics.

Sec. III contains a discussion of models that have been used to describe these materials.

These are minimal models in which the cuprates are described by a single-band 2-dimensional

Hubbard model while the heavy fermion and Fe materials involve orbital degenerate multi-

band models. Various numerical calculations as well as approximate analytic calculations

find that these models exhibit a number of phenomena which are experimentally observed in

these materials. In particular, the close proximity of an antiferromagnetic or spin-density-

wave phase to an unconventional d-wave or sign changing s-wave superconducting phase is

found to be a common feature. A second important common feature is the dual character of

the 3d or 4f electrons in these models. These electrons are involved in both the magnetism

and the superconductivity. The models can exhibit behavior ranging from local moments and

insulating antiferromagnetic order to itinerant magnetism, stripes and superconductivity.

Furthermore the models show the close relationship between d-wave and s±-wave pairing.

Motivated by this, the momentum, frequency and orbital dependence of the interaction

which is responsible for pairing in these models is examined in Section IV. The “same elec-

trons” that are associated with the magnetism and superconductivity are found to give rise

to a spin-fluctuation mediated pairing interaction. The short range near-neighbor antifer-
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romagnetic fluctuations give rise to a sign changing gap (Sgn∆(k + Q) = −Sgn∆(k)) for

large momentum transfers. Appendix A contains a comparison of the traditional electron-

phonon-Coulomb pairing interaction with this interaction. Based on the experimental phe-

nomenology and the analysis of the models, it is proposed that this spin-fluctuation pairing

interaction is the common thread that links this class of unconventional superconducting

materials. Although the organic Bechgaard salts3 will not be discussed, they clearly are

also part of this class of materials4–6. Section V contains a brief summary and an outlook

regarding the guidance this brings to the search for higher Tc materials.

II. COMMON FEATURES OF A CLASS OF UNCONVENTIONAL

SUPERCONDUCTORS

In this section we begin by looking at similarities in the structures and the phase diagrams

of some heavy fermion, cuprate and iron-based superconductors. Following this, experimen-

tal evidence of the interplay of antiferromagnetism and superconducting and the dominant

role of spin-fluctuation scattering in these materials will be discussed. The section concludes

with an experimental definition of what we will call “unconventional superconductors” in

this review.

A. Structures

As illustrated7 in Figs. 1-4, these materials come in families and the common structural

element is a quasi 2-dimensional layer with metallic d or f cations arranged on a nominally

square planar set of lattice sites. Surrounding these sites are an array of ligand anions

which provide a local crystal field and a hybridization network. Three members of the

heavy fermion CeIn3 family are shown in Fig. 1. On the left is the unit cell of the so-

called infinite layered (Tc ∼ 0.2K) material in which CeIn3 layers are stacked one on top of

another8. The middle structure consists of a similar stack of CeIn3 layers in which a CoIn2

layer is inserted after every two CeIn3 layers. This is called a 218 structure corresponding to

(CeIn3)2(CoIn2)1=Ce2Co1In8 and has a superconducting transition temperature9 Tc ∼ 1K.

On the right is the 115 structure which consists of alternating CeIn3 and CoIn2 layers

giving (CeIn3)(CoIn2)=CeCoIn5 (Tc ∼ 2.3K)10. In addition, there are materials11,12 in
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FIG. 1. Some members of the Ce family of heavy fermion superconductors. The key structural

element is the quasi-two-dimensional layer of Ce3+ ions which sit at the center of a tetragon formed

by 12 near neighbor In− anions. (Tc ∼ 0.2 K CeIn3
8, 1.0 K Ce2CoIn8

9, 2.3 K CeCoIn5
10)

which Co is replaced by Rh or Ir, or Cd is substituted for In. The heavy-fermion actinide

PuMGa5 materials have a similar structure to the 115 CeCoIn5 with Pu replacing Ce and Ga

replacing In. In this case one has PuCoGa5 with a superconducting transition temperature13

Tc = 18.5K, PuRhGa5 with Tc = 8.7K14 as well as mixtures such as Pu(Co1−xRhx)Ga5.

Recently it has been reported15 that PuCoIn5 becomes superconducting with Tc = 2.5K.

For the cuprates there are the well-known Hg, Tl and Bi families with different numbers

of CuO2 layers. The one, two and three layer members of the Hg family are shown in Fig. 2.

In this case the naming scheme involves four numbers. For example, for the three CuO2

layer Hg 1223 compound16,17 with Tc ∼ 135K shown on the right, the first index denotes

the number of HgO planes, the second the number of spacing BaO layers, the third is the

number of separating Ca atom layers and the final the number of CuO2 layers. Thus one

has the (HgO)1(BaO)2(Ca)2(CuO2)3=HgBa2Ca2Cu3O9 “1223” three layer material on the

right and the (HgO)1(BaO)2(CuO2)1=HgBa2CuO5 “1201” structure18 with Tc ∼ 94K16 on

the left. Some of the O sites in the Hg layer are only partially occupied giving the usual

chemical formulae HgBa2CuO4+δ and HgBa2Ca2Cu3O8+δ. A Cu in the CuO2 layer of the
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Cu O Hg

Hg(1201)

Hg(1212)

Hg(1223)Ba Ca

FIG. 2. The key element of the Hg-cuprate superconductors is the CuO2 layer. The 1201 structure

on the left has apical O’s above and below the Cu sites while the inner CuO2 layer of the 1223

structure on the right has no apex oxygens (optimally doped Tc ∼ 94 K Hg(1201), 127 K Hg(1212),

135 K Hg(1223)16).

single layer 1201 material has two apical O, while a Cu in the middle layer of the 1223

material has none. There are also the so-called 214 families such as La2CuO4 which can be

hole doped La2−xMxCuO4 with M=Sr or Ba and Nd2−xCuO4 which can be electron doped

Nd2−xCexCuO4. These latter electron doped cuprates have structures in which the apical

O is absent. (Fig. 3) There are also the so-called infinite layer electron doped cuprates21 in

which the CuO2 planes are separated by Sr1−xLnx layers with Ln a lanthanide such as La,

Sm or Nd.

Figure 4 shows some examples of the recently discovered22,23 Fe-superconducting families

which are built up from Fe/pnictide or chalcogen layers. In these layers the Fe ions sit on a

planar two-dimensional square lattice and the pnictide or chalcogen sit at the centers of the

squares, alternatively above or below the plane formed by the Fe ions. Again these layers can

be stacked in a variety of ways leading to the LaOFeAs, Ba(FeAs)2 and FeSe structures illus-

trated in Fig. 4. These are called the (1111), (122) and (11) Fe-based materials, respectively.

The alternating arrangement of the pnictides or chalcogens leads to a doubling of the unit
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La  CuO2 4 Nd  CuO2 4

Cu O NdLa

FIG. 3. The 214 cuprate structures La2CuO4 and Nd2CuO4. The former can be hole doped

and the latter structure which is missing the apex oxygens can be electron doped. (Tc ∼ 38 K

La1.85Sr0.15CuO4
19, 25 K Nd1.85Ce0.15CuO4

20)

Fe As La

LaOFeAs BaFe  As FeSe

O Ba

2 2

Se

FIG. 4. Examples of the Fe-based superconductors. Here the key element is the Fe-pnictide

or chalcogen layer. (Tc ∼ 26 K La(O0.92F0.08)FeAs
24, 22 K Ba(Fe0.92Co0.08)2As2

25, 38 K

(Ba0.6K0.4)Fe2As2
26, 13.6 K to 37 K (4.5GPa)FeSe27)
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cell compared with the square Fe lattice. In LaOFeAs, the Fe is tetrahedrally coordinated

with four As forming square pyramids. The LaO layer has the same type of structure but

with the O forming the square planar array. There are many equiatomic quaternary pnictide

oxides of this type28. The phosphorus version of this material22 LaOFeP has a superconduct-

ing transition of 6K. When the As version is electron doped by replacing some of the O with

F giving LaO1−xFxFeAs, it can become superconducting with a Tc = 26K23 and replacing

La with Sm has given Tc = 55K29. In the BaFe2As2 (122) compound, the Fe2As2 layers

are separated by Ba2+ ions. In this case the system can be hole doped30 Ba1−xKxFe2As2

with an optimal Tc ∼ 38K or electron doped31 Ba(Fe1−xCox)2As2 with Tc ∼ 22K. The third

Fe(Se,Te) family shown on the right hand side of Fig. 4 is essentially the infinite layer mem-

ber of the family and has a Tc ∼ 13.6K−37K depending upon the Se/Te composition and

the pressure27,32.

The active layers of these Ce, Cu and Fe families are illustrated in Fig. 5. For the

FeAs

CuO

CeIn3

2

FIG. 5. The active layers of the Ce, Cu and Fe families. The antiferromagnetic spin order of the

undoped groundstates are shown.

actinide Pu family, the active layer is similar to the Ce layer with Pu replacing Ce and Ga

replacing In or as recently found for the PuCoIn5 115 compound, one can simply replace

Ce with Pu. In each case, these layers contain a square sheet of metallic d or f cations

surrounded by ligand anions. However, the spacing of the metallic ions in these compounds
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are significantly different with the Ce3+ ions separated by approximately 4.6◦A, the Cu2+

ions by 3.8◦A and the Fe2+ ions by 2.7◦A. The Fe2+ ions are close enough that there is

a direct Fe–Fe hopping which along with the d-p hybridization through the pnictogen or

chalcogen anions leads to a metallic groundstate with the possibility of itinerate striped

SDW antiferromagnetism and/or superconductivity. Observations of quantum oscillations

originating from the Shubnikov-de Haas effect33–35 provide clear evidence of well defined

Fermi surfaces in the parent Fe-based compounds as well as the doped materials.

In contrast to this itinerant electron behavior, the undoped cuprate materials are Mott

charge-transfer antiferromagnetic insulators. In the undoped CuO2 layer, one has Cu2+

in a (3d)9 configuration. The crystal field is such that the dx2−y2 orbital has the highest

energy and is half-filled. The onsite Cu Coulomb interaction energy is large leading to the

formation of local moments. The O orbital mediates an exchange interaction36 between

the Cu spins and the groundstate has long range antiferromagnetic order. In the three

dimensional crystal, the interlayer exchange coupling leads to a finite Néel temperature.

The undoped system is a charge-transfer insulator with a gap set by the difference in energy

between the 2p state of the O and the dx2−y2 state of the Cu. In order to have metallic

behavior and the possibility of superconductivity, the CuO2 planes need to be doped. The

occupancy of the oxygen site in the Hg layer typically controls the hole doping of the CuO2

in the Hg cuprates while cation substitution or O doping excess or depletion can provide

hole or electron doping for the 214 cuprates.

In the heavy fermion materials one has the largest ion separation but in this case the

conduction band of the ligands gives rise to a metallic state. The 14-fold degenerate f

electronic states of the (4f)1 configuration of Ce3+ are split by a large spin-orbit coupling

into a low lying j = 5/2 sextet and a higher energy j = 7/2 octet. The one electron

states of the j = 5/2 sextet are further split by the crystalline electric field of the In

ligand anions into three sets of Kramer’s doublets37. Then, depending upon the strength of

the hybridization, these states are localized or delocalized. For example, CeRhIn5 has an

antiferromagnetic groundstate in which the 4f -electron of Ce is localized with a magnetic

moment only slightly reduced from its full atomic value12. The system is metallic due to

the conduction band associated with the ligands. Under sufficient pressure, 1.7 GPa, the

4f -electron takes on some itinerant character and the system becomes superconducting38.

In CeCoIn5 and CeIrIn5, at low temperatures the 4f electron are delocalized through their
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coupling with the ligand conduction band and these systems become superconducting at

atmospheric pressure10,12. Replacing a small amount of In with a few percent of Cd leads

to a metallic antiferromagnetic state39,40. The two-dimensional character of the Ce ion

layers lead to nearly cylindrical Fermi surfaces which are seen in de Haas and van Alphen

measurements. The cyclotron masses are large consistent with the fact that the 4f electrons

make a contribution to the Fermi surface states41.

B. Phase diagrams

These materials exhibit a range of different phases. There are tetragonal and orthorhom-

bic lattice phases, nematic electronic phases, charge density wave and striped magnetic

phases, charge-transfer antiferromagnetic Mott insulating as well as metallic spin density

wave phases, and of course superconductivity. Via temperature, doping, chemical or hy-

drostatic pressure, or the application of a magnetic field one can change the phase of these

materials. However, the feature that is striking in the phase diagrams for all of these ma-

terials is the proximity of the antiferromagnetic or spin density wave and superconducting

phases. These phases may in some cases coexist or alternatively there may be a first order

transition from the AF state to the superconducting state. Then as noted by Emery et al.
42 ,

Coulomb frustrated phase separation can lead to a mesoscopic phase in which a lightly doped

locally AF and a more heavily hole doped region are in close contact. It has been suggested

that this type of inhomogeneity may in fact lead to an optimal superconducting transition

temperature43.

Examples of phase diagrams for the heavy fermion, cuprate and Fe-based materials are

shown in Figs. 6-8. The phase diagram for the 115 heavy fermion system39 CeCo(In1−xCdx)5

is shown in Fig. 6a. For x = 0, CeCoIn5 becomes superconducting at temperatures below

approximately 2.3K. Then as the Cd concentration increases, one enters a region where the

system first becomes antiferromagnetic and then below the superconducting Tc there is a

coexistence regime. Finally, for Cd concentration x >∼ 0.15, superconductivity is absent and

the Néel temperature TN continues to increase. A similar phase diagram for the case in

which Co is replaced by Ir is shown in Fig. 6b. In this case, while the Néel temperatures

are comparable to those of the Co material, the superconducting Tc is significantly smaller.

Figure 7 shows the phase diagrams of La2−xSrxCuO4 and Nd2−xCexCuO4
44. Undoped
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a)

SC+AFM

b)

FIG. 6. Phase diagrams for two heavy fermion Ce-115 systems: (a) CeCo(In1−xCdx)5 (after

Nicklas et al.40) and (b) CeIr(In1−xCdx)5 (after Pham et al.39). Note that Tc is multiplied by a

factor of 10 for CeIr(In1−xCdx)5. In both cases one sees the close proximity of superconductivity

and antiferromagnetism. For the Co compound there is a region of coexistence.

FIG. 7. Schematic phase diagrams for hole doped La2−xSrxCuO4 and electron-doped

RE2−xCexCuO4 (RE = La, Pr, Nd) cuprates (after R.L. Greene and Kui Jin). In the electron-

doped case, the AF region extends to the superconducting region, while in the hole-doped case a

pseudogap region intervenes.
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La2CuO4 and Nd2CuO4 are charge-transfer insulators which undergo antiferromagnetic Néel

transitions as the temperature drops below 300K. Replacing a small amount of La with Sr

leads to a hole doping of the CuO2 layer, while replacing Nd with Ce leads to an electron

doped CuO2 layer. As the hole doping x increases, the Néel temperature is suppressed and

at low temperatures the system passes through a spin glass phase in which local charge and

spin ordered regions may be pinned. In the hole doped case, the doping for optimal super-

conductivity is well separated from the onset of antiferromagnetism. The antiferromagnetic

order extends much further out for the electron doped system and appears adjacent to the

superconducting phase.

The phase diagram for one of the Fe-based superconductors45 Ba(Fe1−xCox)As2 is shown

in Fig. 8. The parent compound BaFe2As2 is metallic and undergoes a structural tetragonal

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0

50

100

150
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FIG. 8. The phase diagram for Ba(Fe1−xCox)As2 (after Fernandes et al.45). There appears a

coexistence region similar to CeCo(In1−xCdx)5 shown in Fig. 6.

to orthorhombic transition and at the same temperature an antiferromagnetic SDW transi-

tion. In the SDW phase the moments are oriented antiferromagnetically along the longer a0

axis of the orthorhombic 2Fe/cell and ferromagnetically along the b0 axis giving a stripe-like

structure. As Co is added, the system is electron doped and the structural and SDW tran-

sitions are suppressed. The structural transition is found to occur at temperatures slightly
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above the SDW transition. For dopings x >∼ 0.07, the structural and SDW transitions are

completely suppressed and the system goes into a superconducting state below Tc. However,

for a range of smaller dopings 0.03 <∼ x <∼ 0.06 the system enters a region in which there

is microscopic coexistence of superconductivity, SDW and orthorhombic order. As will be

discussed, evidence for this is seen in the temperature dependence of the SDW Bragg peak

intensity and the orthorhombic distortion. It is also possible to hole dope this compound30

by substituting K for Ba, Ba1−xKxFe2As2. Here again, as x increases the structural and

SDW transition are suppressed and superconductivity onsets46.

C. Coexistence and interplay of antiferromagnetism and superconductivity

NMR as well as neutron scattering measurements have provided evidence that the ob-

served coexistence regions in some systems represent microscopic coexistence in which the

same electrons are involved with both the superconductivity and the antiferromagnetism.

For example, elastic neutron scattering measurements39 on CeCo(In0.9Cd0.1)5 find the in-

tegrated magnetic intensity at the antiferromagnetic wave vector QAF versus temperature

shown in Fig. 9a. This intensity is a measure of the square of the ordered magnetic moment

and onsets at the Néel temperature TN . As seen in Fig. 9a, M2(T ) initially increases as T

decreases below TN , but then as T drops below the superconducting transition temperature

Tc, it saturates. Similar data for Ba(Fe1−xCox)As2 at three different dopings are shown

in Fig. 9b. In this case, below Tc the ordered moment is reduced as the superconduct-

ing order increases. Both these examples reflect the competition of superconductivity and

antiferromagnetism45,47. This competition is also believed to be responsible for the anoma-

lous suppression of the orthorhombic distortion in Ba(Fe1−xCox)As2 as the temperature

decreases below Tc
48. Evidence for atomic scale coexistence of superconductivity and anti-

ferromagnetism for Ba(Fe1−xCox)2As2 with x = 0.06 was reported by LaPlace et al. 49 . Here

volume susceptibility measurements showed a superconducting fraction greater than 95%.

Then measurements of the homogeneous broadening of the 75As NMR spectrum showed

that frozen moments remained on all of the Fe atoms for T less than Tc while at the same

time, the spin-lattice relaxation rate T−1
1 of 75As showed that the Fe electrons also exhibited

superconductivity. Since the As nuclei are coupled to only the four near neighbor Fe sites,

this experiment provided evidence of homogeneous coexistence on a unit cell scale.
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a) b) 0.047

0.054

0.059

FIG. 9. The interplay of antiferromagnetism and superconductivity is seen in the temperature

dependence of the Bragg scattering. (a) The integrated Bragg scattering intensity for the 115

heavy fermion superconductor CeCo(In0.99Cd0.01)5 at QAF versus temperature (after Nicklas et

al.40). (b) The integrated Bragg scattering intensity for Ba(Fe1−xCox)As2 at QSDW versus the

temperature for various values of x (after Fernandes et al.45). In both cases, the strength of the

Bragg scattering from the magnetic order is clearly altered by the onset of the superconductivity.

In addition to the ordered antiferromagnetic (Néel) phase, there are a variety of incom-

mensurate spin density wave striped phases that compete and interact with the supercon-

ducting phase. Evidence of this is seen in neutron scattering experiments on La2−xSrxCuO4

which reveal a strong enhancement of spin-stripe order at low energies produced by mod-

est magnetic fields50,51. This behavior has been modeled by Landau-Ginzburg theories in

which the incommensurate antiferromagnetic order is coupled to the d-wave superconduct-

ing order52,53. This mutual coupling of SDW and d-wave scattering processes has also been

found in renormalization group calculations54–57.

A particularly striking example of the coexistence and interplay of antiferromagnetism

and d-wave superconductivity is seen in La2−xBaxCuO4 near a doping x ∼ 1/858,59. Here

a combination of tunneling and photoemission measurements along with transport stud-

ies provide evidence that two-dimensional d-wave superconducting correlations coexist with

π-phase shifted antiferromagnetic stripes at temperatures below 40K. The observation that
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macroscopic 2D superconductivity persists at temperatures well above the 3D transition tem-

perature suggests that the pairing correlations form a pair density wave with a wavevector

which is the same as that of the spin-density wave60,61. That is, the amplitude of the d-wave

superconducting order parameter is enhanced in the hole-rich regions of the striped system

and the phase of the adjacent superconducting stripes are opposite in sign (antiphase). In

this case, the structurally driven orthogonal orientation of the stripes in neighboring planes

leads to a frustration of the Josephson coupling between planes allowing for the possibility

of a Berezinskii-Kosterlitz-Thouless transition in the 3D crystal.

The interplay between the antiferromagnetic spin fluctuations and the superconducting

pairs is also seen in the change in the exchange energy ∆Eex between the superconducting

and normal states62. For a material with a near neighbor exchange coupling J , the change

in exchange energy ∆Eex(T ) is given by

∆Eex(T ) = 2J (〈Si+x · Si〉N − 〈Si+x · Si〉S) (1)

with

〈Si+x · Si〉S(N) =
1

g2µ2
β

∫ ∞

0

dω

π
(n(ω) + 1)〈cos(qxa)χ′′

S(N)(q, ω)〉BZ (2)

Here n(ω) is the usual Bose factor, the momentum q is summed over the Brillouin zone and

χ′′
S(N)(q, ω) is the imaginary part of the wavevector and frequency dependent spin susceptibil-

ity in the superconducting (S) and normal (N) phases respectively, measured at temperature

T . Additional next-near-neighbor exchange terms appropriate to a given material can be

added to Eq. (1). In initial studies of YBa2Cu3O6.95(Tc = 92.5K), a low temperature value

of ∆Eex was estimated from measurements of χ′′
s(q, ω) at T = 15K and χ′′

N(q, ω) taken at

100K. This estimate gave a change in the exchange energy which was approximately 15

times larger than the superconducting condensation energy63. Recent measurements of the

heavy fermion superconductor CeCu2Si2 found a change of the exchange energy which was

of order 20 times larger than its low temperature superconducting condensation energy64.

In this case, the lower Tc ∼ 0.6K of this heavy fermion systems allowed direct access at

this same temperature to the putative normal state using a 2.5T magnetic field. While the

superconducting condensation energy Uc arises from a cancellation between this change in

the exchange energy ∆Eex and other electronic energies, the important point is that ∆Eex

is large compared with Uc so that antiferromagnetic fluctuations clearly have the strength
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to drive the superconducting pairing. In addition, we note that ∆Eex/Uc is similar in size

for YBa2Cu3O6.95 and CeCu2Si2.

The similarities of the suppression of the Bragg scattering intensity M2 in the coexisting

antiferromagnetic and superconducting state, the magnetic field induced SDW in the super-

conducting state and the change of the exchange energy between the superconducting and

normal paramagnetic states not only serve to establish a relationship between these different

materials but in addition provide evidence that the antiferromagnetism and superconduc-

tivity in these materials are strongly coupled. Further evidence of this is also clearly seen in

NMR studies of the spin-lattice relaxation time T1 of FeSe
65 and inelastic neutron scattering

measurements of overdoped LSCO66. Measurements of (T1T )
−1 probe the Brillouin zone

average of Imχ(q, ω0)/ω0 weighted with the square of the hyperfine form factor. Here ω0 is

a low frequency set by the nuclear Zeeman energy. As the pressure is increased on FeSe,

(T1T )
−1 and Tc are both enhanced. Similarly, the strength of the low-energy incommensu-

rate antiferromagnetic spin fluctuations in overdoped LSCO is observed to decrease66 as the

doping increases and Tc is reduced.

While neutron scattering measurements provide evidence of the q-ω spin-fluctuation spec-

tral weight for the underdoped materials63, one is of course also interested in the opti-

mally as well as the overdoped materials. Recently67, resonant inelastic x-ray scattering

(RIXS) experiments have provided such information over a wide energy-momentum region

for YBa2Cu4O8, YBa2Cu3O6+x, and Nd1.2Ba1.8Cu3O6+x. These experiments clearly show,

for a range of dopings covering underdoped, optimal as well as over-doped materials, the

existence of damped, dispersive magnetic excitations, which have significant spectral weight

in an appropriate spectral range to produce pairing.

There is also resistivity data which provides evidence of the strong coupling of the spin-

fluctuations and the quasiparticles in the regions of the phase diagram where superconduc-

tivity appears. Taillefer has emphasized the similar behavior of the temperature dependent

part of the in-plane normal state resistivity of the cuprate Nd-LSCO, the organic Bechgaard

salt (TMTSF)2PF6 and the Fe-pnictide Ba(Fe1−xCox)As2 shown in Fig. 10. Here the linear

T dependence of the resistivity of Nd-LSCO is associated with a hole doping 0.24 at which

the stripe-ordered antiferromagnetic phase ends68. Likewise, a Co concentration ∼ 0.10 for

Co-Ba122 and a pressure >∼ 10 kbar for (TMTSF)2PF6 mark the ends of the SDW phases

for these materials. As the doping (or pressure for the Bechgaard salt) is increased, the
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FIG. 10. The temperature dependent part ∆ρ(T ) of the in-plane resistivity versus T on a log-log

scale for the cuprate Nd-LSCO, the organic Bechgaard salt (TMTSF)2PF6 and the Fe-pnictide

Ba(Fe1−xCox)2As2. As a relevant tuning parameter, doping or pressure, is changed, the temper-

ature dependence of ∆ρ(T ) for all three systems pass from a T 2 dependence to an approximately

linear T dependence and then to an upturn associated with a Fermi surface reconstruction (after

Taillefer5).

anomalous T dependence is replaced by a Fermi-liquid T 2 dependence and the supercon-

ducting Tc goes to zero. At low doping or under pressure, the upturn in ∆ρ shows evidence

of a Fermi-surface reconstruction due to the occurrence of an ordered phase. Based on

transport and NMR measurements on the (TMTSF)2X materials as a function of pressure,

Doiron-Leyraud et al.
6,69 argue that the linear T dependence of the resistivity is associated

with scattering from antiferromagnetic spin fluctuations at the border of antiferromagnetic

order and that this scattering is directly linked to Tc. Hartnoll et al. 70 have argued that a

quantum critical response arises from spin-fluctuation scattering and umklapp processes as

the spin density wave phase of a 2D metal is approached.

A similar connection between spin-fluctuation scattering of the carriers and the basal

plane resistivity of La2−xCexCuO4 films has been reported by Jin et al.
71 . These authors

carried out low temperature resistivity experiments as a function of doping and magnetic

field. They found a correlation between the strength of the low temperature linear-in-T

resistivity and the superconducting Tc as a function of doping. They noted that this electron

doped cuprate provided a particularly interesting case since there is no pseudogap phase in

the underdoped region of its phase diagram, leaving the spin fluctuations as the dominant

link to the temperature dependence of the resistivity.
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A magnetic field-tuned quantum critical response is also seen in the heavy fermion

CeCoIn5 system72 as well as other heavy fermion materials. Of particular interest, as Si

and Steglich 73 have discussed for CaCu2Si2 and CePddSi2, are the antiferromagnetic to

paramagnetic quantum critical transitions. Here, the critical degrees of freedom are the

SDW fluctuations. The role of the quantum critical point and the interplay between antifer-

romagnetism and the resulting temperature, carrier concentration and magnetic field phase

diagram have been discussed by Sachdev and Metlitski (2010). To summarize, the possible

coexistence of antiferromagnetism and d-wave superconductivity, the change in the exchange

energy upon entering the superconducting phase and the importance of spin-fluctuation scat-

tering are characteristic of the class of materials being discussed.

D. A neutron spin resonance

Another important experimental observation linking these materials is the appearance of

a neutron scattering spin resonance in the superconducting phase at the antiferromagnetic

or spin-density-wave vector Q. This resonance, first observed in the cuprates74–77 and then

discovered in the heavy fermion materials78, has also recently been observed in various Fe

superconductors79–82. The spin-flip inelastic scattering rate is proportional to the imaginary

part of the spin susceptibility. Experimental results for χ′′(Q, ω) obtained for CeCoIn5,

Bi2Sr2CaCu2O8+δ and BaFe1.85Co0.15As2 are shown in Figs. 11-13. While the energy of the

resonant peak in YBCO is relatively insensitive to T/Tc, the peak in Ba(Fe0.975Co0.125)2As2

was found to follow the temperature dependence of the superconducting gap obtained from

ARPES83,84.

Although the detailed behavior of the resonance requires a calculation of the spin suscep-

tibility, the occurrence of the resonance is directly related to the BCS coherence factor that

enters the neutron spin-flip scattering process. This coherence factor for flipping the spin of

a quasi-particle scattered from k to k +Q is

1

2

(

1− ∆(k)∆(k +Q)

E(k)E(k +Q)

)

(3)

with E(k) =
√

ε2k +∆2(k) the quasi-particle energy. The occurrence of a resonance, requires

that the gap changes sign between regions on the Fermi surface or surfaces separated by
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FIG. 11. The neutron scattering spin resonance in the normal (dashed) and superconducting (solid)

phases observed for the 115 Ce heavy fermion material CeCoIn5(Tc = 2.3 K) (after Stock et al.78).

FIG. 12. Difference spectrum of the neutron scattering intensities from Bi2Sr2CaCu2O8+δ(Tc = 91

K) at T = 10K and 100K at wavevector Q = (π/a, π/a) showing the spin resonance at ∼ 43meV.

The horizontal bar represents the instrumental energy resolution and the solid curve is a guide to

the eye (after Fong et al.77).
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FIG. 13. (left) The neutron scattering spin resonance for BaFe1.85Co0.15As2(Tc = 26 K); (right)

The energy of the resonance versus temperature follows a BCS-like curve (after Inosov et al.81).

momentum Q which contribute significantly to the spin scattering85,86

Sgn (∆(k +Q)) = −Sgn(∆(k)) (4)

In this case the coherence factor Eq. (3) goes to 1 near threshold while if there were a plus

sign in Eq. (4), it would vanish.

Equation (4) defines the class of unconventional superconductors which are the subject

of this review. Materials in this class have a gap that changes sign on different parts of the

Fermi surface or surfaces separated by a momentum Q which connects regions which play

an important role in the scattering of the electrons. Thus “unconventional” as used in this

review is not related to the symmetry of the gap, nor is it determined by whether the gap

has nodes or is nodeless. For example, the gap may have A1g (s-wave) symmetry but change

sign between two different pieces of the Fermi surface, as the so-called s±-gap proposed

for the Fe-pnictides87. As discussed in Sec. IV, such an A1g gap can also have nodes88.

Alternatively, one could have a B1g (d-wave) nodeless gap on multiple Fermi surfaces.

III. MODELS

In this section we introduce the basic models that will be discussed. While these are

certainly minimal models, we will argue that they exhibit a number of the important physical
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properties which are observed in the actual materials. On this basis, it is reasonable to

examine the structure of the pairing interaction in these models as will be done in Sec. IV.

As illustrated in Fig. 5, these materials have crystal structures consisting of layers con-

taining square planar arrays of d- or f -electron cations embedded in an anion lattice. Here

we will take a minimal approach which focuses on the d or f electrons and treats the anion

lattice as providing a crystalline electric field and a hybridization network. This misses the

charge-transfer character89 of the CuO2 planes, the dynamic polarization effects of anions

such as As, and the spd conduction bands of the heavy fermion and actinide anions. How-

ever, as we will discuss, we believe that this approach captures the essential physics that

leads to pairing in these materials.

In outline, this approach begins with the selection of local d or f atomic states for the

(Cu, Fe, Ce, Pu) ions which takes account of the appropriate crystal-field and spin-orbit

couplings. Then these states are hybridized through the (O, As, In, Ga) anion states, or

directly, leading to a tight binding band or bands. The tight binding hopping parameters

are typically adjusted so that the low energy states fit the results of bandstructure calcula-

tions. For the heavy fermion and actinide systems, one includes a further phenomenological

renormalization. Here one has the Kondo physics to deal with and the approximation is

based on the assumption that just as in the single-ion case, the system renormalizes to a

heavy Fermi liquid. Then an onsite Coulomb interaction and, if there are multiple orbitals,

additional inter-orbital Coulomb and exchange interactions are added. Even at this level,

there are various parameterizations which involve the choice of basis states for the band-

structure calculation, and the Wannier projection of the bands in the vicinity of the Fermi

energy onto the local orbital basis90–92.

Then of course, when a model is selected, one needs to determine its properties. There

have been a number of different theoretical approaches used to determine the properties of

Hubbard models. Analytic or semi-analytic methods have included random phase approxi-

mations (RPA)93–96, renormalized meanfield theory (RMFT)97–99, conserving fluctuation ex-

change (FLEX)100–102, self-consistent renormalization (SCR)103, two-particle-self-consistent

(TPSC)104, and slave-boson approximations105–107. Numerical approaches include deter-

minantal quantum Monte Carlo (DQMC)108–110, variational Monte Carlo (VMC)111–113, a

variety of cluster Monte Carlo (CDMFT114, DCA115, VCPT116) methods, density matrix

renormalization group (DMRG)117 calculations as well as functional renormalization group
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(FRG)54–57 studies. Our goal in this section is to introduce the Hubbard models that have

been used to describe the unconventional superconductors and illustrate some of the results

for their physical properties which have been found from numerical calculations.

A. The cuprates

To illustrate the type of models that we have in mind, and discuss some of their prop-

erties, we begin with the cuprates. At the Cu site, the crystal field splitting pushes the Cu

dx2−y2 orbit up in energy so that it contains the last (3d)9 electron of Cu2+. The undoped

system with one hole per Cu, is a charge-transfer antiferromagnetic insulator with a gap

set by the energy to move the hole from a Cu to a neighboring O. The large onsite Cu

Coulomb interaction leads to well formed S = 1/2 moments on the Cu which are coupled

by a Cu-O-Cu superexchange interaction36. A weak interlayer exchange coupling leads to a

Néel transition with a checkerboard antiferromagnetic spin arrangement in the CuO2 plane.

When a material such as La2−xSrxCuO4 is hole doped by adding Sr, the antiferromagnetism

is rapidly suppressed and below a temperature T ∗ one enters a pseudogap phase. This

phase is believed to reflect the approach to the Mott state and provides a medium in which

a variety of instabilities can appear as the temperature is lowered. These continue to be

studied and among other correlations are believed to contain fluctuating charge and π-phase

shifted antiferromagnetic stripes42 which at low temperatures may order leading to a recon-

struction of the Fermi surface118–120 or if disordered form a spin glass121. While evidence of

superlattice order does appear in some underdoped cuprates (La1.875Ba0.125CuO4
58), there

are others, including ordered stoichiometric crystals (YBa2Cu4O8
122) in which a pseudogap

appears in the apparent absence of a translational broken symmetry. This has led to var-

ious interesting theoretical proposals of Fermi surface reconstruction without translational

symmetry breaking123,124. In the overdoped regime the system is metallic with a large Fermi

surface and spin-fluctuations.

Early on, Anderson suggested that a minimal model which contained the essential cuprate

physics was the single band Hubbard model. In this case, one focuses on the Cu dx2−y2 orbital

and hybridizes it through the O anion network leading to a single dx2−y2 band. Then adding
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an onsite Coulomb interaction U , one has the well known 2D single band Hubbard model125.

H = −
∑

ijs

tij(d
+
isdjs + d+jsdis) + U

∑

i

ni↑ni↓ (5)

Here tij are tight binding one-electron hopping parameters between sites i and j which are

adjusted to fit the bandstructure and U is an onsite Coulomb interaction. In Eq. (5), d+is

creates an electron with spin s in a dx2−y2 orbital on the ith site, djs destroys one on the jth

site and ni↑ = d+i↑di↑ is the occupation number for a spin up electron on the ith site.

Although the single-band Hubbard model, Eq. (5), is certainly a minimal model, it ex-

hibits a number of the basic phenomena which are seen in the cuprate materials. At half-

filling, in the strong coupling limit it maps to the 2D spin 1/2 Heisenberg model on a square

lattice. Numerical studies of the Heisenberg model126 find evidence of long range antiferro-

magnetic order at T = 0. In addition, analytic calculations127,128 have provided the basis

for understanding a range of experimental results for the undoped cuprates. Alternatively

in weak coupling, it has been shown129 that the doped Hubbard model has a transition to

a dx2−y2 superconducting phase. While this result was obtained in the limit U/t → 0, it

establishes the fact that this simple model can exhibit a dx2−y2 superconducting phase.

As noted, there have been a variety of numerical approaches used to study the Hubbard

model. At half-filling, the particle-hole symmetry eliminates the so-called “fermion sign”

problem for a Hubbard model with a near-neighbor one-electron hopping. In this case,

determinant quantum Monte Carlo (DQMC)108 calculations can be carried out on large

lattices down to low temperatures. These calculations find that the half-filled 2D Hubbard

model with a near neighbor hopping t and an onsite Coulomb interaction U of order the

bandwidth 8t is a Mott insulator and has a groundstate with long range antiferromagnetic

order109. In addition, in this intermediate coupling regime where U is of order the bandwidth,

one sees both the local and itinerant character of the magnetism. Figure 14 shows Monte

Carlo results for the square of the z-component of the local moment mz(ℓ) = nℓ↑−nℓ↓ versus

temperature for a range of U/t values110. As expected, when the temperature decreases

below a scale set by U , 〈m2
z〉 increases. However, at a lower temperature scale 〈m2

z〉 is found
to increase further for weak coupling, while it decreases for strong coupling. In the weak

coupling itinerant case, this increase is associated with the formation of short range particle-

hole magnetic correlations. In this case, the energy gain at low temperatures is proportional

to 〈m2
z〉 so that 〈m2

z〉 increases further as T decreases. Alternately, in the strong coupling
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FIG. 14. The temperature dependence of the square of the local moment for different values of

the on-site Coulomb repulsion U (in units where t = 1). As the temperature decreases below

∼ U/2, local onsite correlations lead to an increase in 〈m2
z〉. Then on a lower temperature scale,

non-local spin correlations develop and for weak coupling 〈m2
z〉 increases, while for strong coupling

it decreases. This crossover marks a change from an itinerant to a more local magnetic behavior

(after Paiva et al.110).

case, below an energy scale U one has well-defined local moments. In this case, as the

temperature decreases further and drops below the exchange energy J ∼ 4t2/U , virtual

electron transfer associated with J reduces the degree of localization and 〈m2
z〉 decreases.

As seen in Fig. 14 the crossover between this local moment and itinerant behavior occurs

for a value of U of order the bandwidth. As we will see, it is in this intermediate coupling

parameter regime, where the system has both local and itinerant characteristics, that the

doped system has its highest Tc.

For the doped Hubbard model the fermion sign problem limits the temperatures that are

accessible using the DQMC approach and alternative numerical approximations have been

developed. Using a Gutzwiller projected d-wave BCS wavefunction97, variational Monte

Carlo (VMC) calculations have been used to explore the T = 0 phase diagram of the doped

x = 1−〈n〉 Hubbard model112. The groundstate is found to be a d-wave superconductor for
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0 < x < xc with xc ≈ 0.35. For x > xc, the groundstate is a Landau-Fermi liquid. At low

doping (x <∼ 0.1) Gutzwiller projected wavefunctions with both d-wave and antiferromag-

netic variational parameters have been found to have a lower energy than the d-wave alone,

providing evidence for a coexisting antiferromagnetic and d-wave superconducting phase113.

These VMC calculations find results for the doping dependence of the coherence length, the

penetration depth as well as the momentum distribution in agreement with experimental

observations.

An alternative approach to dealing with the doped case is represented by various cluster

methods. Here, the basic idea is to treat the degrees of freedom within a cluster exactly

and take into account the correlations beyond the cluster by introducing a self-consistent

dynamic mean-field. The resulting problem of a cluster embedded in a dynamic meanfield

is then solved by means of exact disgonalization for small clusters or by various Monte

Carlo approaches such as the Hirsch-Fye algorithm130 for larger clusters. The coupling

of the cluster to the self-consistent dynamic meanfield significantly reduces the fermion

sign problem. In the so-called cellular dynamic mean-field theory (CDMFT)114 and the

variational cluster-perturbation theory (VCPT)116 methods, the system is mapped onto

an embedded cluster in real space while in the dynamic cluster approximation (DCA)115

the cluster is embedded in reciprocal space. This latter scheme keeps the periodic boundary

conditions and coarse grains the Brillouin zone, making it a convenient approach for studying

the momentum dependence of the pairing interaction.

There are also functional renormalization group (FRG) approaches131, so named because

they follow the flow of the four-point vertex function Γ(k1, k2, k3, k4) for scattering between

states on the Fermi surface as the states outside an energy ∆E of the Fermi energy are

integrated out. Here, the degrees of freedom are reduced to states in a ∆E-shell around the

Fermi surface. This shell is then discretized into a finite number of Fermi surface patches

which allows one to take into account the tangential momentum dependence of the effective

interaction. In practice, the renormalization group equations are typically carried out at the

one-loop level. The resulting coupled renormalization group equations are then numerically

integrated to determine the functional renormalization group flow of the scattering vertex

as the energy cut-off ∆E or temperature is reduced. Although the one-loop approximation

means that it is necessary to start the system off with appropriate bare interactions and

stop the calculations when the renormalized interaction grows too large, this approach can
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provide an unbiased treatment of competing instabilities and can indicate which instability

or combination of instabilities are important. There have also been proposals in which the

FRG is used down to a given cut-off where the most divergent parts of Γ(k1, k2, k3, k4) are

then taken to construct a low energy reduced Hamiltonian132, which can then be solved

using exact diagonalization.

The density matrix renormalization group (DMRG)117 has also been used to study these

models. This approach has primarily been implemented as a real space renormalization

procedure in which degrees of freedom are iteratively added, for example by increasing the

size of the lattice system. Then the less important degrees of freedom are truncated from

the Hilbert space by keeping only a finite number of the most probable eigenstates of a

reduced density matrix. This iterative, variational method is designed to thin the degrees of

freedom to those which play the dominant role in the ground state. It has proved particularly

effective for one-dimensional ladder models.

Using these approaches, further evidence has been found that the Hubbard models ex-

hibit many of the basic physical properties which characterize the unconventional supercon-

ductors. Specifically, for the doped systems there is evidence for antiferromagnetic spin-

fluctuations, pseudogap behavior, nematic correlations, d-wave or more generally unconven-

tional pairing, as well as stripes. Real space CDMFT133 and VCPT134 cluster calculations

find clear signatures of antiferromagnetic, pseudogap and d-wave behavior in the Hubbard

model. Including longer range one-electron hopping, these calculations find ground state

phase diagrams and single particle spectral weights for electron- and hole-doping that are

similar to the overall behavior observed in these materials. A small orthorhombic distor-

tion of the one-electron hopping is found to lead to a large nematic response135. Similarly,

momentum space DCA calculations find evidence for pseudogap behavior in the spin sus-

ceptibility and the single particle spectral weight136 as well as nematic correlations137. Using

the DCA and a sequence of different clusters138, Maier et al.
139 found evidence shown in

Fig. 15a for the divergence of the d-wave pairfield susceptibility

Pd(T ) =

∫ 1/T

0

〈∆d(τ)∆
+
d (0)〉dτ (6)

for a doped Hubbard model. Here ∆+
d = 1

2
√
N

∑

ℓ,δ(−1)ℓd+ℓ↑d
+
ℓ+δ↓ with δ summed over the

four near neighbor sites of ℓ.

FRG studies of the single band Hubbard model with a next near neighbor hopping t′ find
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dopings for which the interaction vertex flows to antiferromagnetic or d-wave dominated

regimes as well as a region of intermediate doping in which the forward scattering Pomer-

anchuck Fermi surface instabilities and CDW as well as nematic fluctuations grew54–56. In

this latter region, umklapp processes are found to play an important role linking the insta-

bilities in various channels. In the underdoped regime, Lauchli et al. 132 have used the FRG

to construct a low-energy effective Hamiltonian and argue that umklapp processes truncate

Fermi surface segments leading to a psedogap phase. FRG calculations have also been car-

ried out for the multi-orbital Hubbard models56,57. Here the geometry of the electron- and

hole-Fermi surfaces (see Fig. 16 of the next section) lead to SDW (π, 0) and s± pairfield

dominated flow regimes along with other umklapp mediated scattering processes140,141.

Calculations using the density matrix renormalization group (DMRG) to study the 2-leg

Hubbard ladder find a spin gapped state at half-filling and power law d-wave-like pairfield

correlations for the doped system142. As discussed in Sec. IVB, a twisted version of this

same 2-leg ladder mimics the SDW stripe structure and s± pairing correlations seen in

the Fe-based superconductors143. Calculations for a doped 6-leg Hubbard ladder144,145 find

striped charge-density-π-phase-shifted-antiferromagnetic states like that shown in Fig. 15b.

While short range dx2−y2 pairfield correlations along the stripes were also observed there

were no long range d-wave pairing correlations. In this case, periodic boundary conditions

were used for the 6-site direction and open end boundary conditions along the direction

of the legs forming a cylindrical tube. On an 8-leg t-J system146 the favored filling was

0.875 and the π-phase shifted antiferromagnetic striped structure was similar to that shown

Fig. 15b with each cylindrical stripe containing four holes corresponding to a half-filled stripe.

This is the same pattern which is observed in La1.875Ba0.125CuO4
147. In these calculations,

the tube-like boundary conditions favor the formation of cylindrical stripes. The short

length of the circumference of the tube suppresses pair fluctuations between the stripes and

leaves only short range d-wave pairing correlations along a stripe. With open boundary

conditions and applied fields to orient the stripes along the long direction of the 6- and 8-leg

ladders that have been studied, pair fluctuations between the stripes become possible and a

stronger d-wave pairing response is observed. While present DMRG calculations find that

the antiphase d-wave state is slightly higher in energy than that of the in-phase state, VMC

calculations found parameter ranges in which the antiphase state was stabilized61. There are

also calculations for a coupled ladder model that exhibit stripes with antiphase pairing60.
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FIG. 15. dx2−y2 pairing and stripes have been found in various numerical calculations for the doped

Hubbard model. (a) DCA results for the inverse of the dx2−y2-wave pairfield susceptibility versus

T/t for various sized Betts138 clusters. Here, U/t = 4 and 〈n〉 = 0.9 (after Maier et al.139). (b)

The charge 〈nhole(ℓ)〉 and spin 〈Sz(ℓ)〉 structure seen in a DMRG calculations of a cylindrical 6-leg

Hubbard model with U/t = 12 (after White et al.144 and Hager et al.145).

Finally, along with the observations of d-wave and stripe correlations, there is numerical

evidence of pseudogap behavior in the underdoped Hubbard model. A variety of dynamic

cluster Monte Carlo calculations of the single particle spectral weight136,148,149 show the

emergence of pseudogap behavior in the underdoped t-t′-U Hubbard model. A phenomeno-

logical theory of the pseudogap phase by Yang et al.
123 has had success in reproducing many

of the observed properties of the pseudogap regime.

The important point for the present discussion is that while the choice of the variational

wavefunction in the VMC and finite size effects for the cluster calculations can influence

what one finds, there is overall agreement among these various approaches that Hubbard

models exhibit many of the basic physical properties which characterize the unconventional
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superconductors150,151. There are of course phenomena such as the unusual ordered magnetic

phase in the underdoped cuprates observed in polarized neutron scattering experiments152

and dichroic angular resolved photoemission measurements153 which have not yet been found

in these basic Hubbard models. Here we take the view that these phenomena are peripheral

to the pairing mechanism.

B. The Fe-pnictides

The undoped Fe-pnictide materials have partially filled 3d shells and are antiferromag-

netic metals below TN . Their magnetic moments alternate in alignment row to row creating a

stripe-like antiferromagnetic pattern different from the checkerboard pattern of the cuprates.

Just above, or in some cases coinciding with, TN there is a tetragonal to orthorhombic lat-

tice transition. As the system is doped, both the structural and the Néel transitions are

suppressed and superconductivity occurs154.

For the Fe-pnictide superconductors, photoemission155 as well as band structure calculations156–158

find that the states associated with the pnictide 4p orbitals are located some 2eV or more

below the Fermi level. Thus an effective tight binding model based on the five Fe 3d orbitals

can provide a reasonable description of the electronic states near the Fermi surface. Since

the crystal field splitting, as well as the exchange and spin-orbit splittings of the iron 3d

orbitals are small relative to the bandwidth, all five 3d orbitals need to be taken into ac-

count. For the 1111 materials the 3D coupling between the Fe layers is relatively weak and

2D models have proved useful. Due to the tetrahedral coordination of the pnictide, the unit

cell contains two Fe sites. However, the Fe-pnictide plane is invariant under a reflection and

a translation since each Fe has the same local arrangement of the surrounding atoms. Thus

for the 2D Fe-pnictide layer one can unfold the Brillouin zone and work with an effective

five-orbital model on a square lattice with one Fe per unit cell159. Including one-electron

hopping parameters to describe both the direct Fe-Fe hopping as well as the hybridized

hopping through the pnictide or chalcogen 4p orbits, one arrives at a 5-band model with

the one electron part of the Hamiltonian given by96,160

H0 =
∑

ij

∑

ℓnσ

tℓnij c
+
iℓσcjnσ +

∑

i

∑

ℓσ

εℓniℓσ (7)

Here ℓ = (1, 2, . . . 5) denotes the Fe-d orbitals (dxz, dyz, dxy, dx2−y2 , d3z2−r2) and c+iℓσ creates
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an electron on site i in the ℓth orbit with spin σ. The tight binding parameters tℓnij describe

the one-electron hopping from the ℓth orbit on site i to the nth orbit on site j and εℓ is

the site energy of the ℓth orbit. The onsite Coulomb and exchange interaction part of the

Hamiltonian is

H1 =
∑

i

(

∑

ℓ

Uniℓ↑niℓ↓ + U ′
∑

ℓ′<ℓ

niℓniℓ′

−J
∑

ℓ 6=ℓ′

Siℓ · Siℓ′ + J ′
∑

ℓ 6=ℓ′

c+iℓ↑c
+
iℓ↓ciℓ′↓ciℓ′↑

)

(8)

with niℓ = niℓ↑+niℓ↓ and Siℓ =
1
2
c+iℓσσσσ′ciℓσ′ . Here U and U ′ are the intra- and inter-orbital

Coulomb interactions, J is the Hund’s rule exchange and J ′ the so-called pair hopping term.

If these interactions are generated from a two-body term with spin rotational invariance

U ′ = U − 2J and J ′ = J . However, many body interactions can renormalize these couplings

altering these relations. In addition the dressed interaction terms can in general depend on

the orbital indices.

The Fe+2 ion separation ∼ 2.7◦A is significantly smaller than the Cu+2 separation of

∼ 3.8◦A and the direct Fe-Fe hopping along with the d-p hybridization through the pnictogen

or chalcogen anions leads to a metallic groundstate. Observation of quantum oscillations

provide clear evidence of well defined small Fermi surfaces consistent with a semi-metallic

bandstructure33. The basic structure of the Fermi surfaces of the Fe-based superconductors

consists of two electron cylinders at the zone corner of the 2Fe per unit cell Brillouin zone

compensated by two or three hole sections around the zone center. The Fermi surface

sheets for a two-dimensional five-orbital tight-binding fit96 of the DFT bandstructure158 of

LaOFeAs are shown in Fig. 16a. Here and in the following an unfolded 1Fe per unit cell

Brillouin zone will be used. Diagonalizing the 5-orbital tight-binding Hamiltonian of Eq. (8),

one has for the Bloch states of the νth band,

Ψνσ(k) =
∑

ℓ

〈νk|ℓ〉cℓσ(k) (9)

where, again, ℓ sums over the Fe orbitals (dxz, dyz, · · · ) and cℓσ(k) =
∑

i
ciℓσe

i(k·i)/
√
N . The

main orbital weight contributions |〈νk|ℓ〉|2 to the band states that lie on the various Fermi

surfaces are indicated by the colors in Fig. 16a. A more detailed look at the orbital weights

is shown in Fig. 16b, where they are plotted as a function of the winding angle on the

different Fermi surfaces. Here one sees, for example, that the dyz and dxy orbitals contribute
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FIG. 16. This figure illustrates the Fermi surfaces and orbital weight distributions for a 5-orbital

model of the 1111 Fe-based superconductors. (a) The Fermi surface sheets of a 5-orbital tight

binding model of the 1111 Fe-based superconductors. The symbols (color online) denote the orbital

which has the largest orbital weight, with the dxz (red solid circles •), dyz (green open circles ◦),

and dxy (blue open diamonds ♦). (b) The orbital weights as a function of winding angle φ on the

various Fermi surface sheets with dxz (solid red), dyz (dashed green), dxy (dash-dot blue) and dx2−y2

(short dashed yellow). The d3z2−r2 orbital weight is negligible. Here, the dxz and dyz orbitals are

aligned along the Fe-Fe directions (after Graser et al.96).

the dominant weights on the β1 electron pocket while it is the dxz and dyz that mainly

contribute to the α pockets. These orbital weights play an important role in determining

the strength and structure of the pairing interaction.

While the 1111 materials can be reasonably treated as two-dimensional, the structure of

the 122 systems is such that one needs to take their three dimensionality into account. The

loss of the reflection-translation invariance of the 2D layer leads to more complex 10-orbital

models161.
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C. The heavy fermion materials

The heavy fermion materials have incomplete f -shells and there is a balance between

the strong onsite Coulomb interactions which tend to localize the f -electrons and the hy-

bridization with extended bandstates of the ligand anions which delocalize them. At high

temperatures the system exhibits local moment behavior with magnetic moments of order

atomic values while at low temperatures the system resembles a Fermi liquid with large

quasi-particle masses associated with the hybridized f -electrons. In the coexisting state

where one has both SDW antiferromagnetism and superconductivity, the magnitude of the

ordered moments determined from neutron scattering and the effective mass of the paired

electrons, determined from the specific heat jump at Tc, are large. Thus the f electrons play

an important role in both the antiferromagnetism and the superconductivity162,163.

Hotta and Ueda introduced a minimal model for such an f -electron system based on a

j − j coupling scheme since the spin-orbit interaction is large. In addition they noted that

this provided a convenient way to define the one-electron states that make up the pairs. The

resulting Hamiltonian for the 115 Ce heavy fermion superconductors has a form similar to

Eqs. (7) and (8) but with the one electron operators describing Kramer’s doublets and with

σ a pseudospin quantum number. The 14-fold degenerate f electronic states are split by the

spin-orbit coupling into a low lying j = 5/2 sextet and a higher energy j = 7/2 octet. For

Ce3+ with a (4f)1 configuration, only the j = 5/2 sextet contributes to the electronic states

near the Fermi energy. The one electron states of the j = 5/2 sextet are further split by the

crystalline electric field of the In ligand anions, separating the six j = 5/2 states into three

sets of Kramer’s doublets. For a tetragonal crystal field one has

c+inσ = pf+
i±5/2 + qf+

i∓3/2 n = 1

−qf+
i±5/2 + pf+

i∓3/4 n = 2

f+
i±1/2 n = 3

(10)

Here f+
im creates an electron on the ith lattice site in a j = 5/2 orbital with a z-component

of total angular momentum m. The “orbital” index n = 1, 2 and 3 denotes the {Γ7,Γ
′
7,Γ6}

tetragonal field Kramer’s doublets, the q and p coefficients in Eq. (10) depend on the tetrag-

onal crystalline field and σ = ±1 is the pseudospin quantum number.

As schematically illustrated in Fig. 5, the spacing ∼ 4.6◦A of the Ce3− ions is the largest

of the three systems and the 4f electrons of Ce3− tend to be localized. Thus as opposed to
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the itinerant 3d-electrons of the Fe-based materials and the doped cuprates, the f -electrons

of the heavy fermion 115 materials are nearly localized. The materials are metallic because

of the 4p states of the anions and the dispersion of the 4f electrons arises from their hy-

bridization with these 4p conduction electrons. As in both the Fe-pnictide and the doped

cuprates, quasi-two-dimensional Fermi surfaces have been observed in de Haas-van Alphen

experiments164 for the Ce compounds. Similarly to the Fe-based superconductors, the heavy

fermion materials have multiple Fermi surfaces and there are orbital weight factors associated

with the Γ7, Γ
′
7 and Γ6 orbital states.

As previously discussed, the plutonium intermetallic compounds PuMGa5 have the same

tetragonal structure as the cerium-based heavy fermion 115 superconductors. Electronic

structure calculations165 for PuCoGa5 show a similarity between the main Fermi surfaces

of CeCoIn5 and PuCoGa5. In particular, there are f -electron dominated cylindrical Fermi

surface hole sheets centered at the Γ point, and cylindrical electron sheets centered at the M

point of the 1Fe per unit cell Brillouin zone. Using the j-j coupling scheme to construct a

low energy model for this actinide superconductor, Maehira et al.
165 noted that the Pu-115

compound is the hole version of Ce-115. That is, the low lying j = 5/2 sextet accommodates

the one (4f) electron of Ce3+ for CeCoIn5, while it has one hole for the (5f)5 Pu3+ ion in

PuCoGa5.This picture of the Pu-115 compound being a hole version of the Ce-115 compound

is particularly striking for PuCoIn5 and CeCoIn5.

Finally, while the existence and, to a reasonable degree, the structure of Fermi surfaces of

the heavy fermion166 and the Fe-based167,168 superconductors are well established, the situa-

tion for the cuprates is still debated169. In the overdoped single layer cuprate Tl2Ba2CuO6+δ

(Tl2201) both angle-dependent magnetoresistance170 and ARPES measurements171 provide

evidence for a large quasi-two-dimensional Fermi surface in reasonable agreement with band-

structure calculations. More recently172, the observation of quantum oscillations in the

magnetoresistance and the magnetization of Tl2201 provided direct evidence of this large

hole-like Fermi surface and coherent fermionic excitations. Here, the observation of quantum

oscillations are important in determining that coherent excitations are present. Following

the development of highly ordered YBa2Cu3O6.5 (ortho-II) crystals
173, quantum oscillations

were also observed in the underdoped regime, both in the Hall resistance174 and in the

magnetization175,176. This showed that the doped cuprates, just as the heavy fermion and

Fe superconducting materials, can have a Fermi surface with low-lying fermionic excitations,



34

even in the underdoped regime. The fact that the Hall and Seebeck coefficients are neg-

ative indicates that the observed small Fermi-surface pockets are electron-like177,178. The

large Fermi surface of the overdoped cuprates must therefore undergo a reconstruction as

the doping level decreases179. One mechanism for such a reconstruction is the occurrence of

some new periodicity associated with an ordered phase such as a spin striped phase180,181

or a unidirectional charge density wave119. NMR measurements show that high magnetic

fields induce charge order without spin order182 which would be consistent with a unidirec-

tional charge density wave. Some studies182–184 attribute the Fermi-surface reconstruction in

YBa2Cu3Oy to a form of stripe order similar to that observed in La2CuO4-based cuprates185

and there is evidence for a phase transition at T ∗ associated with some form of density

wave178 or nematic186 order leading to a pseudogap phase187. A recent compilation188 of

ARPES measurements, high magnetic field quantum oscillation studies and transport ex-

periments suggests that a small Q wave-vector bidirectional charge density wave provides

an explanation for the nodal Fermi surfaces which is consistent with a wide variety of com-

plementary measurements.

IV. THE PAIRING INTERACTION

In this section, we examine the structure of the pairing interaction for the models dis-

cussed in Sec. III. The pairing interaction is given by the irreducible particle-particle four-

point vertex. As discussed in the appendix, for the conventional superconductors this in-

teraction is well described by a phonon exchange and screened Coulomb interaction. In

general, for spin rotationally invariant models, the irreducible particle-particle vertex can

be separated into a fully irreducible vertex and S = 1 spin and S = 0 charge (particle-hole)

exchange channels. For the 2D Hubbard model near half-filling, DCA calculations find that

the S = 1 spin channel gives the dominant contribution to the pairing. Similarly, for the

two-layer Hubbard model introduced in this section, it is the S = 1 spin fluctuation channel

that leads to pairing. However, as discussed, it can lead to B1g (d-wave) or A1g (s-wave)

pairing depending upon the structure of the Fermi surface. This bilayer Hubbard model, as

well as a “twisted ladder” model discussed in this section, illustrate the link between the

cuprate and Fe-based superconductors. For the multi-band Fe-based superconductors one

has only weak coupling results, but here the resulting phenomenology provides evidence that
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the pairing is driven by the spin fluctuations and similarly for the heavy fermion models

where it is the pseudo-spin fluctuations. The conclusion is that the pairing in the models of

Sec. III is mediated by spin-fluctuations.

As discussed in Appendix A, the momentum and frequency dependence of the supercon-

ducting gap provide information on the space-time structure of the pairing interaction189. For

conventional superconductors such as Pb or Hg, the gap is weakly dependent upon momen-

tum but strongly frequency dependent, implying that the pairing interaction is short range

and has a retarded part. As is well known, electron tunneling190 and optical absorption191

measurements of the frequency dependence of the gap for the low Tc materials identify the

pairing interaction as arising from a retarded phonon-mediated contribution and an “in-

stantaneous” repulsive screened Coulomb term. For the unconventional superconductors, a

determination of both the momentum and frequency dependence of the gap are important.

Here a wide variety of experiments have been used to probe the momentum dependence

of the gap. These include ARPES192–196, phase sensitive tunneling experiments197–199, Ra-

man scattering200,201, low temperature thermal conductivity202 and directional magnetic

field specific heat measurements38. There have also been various tunneling203–206 and op-

tical studies of the frequency dependence of the gap207–209. Thus, at present, there are a

range of experimental results and interpretations. From many of these it appears that for

the unconventional superconductors one is dealing with a pairing interaction that peaks at

a large momentum transfer characteristic of the near-neighbor antiferromagnetic or SDW

correlations and which has a frequency response characteristic of the spectrum of the anti-

ferromagnetic spin fluctuations. However, there are questions and controversies regarding

this210–213 and it remains a challenge to obtain the close interplay between experiment and

theory that was the hallmark for the traditional superconductors. Furthermore, a complete

range of measurements for the heavy fermion and Fe-based materials, comparable to the

results for the cuprates, are not yet available.

With this in mind, this review has the more limited goal of understanding the momentum,

frequency and orbital structure of the interaction that is responsible for pairing in the models

discussed in Sec. III. To the extent that these models exhibit the basic low energy properties

which are found in these materials, one can argue that the interaction responsible for pairing

in the models will reflect the pairing interaction in the real materials.

In this section, we will show dynamic cluster approximation (DCA) results for the pairing
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interaction. The basic assumption of the DCA is that the self-energy and irreducible vertex

functions are short-ranged and can be well represented by a finite size cluster. Under this

assumption, one sets up an effective cluster problem as an approximation for the bulk

thermodynamic limit in order to calculate these quantities. This is done by representing

the bulk lattice by an effective cluster embedded in a mean-field bath, which is designed to

represent the remaining degrees of freedom and is determined self-consistently. In contrast

to other finite size methods, in which one carries out calculations on finite size lattices and

then tries to scale up in size, the DCA, for a given cluster size, gives approximate results for

the bulk thermodynamic limit.

The DCA treats spatial correlations on length scales within the cluster accurately and

non-perturbatively and describes longer-ranged correlations on a mean-field level. It becomes

exact in both the weak-coupling (U/t = 0) and strong-coupling (t/U = 0) limits. For finite

U/t, one can in principle obtain exact results by carrying out calculations for different size

clusters and then extrapolating to infinite cluster size. Convergence with cluster size depends

on the specific problem, but is usually faster than with finite size methods, because of the

inclusion of the remaining degrees of freedom in terms of a mean-field. This was discussed for

the 3D half-filled Hubbard model in Kent et al. 214 and Fuchs et al. 215 , where the accuracy

of the DCA was benchmarked against finite size methods for several different quantities. In

particular, it was shown that well converged results for the antiferromagnetic TN versus U

phase diagram can be obtained from relatively small clusters. As noted, in this approach

the cluster is embedded in reciprocal space and one obtains momentum space results on a

coarse grained Brillouin zone. It is convenient to work in momentum space and since the

pairing interaction is expected to be short-ranged it is actually more amenable to cluster

calculations than the long-range pairfield correlations. Like the FRG calculations, the DCA

provides an unbiased treatment of the competing instabilities. In addition, it takes account

of self-energy and interaction effects within the cluster while treating the remaining degrees

of freedom within a dynamic meanfield.

A. The single band Hubbard model

For the single band Hubbard model DCA numerical simulations have been used to deter-

mine the momentum and frequency dependence of the pairing interaction216. Formally, this
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interaction is given by the irreducible particle-particle scattering vertex Γpp(k, k′) shown on

the left-hand side of Fig. 17. It consists of all Feynman diagrams that can not be separated

FIG. 17. The pairing interaction is given by the irreducible particle-particle vertex Γpp. Here Γpp

is decomposed into a fully irreducible two-fermion vertex Λirr plus contributions from the S = 1

and S = 0 particle-hole channels. Γph are irreducible particle-hole vertices, Γ is the full vertex and

the solid lines are fully dressed single particle propagators.

into two parts by cutting just two particle lines. Here, k = (k, iωn) with ωn = (2n + 1)πT

a fermion Matsubara frequency and one is interested in the scattering of a pair in a singlet,

zero center-of-mass momentum and energy state with relative momentum and Matsubara

frequency k = (k, iωn) to a final state with k′ = (k′, iωn′). Results obtained from a 64-site

8 × 8 numerical dynamic cluster approximation (DCA) for Γpp(k, k′) with ωn = ωn′ = πT

at a filling 〈n〉 = 0.85 and U = 4t are shown on the right hand side of Fig. 18.217 Here one

sees that as the temperature is lowered, the singlet pairing interaction increases for large

momentum transfers. This is a reflection of the growth of the short range antiferromagnetic

spin-fluctuations as seen in a similar plot of the spin susceptibility χ(q) shown on the left

hand side of Fig. 18. Taking the Fourier transform of Γpp(k, k′)

Γpp(ℓx, ℓy) =
1

N

∑

kk′

eik·ℓΓpp(k, k′)eik
′·ℓ (11)

leads to the real space picture of the pairing interaction illustrated in Fig. 19. Here Γpp(ℓx, ℓy)

is the strength of the ωn = ωn′ = πT pairing interaction between a singlet formed with one

electron at the origin and the other at site (ℓx, ℓy). It is large and repulsive if the electrons



38

FIG. 18. The spin susceptibility χ(q) and the pairing interaction Γpp(K,K ′) for U = 4t and 〈n〉 =

0.85 are compared at various temperatures. As the temperature is reduced a peak develops in Γpp

reflecting the peak in χ. This repulsive peak is the origin of the unconventional superconductivity

discussed in this review.
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FIG. 19. The real space structure of the pairing interaction obtained from the Fourier transform

Eq. (11) of Γpp(k, k′) at a temperature T = 0.125t for U = 4t and 〈n〉 = 0.85. Here red indicates

a repulsive and blue an attractive pairing interaction for a singlet formed between an electron at

the origin and an electron at site (ℓx, ℓy). The peak in Γpp shown in Fig. 18 leads to a pairing

interaction which oscillates in space.

occupy the same site but attractive if they are on near neighbor sites reflecting the peaking

of Γpp(k, k′) for k − k′ ∼ (π, π).

As shown in Fig. 17, the pairing interaction Γpp(k, k′) can be separated into a fully irre-

ducible two-fermion vertex Λirr and partially reducible particle-hole exchange contributions.

Here the fully irreducible part Λirr is defined as the sum of all diagrams that can not be

separated into two pieces by cutting any combination of two lines (particle or hole). For

a spin rotationally invariant system, the particle-hole exchange contributions appearing on

the right hand side of Fig. 17 can be combined into an S = 1 magnetic spin fluctuation piece

3
2
Φm and a spin S = 0 charge density fluctuation contribution 1

2
Φd.

Γpp(k, k′) = Λirr(k, k
′) +

3

2
Φm(k, k

′) +
1

2
Φd(k, k

′) (12)

Carrying out a DCA calculation, one can evaluate the individual terms that enter Eq. (12).
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The upper left panel of Fig. 20 shows the pairing interaction Γ(k, k′) versus momentum
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FIG. 20. This figure illustrates the momentum dependence of the various contributions that make

up the irreducible particle-particle pairing vertex Γpp. (a) The irreducible particle-particle vertex

Γpp versus q = K − K ′ for various temperatures with ωn = ωn′ = πT . Here, K = (π, 0) and K ′

moves along the momentum values of the 24-site cluster which lay on the dashed line shown in the

inset of Fig. 21. Note that the interaction increases with the momentum transfer as expected for a

d-wave pairing interaction. (b) The q-dependence of the fully irreducible two-fermion vertex Λirr.

(c) The q-dependence of the charge density (S = 0) channel 1
2Φd for the same set of temperatures.

(d) The q-dependence of the magnetic (S = 1) channel 3
2Φm. Here, one sees that the increase in

Γpp with momentum transfer arises from the S = 1 particle-hole channel (after Maier et al.216).

transfers along the diagonal (kx − k′
x, ky − k′

y) of Fig. 18 for 〈n〉 = 0.85 and U/t = 4 as the

temperature is reduced. The remaining panels of Fig. 20 show the contributions of the fully

irreducible vertex Λirr, the S = 0 charge-fluctuations 1
2
Φd and the S = 1 spin-fluctuations

3
2
Φm. As noted, it is the increase of Γ with momentum transfer that gives rise to the

attractive near-neighbor pairing and it is clear from Fig. 20, that this comes from the S = 1
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part of the interaction. The fully irreducible vertex is essentially independent of momentum

transfer and so it only contributes to the on-site repulsion, while the S = 0 charge part

decreases at large momentum giving rise to a small repulsive near neighbor interaction.

In these numerical calculations, one also obtains the dressed single particle Green’s func-

tion G(k, iωn). Given G and Γpp, one can determine the Bethe-Salpeter eigenvalues and

eigenfunction in the particle-particle channel by solving

− T

N

∑

k′

ΓPP (k, k′)G↑(k
′)G↓(−k′)φα(k

′) = λαφα(k). (13)

This is basically the fully dressed BCS gap equation and when the leading eigenvalue goes

to 1 the system becomes superconducting. One can also construct similar Bethe-Salpeter

equations for the charge and magnetic particle-hole channels. Figure 21 shows a plot of the

leading eigenvalues associated with the particle-particle pairing channel and the particle-
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FIG. 21. Leading eigenvalues of the Bethe-Salpeter equation in various channels for U/t = 4 and a

site occupation 〈n〉 = 0.85. The Q = (π, π), ωm = 0, S = 1 magnetic eigenvalue is seen to saturate

at low temperatures. The leading eigenvalue in the singlet Q = (0, 0), ωm = 0 particle-particle

channel has dx2−y2 symmetry and increases toward 1 at low temperatures. The largest charge

density eigenvalue occurs in the Q = (0, 0), ωm = 0 channel and saturates at a small value. The

inset shows the distribution of k-points for the 24-site cluster (after Maier et al.216).

hole charge S = 0 and spin S = 1 channels for U/t = 4 and a filling 〈n〉 = 0.85. As

the temperature is lowered, the particle-hole S = 1 antiferromagnetic channel with center
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of mass momentum Q = (π, π) is initially dominant. However, at low temperatures the

Q = 0 pairing channel rises rapidly and the divergence of the antiferromagnetic channel

saturates. The charge channel eigenvalue remains small. Thus one concludes that the

pairing interaction arises from the exchange of S = 1 particle-hole fluctuations.

The momentum dependence of the leading pairing eigenfunction ϕα(k) is shown in the

inset of Fig. 22 and corresponds to a dx2−y2-wave. The Matsubara frequency dependence of
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FIG. 22. The Matsubara frequency dependence of the eigenfunction φd
x2−y2

(K,ωn) of the leading

particle-particle eigenvalue of Fig. 21 for K = (π, 0) normalized to φ(K,πT ) (red, solid). Here,

ωn = (2n + 1)πT with T = 0.125t. The Matsubara frequency dependence of the normalized

magnetic spin susceptibility 2χ(Q,ωm)/[χ(Q, 0) + χ(Q, 2πT )] for Q = (π, π) versus ωm = 2mπT

(green, dashed). The Matsubara frequency dependence of φd
x2−y2

and the normalized spin Q

susceptibility are similar. Inset: The momentum dependence of the eigenfunction φd
x2−y2

(K,πT )

normalized to φd
x2−y2

((0, π), πT ) shows its dx2−y2 symmetry. Here, ωn = πT and the momentum

values correspond to values of K which lay along the dashed line shown in the inset of Fig. 21

(after Maier et al.216).

this eigenfunction, shown in Fig. 22, has a similar decay to that of the spin susceptibility.

However, as one knows, it is difficult to determine the real frequency response from limited

numerical Matsubara data. Recent cellular dynamic meanfield studies by Kyung et al.
218

for real frequencies find a correspondence between the frequency dependence of the gap
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function and the local spin susceptibility as shown in Fig. 23. The frequency dependence of
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FIG. 23. This figure provides evidence linking the frequency dependence of the imaginary part of

the gap function φd(ω, kF ), which is called Σ′′
an(ω, kF ) in this figure, to the frequency dependence of

the spin fluctuation spectral weight χ′′(ω). (a) The imaginary part of the gap function Σ′′
an(ω, kF )

at a wave vector kF near the antinode is plotted versus ω for various dopings 〈n〉 = 1− δ. (b) The

imaginary part χ′′(ω) of the local spin susceptibility versus ω for the same set of dopings. The

black dots in (a) and (b) identify peaks. The position of the peaks of Σ′′
an in (a) are shown as the

magenta dots in (b) at the same height as the corresponding χ′′ to illustrate their correspondence.

One can see that the upward frequency shift of the Σ′′
an peaks relative to the χ′′ peaks decreases

with the doping like the single particle gap. The red curves are for the normal state. Here, U = 8t,

t′ = −0.3t′, t′′ = −0.08t and a Lorentzian broadening of 0.125t was used for an embedded 2 × 2

plaquette (after Kyung et al.218).

the interaction has also been discussed by Maier et al. 219 and Hanke et al.
220 who find that
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the dominant part of the interaction comes from the spectral region associated with spin

fluctuations with an additional small contribution coming from high frequency excitations.

All of these dynamic calculations are for small clusters so that it will be useful to have

further work on the dynamics for larger clusters since it provides an important fingerprint

of the pairing interaction.

At low temperatures where the leading eigenvalue λα of Eq. (13) approaches 1, the pairing

interaction Γpp(k, k′) can be approximated as

Γpp(k, k′) ∼= ϕα(k)Vαϕα(k
′) (14)

with a pairing strength Vα

Vα =

∑

k,k′ ϕα(k)Γ
pp(k, k′)ϕα(k

′)

(
∑

k ϕ
2
α(k))

2 . (15)

Using Eq. (14), the inverse of the pairfield susceptibility is approximately given by

P−1
α

∼= P−1
0α + Vα (16)

with

P0α =
T

N

∑

k

G(k)G(−k)ϕ2
α(k). (17)

Here G(k) is the dressed single particle Green’s function. For dx2−y2-wave pairing one has

φα(k) ∼ (cos kx − cos ky) with a Matsubara frequency cut-off as seen in Fig. 22. As seen in

Fig. 18, Γpp(k, k′) peaks for k-k′ ∼ (π, π) so that Vd given by Eq. (15) is negative. One can

think of P0α as the “intrinsic” α-pairfield susceptibility of the interacting system.

In the traditional phonon mediated case, the pairing strength Vα is essentially indepen-

dent of temperature once the ionic lattice is formed. Then the N(0) log (ωD/T ) divergence

of P0α gives a transition temperature Tc ∼ ωDe
−1/N(0)|Vα | where P−1

α (Tc) = 0. For a strongly

interacting system, both P0α and Vα are functions of temperature. As seen from the temper-

ature dependence of Γpp(k, k′) in Fig. 18, the strength |Vd(T )| of the interaction will increase

as the temperature is lowered and χ(Q, T ) increases. For the doped system, away from the

antiferromagnetic instability, |Vd(T )| will saturate to a constant value at low temperatures.

However, as the doping x goes to zero, it will continue to increase as the temperature de-

creases. In this case for 〈n〉 = 1, P0d(T ), Fig. 24, will be suppressed at low temperatures

due to the vanishing of the quasi-particle weight as well as phase fluctuations42 and Tc will
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FIG. 24. The intrinsic pairfield susceptibility P0d(T ) for U = 8t and 〈n〉 = 1 is suppressed as T

goes to zero (after Maier et al.221).

go to zero221. The interplay of the pairing strength Vα, as 〈n〉 goes to 1, and the intrinsic

pairfield susceptibility P0d, which is suppressed as 〈n〉 goes to 1, leads to a dome-shaped Tc

versus doping behavior. Thus while the strength of the pairing interaction can increase, the

increased scattering leads to a reduction of the quasiparticle weight. In addition, it is im-

portant to remember that the pairing interaction is short range, of order the near-neighbor

spacing. This is reflected in the (cos kx − cos ky) structure of the gap. Thus it is not the

correlation length of the antiferromagnetic correlations but rather having the spectral weight

of the interaction in the right momentum and energy regime that determines the pairing

strength.

The interplay of P0d and the pairing interaction strength is of particular interest near

a quantum critical point73,124,222. Abanov et al.
223 have argued that the pseudogap phase

reflects aspects of the pairing in the quantum-critical regime near the antiferromagnetic QCP.
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Recently, Metlitski and Sachdev 222 have discussed the special role played by the competition

between the spin density wave, Fermi surface structure and superconducting order in the

two-dimensional system. In this case, while the quasiparticle spectral weight is suppressed

at “hot spots” on the Fermi surface where εk+Q = εk, they find that the pairing interaction

slightly away from the hot spots is strong and combined with a finite quasiparticle spectral

weight can lead to high Tc superconductivity.

Based on the similarity of the momentum and frequency dependence of Γpp to that of the

spin susceptibility χ, approximate pairing interactions have been used in which

Γpp(k, k′) ≃ 3

2
Ū2χ(k − k′). (18)

Here Ū is treated as an adjustable parameter and χ is numerically calculated224, approxi-

mated by a phenomenological RPA-like function95 or determined experimentally from neu-

tron scattering225 or inelastic x-ray scattering (RIXS) data67. These calculations find that

with reasonable coupling strengths the spin-fluctuation interaction given by Eq. (18) can

account for the scale of the observed transition temperatures. Note that when one speaks of

pairing mediated by spin-fluctuations one is not thinking of an exchange of some boson with

a sharp well defined ω(q) dispersion. Rather what is meant is that the dominant pairing

interaction arises from the S = 1 part of the particle-hole exchange contributions to Γpp.

While this particle-hole exchange has some of the characteristics of a spin 1 boson, its spec-

tral weight is spread out in momentum and frequency. This is clearly seen in the numerical

calculations of Γpp and to the extent that the spin susceptibility provides an approximation

for the Γpp, it is seen directly in experimental measurements of χ′′(q, ω). Finally, it is im-

portant to keep in mind that low frequency spin fluctuations are pair breaking226 and the

optimal spin-fluctuation spectral weight for pairing occurs in a frequency range larger than

twice the maximum value of the gap227.

This aspect of the dynamics of the pairing interaction is reflected in the rapid increase

in ∆Max(T ) as T decreases below Tc as well as large 2∆Max(0)/kTc ratios86,227,228. As the

gap opens the low frequency pair breaking spin fluctuation spectral weight is shifted to

higher energies where it contributes to the pairing, increasing the gap. The increase in

the gap in turn leads to a further suppression of the low-frequency interaction spectral

weight producing a positive feedback and a rapid increase of ∆Max(T ) as T drops below Tc.

Finally, at low temperatures one finds a large 2∆Max(0)/kTc ratio. This is due to the altered
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spin-fluctuation spectral weight in the superconducting state which gives rise to a stronger

pairing interaction than the normal state. In principle, if one could create a spin-fluctuation

spectral weight in the normal state which had the same structure that it has deep in the

superconducting state, one would find a significant increase in Tc.

B. The bilayer Hubbard model

Another variation of the Hubbard model, the bilayer Hubbard model, provides an inter-

esting link between the single- and multi-orbital models. It shows how the structure of the

Fermi surface or surfaces can alter the spin fluctuations and change the gap symmetry from

B1g (d-wave) to A1g (s±-wave). It is an example which illustrates how the spin fluctuation

interaction can give rise to the different gap structures seen in the cuprate and iron-based

superconductors. As shown in Fig. 25(a) in the bilayer Hubbard model, two 2D Hubbard

layers are coupled by a one-electron inter-layer hopping t⊥. For a doping near half-filling, the

topological character of the non-interacting Fermi surface changes as t⊥/t is turned on. For

example, for 〈n〉 = 0.95 and t⊥/t <∼ 0.07, the system has two electron Fermi surfaces around

the origin. Then when t⊥/t >∼ 0.07, the Fermi surface topology changes to one in which there

is one electron and one hole-like Fermi surface as shown for t⊥/t = 0.5 and 2.0 in Fig. 25 (b)

and (c), respectively. This Fermi surface structure is a simplified version of the multi-Fermi

surfaces found from bandstructure calculations for the Fe-based superconductors shown in

Fig. 16a.

This model, originally studied using determinant quantum Monte Carlo85,229–231 has

also been studied using fluctuation exchange (FLEX)232, phenomenological spin fluctua-

tion approximations233, FRG56 and DCA234 methods. One finds that for t⊥/t less than of

order one, the most divergent pairfield correlations occur in the dx2−y2 channel while for t⊥/t

larger they occur in an A1g channel in which the gap has one sign on the antibonding Fermi

surface and the opposite sign on the bonding Fermi surface, as schematically illustrated in

Fig. 25. This gap, which changes sign between the two Fermi surfaces, is an s±-like gap.

At half-filling, determinental Quantum Monte Carlo (DQMC) calculations showed that

the ground state for U = 6 had AF long-range order for t⊥/t <∼ 2. For larger values of

t⊥/t, the system enters a disordered valence bond phase with singlet correlations between

electrons on opposite sites of the two layers. In the doped system, there is a cross-over in
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FIG. 25. The bilayer Hubbard model illustrates the close connection between the d- and s±-wave

states. (a) The bilayer Hubbard lattice with a near neighbor intra-layer hopping t and an inter-

layer hopping t⊥. (b) The bonding (kz = 0) and antibonding (kz = π) Fermi surfaces for t⊥ = 0.5

(upper) and 2.0 (lower) for a filling 〈n〉 = 0.95. A dx2−y2 gap structure is illustrated for the

t⊥ = 0.5 Fermi surface and an s± gap is shown for t⊥/t = 2.0. Here, a solid (red) line denotes a

positive gap and a dashed (blue) line a negative gap. The intensity of the line denotes the d-wave

(cos kx − cos ky) like variation of the gap (color online).

which the intra-layer AF fluctuations decrease and the inter-layer spin fluctuations increase

as t⊥/t is initially increased. Then at still larger values of t⊥/t the low energy interlayer

spin fluctuations become gapped and the superconducting pairing is suppressed.

For the two-layer system, the two pairfield susceptibilities that are of interest are given

by

Pα(T ) =

∫ β

0

dτ〈∆α(T )∆
+
α (0)〉 (19)

with

∆x2−y2 =
1√
N

∑

k

(cos kx − cos ky)c
+
k↑c

+
−k↓ (20)

and

∆s± =
1√
N

∑

k

cos kzc
+
k↑c

+
−k↓. (21)

Here for the two-layer model, kz = 0 (bonding) and kz = π (antibonding). For U = 6

and 〈n〉 = 0.95, Fig. 26 shows DCA results for Pα(T ) for both the dx2−y2 case and the
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s± case. For t⊥/t = 0.5 where there are strong AF planar spin-fluctuations, the dominant
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FIG. 26. The dx2−y2 and s± pairfield susceptibilities Pα versus temperature T for various values

of the inter-layer hopping t⊥. These DCA results were for a (4× 4)× 2 cluster and we have set the

intra-layer hopping t = 1. One sees that as t⊥/t increases there is a crossover from dx2−y2 pairing

to s± pairing (after Maier and Scalapino234).

pairing occurs in the dx2−y2 channel. However, as t⊥/t increases, the s± response increases

and for t⊥/t >∼ 1, it becomes dominant with the response peaking for t⊥/t ≅ 2. At half-

filling with U/t = 6, DQMC calculations231 find a QCP for t⊥/t ≈ 2 which separates an

antiferromagnetic phase from a valence bond phase235. Finally, for t⊥/t = 3 one finds that

the pairing becomes weaker as the inter-layer valence bonds become stronger.

Just as the pairing interaction ΓPP (k, k′) was analyzed for the single layer Hubbard

model, one can examine how the bilayer pairing interaction is related to the underlying spin

correlations of the system. A useful measure of the strength of the pairing interaction for

a given channel is |Vα| given by Eq. (15). Results for |Vα| versus t⊥ for α = dx2−y2 and s±

are shown in Fig. 27. Also plotted in this figure are the integrated spectral weights for the
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FIG. 27. The pairing interaction strength in the d and s± channels reflects the spatial structure of

the local spin fluctuations. (a) The strength of the pairing interactions Vα and (b) the integrated

spectral weights Iν versus t⊥ for kν = kx and kz . The strength |Vα| of the pairing interaction

for dx2−y2 pairing is correlated with the intra-layer near neighbor spin fluctuation spectral weight,

while the s± pairing strength reflects that of the inter-layer spin fluctuations (after Maier and

Scalapino234).

intra- and inter-layer near-neighbor spin fluctuations

Iν =
1

N

∑

k

∫

dω

π

Imχ(k, ω)

ω
cos kν =

1

N

∑

k

Reχ(k, 0) cos kν (22)

with kν = kx and kz for the intra- and inter-layer spin-fluctuation weights, respectively.

In Fig. 27, one sees that the dx2−y2 pairing strength is correlated with the near-neighbor

planar spin fluctuations while the s± pairing strength reflects the inter-layer spin fluctuation

strength.

The bilayer Hubbard model is clearly simpler than the five-orbital Fe models. However, it

has the advantage that one can carry out numerical calculations and examine the relationship

between the pairfield structure, the pairing interaction strengths and the spin correlations.

The fact that one can change a one-electron hopping parameter t⊥ and observe that the

system evolves from a dx2−y2 to an s± pairing phase provides further evidence supporting

the notion of a commonality between the cuprate and Fe-based superconductors.
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A similar relationship between d-wave and s± pairing is seen in density matrix renormal-

ization (DMRG) studies of a two-leg ladder143. In this case, the DMRG method has been

used to study a caricature of the Fe-pnictide problem which focuses on the dxz orbital pair

scattering process associated with the ky = 0 and ky = π states near the α1 and β2 Fermi

surfaces shown in Fig. 16a. These scattering processes can be described by the Hamiltonian

for a 2-leg ladder

FIG. 28. An “Fe-ladder” is simply a unitary transformation of a “Cu-ladder.” The left hand side

shows (a) a 2-leg Fe ladder, (b) schematic illustration of the spin structure 〈Sz(ℓx, ℓy)〉 induced by

applying an external magnetic field to the lower left hand site, and (c) the singlet pairfield 〈∆ij〉

induced at a distance 10 sites removed from the end of a 32×2 ladder with a unit external pairfield

applied to the end rung. On the right hand side, every other rung has been twisted by 180◦ and

the phase of the orbitals denoted by the open circles have been changed by π. As discussed in the

text, this “twisted Fe-ladder” corresponds to the well-studied cuprate ladder (after Berg et al.143).

H = −t1
∑

iℓσ

c+iℓσci+1ℓσ − 2t2
∑

iσ

c+i1σci2σ

− 2t3
∑

iσ

(c+i1σci+12σ + c+i+12σci1σ) + U
∑

iℓσ

niℓ↑niℓ↓ (23)

with the tight binding parameters illustrated on the left-hand side of Fig. 28a. Here, ℓ = 1, 2

is the leg index, there are leg t1, rung t2 and diagonal t3 one-electron hopping matrix elements
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and an on-site Coulomb interaction U . The factors of 2 in front of t2 and t3 takes into

account the periodic boundary conditions which have been used in the transverse direction.

As discussed in Berg et al.
143 , the hopping parameters t1 = −0.32 and t3 = −0.57 measured

in units of t2 = 1, were taken to fit the Fe-pnictide (1111) DFT band structure near the

α1 and β2 Fermi surfaces for kx cuts through ky = 0 and ky = π, respectively. As seen in

Fig. 16a, at these points the Bloch wave functions have dxz character.

With U = 3, DMRG calculations for the half-filled case with an external magnetic field

applied to the first site of the lower leg gave the spin pattern shown on the left-hand side

of Fig. 28b. This spin pattern has a striped-like SDW structure similar to the magnetic

structure seen in the Fe-pnictides. The 2-leg system was found to have a spin gap ∆s = 0.14

corresponding to a spin correlation length of approximately four sites. For the doped system

with 〈n〉 = 0.94, a pairfield boundary term

H1 = ∆1(P
+
1 + h.c.)

with ∆1 = 1 and

P+
1 = (d+11↑d

+
12↓ − d+11↓d

+
12↑)

was added. This term acts as a proximity coupling to the rung at the left-hand end of the

ladder. Then the expectation values of the resulting induced singlet pairfield was measured

on the rung as well as the diagonal and the leg near neighbor sites at positions further down

the ladder. The values of this induced pairfield 10 sites away from site ℓ = 1 are shown on

the left-hand side of Fig. 28c.

This result is directly related to the 2-leg ladder cuprate model shown on the right-hand

side of Fig. 28. Here, every other rung of the left-hand ladder has been twisted by 180◦

and the phase of the dxz-orbit has been changed by π on each of the open sites of the

twisted rungs. In this way, the rung hopping matrix element remains t2, but the leg and

diagonal hoppings are changed to −t3 and −t1, respectively. Then with the parameters

that have been used, the dominant hoppings on this “twisted Fe-ladder” are along the legs

and rungs with only a weak diagonal hopping. These are typical parameters for a cuprate

ladder. Furthermore, as shown on the right-hand side of Fig. 28b and c, the resulting spin

and pairfield correlations of the original Fe ladder have turned into the spin gapped (π, π)

antiferromagnetic and the familiar d-wave like pairing correlations142. Thus, similar to the
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2-layer Hubbard model, the 2-leg ladder illustrates the close connection that exists between

the cuprates and the Fe-based materials.

C. Multi-orbital models

In general, for the multi-orbital models, the orbital structure of the pairing interaction is

important and one introduces an orbital dependent pairing interaction Γℓ1ℓ2ℓ3ℓ4 illustrated

in Fig. 29, which describes the irreducible particle-particle scattering of electrons in orbitals

Intra MixedInter
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FIG. 29. The orbital dependent pairing interaction Γ
(k,k′)
ℓ1ℓ2ℓ3ℓ4

defined in terms of orbital states ℓi

of incoming and outgoing electrons. The lower diagrams illustrate intra-orbital, inter-orbital and

mixed orbital scattering processes (after Kemper et al.236).

ℓ1, ℓ4 with momentum k and −k into orbitals ℓ2, ℓ3 with momentum k′ and −k′. In terms

of this vertex, the effective pairing interaction for scattering a (k′ ↑,−k′ ↓) pair on the νj

Fermi surface to a (k ↑,−k ↓) pair on the νi Fermi surface is

Γij(k, k
′) =

∑

ℓ1ℓ2ℓ3ℓ4

aℓ2
∗

νi
(k)aℓ3

∗

νi
(−k)Γℓ1ℓ2ℓ3ℓ4(k, k

′)aℓ1νj(k
′)aℓ4νj (−k′) (24)

with aℓ1νj (k) the orbital matrix element 〈νjk|ℓ1〉 given in Eq. (9).

Besides the numerical calculations for the two-layer (effective two-obital) Hubbard model

discussed above, there have been some quantum Monte Carlo237,238 and cluster studies220

for the three-orbital CuO2 model. These calculations show that the undoped state is a
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charge-transfer anti-ferromagnetic insulator rather than a Mott-Hubbard anti-ferromagnetic

insulator. However, the anti-ferromagnetic and dx2−y2-pairing correlations in the doped state

of these models are remarkably similar to those found for the doped single band Hubbard

model.

The main studies of the multiple-orbital models which have been carried out for the

heavy fermion and Fe-based materials have been based upon weak coupling random phase

(RPA)96,160,239,240, fluctuation-exchange (FLEX)241 or functional renormalization group

(FRG) methods56,57,242,243. Just as the Monte Carlo calculations216 of the four-point vertex

allow one to study the interplay of the various spin, charge and pairing correlations on an

equal footing as the temperature is reduced (see for example Fig. 21), the FRG provides

an unbiased approach for monitoring the strength of the various scattering processes as an

energy cutoff is reduced. Of course the FRG calculations are typically one-loop approxi-

mations, suitable for weaker coupled systems. Nevertheless, the FRG calculations for the

multi-band Hubbard models find that spin-density-wave (SDW) scattering processes grow

in strength as the renormalization energy cutoff is reduced, driving an increase in the pair

scattering strength. In addition, just as for the single-band Hubbard model, strong SDW

fluctuations also drive other pairing, Pomeranchuk and CDW channels. The same electrons

are involved in both the spin-fluctuation and these channels.

In the RPA and FLEX approaches, the orbital dependent vertex is approximated by

Γℓ1ℓ2ℓ3ℓ4(k,k
′, ω) =

[

3

2
USχRPA

1 (k− k′, ω) US −

1

2
UCχRPA

0 (k− k′, ω) UC +
1

2
(US + UC)

]

ℓ3ℓ4ℓ1ℓ2

, (25)

with

χRPA
1 (q) = χ0(q)[1− USχ0(q)]−1 (26)

and

χRPA
0 (q) = χ0(q)[1 + UCχ0(q)]−1 (27)

Here the quantities US, UC , and the one-loop susceptibility χ0 are represented by matrices

in the orbital space. Details of this can be found in the literature244. Here we note that the

basic structure of the pairing interaction is similar to Eq. (12) with

Λirr ∼
1

2
(US + UC) φm ∼ USχRPA

1 US Φd = −UCχRPA
0 UC . (28)
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While this represents a weak coupling approximation, we know from numerical studies224 of

the single band Hubbard model that by treating the interaction parameters phenomenolog-

ically, RPA and FLEX approximations can provide reasonable descriptions of the pairing

interaction for intermediate coupling.

From Eq. (24) one sees that the effective pairing interaction Γij(k, k
′) for a multi-orbital

system depends upon the number of Fermi surfaces and their shapes as well as the orbital

matrix elements. In general, these matrix elements act to suppress the mixed pair orbital

vertex contributions in which ℓ1 6= ℓ4 and ℓ2 6= ℓ3 (lower right hand diagram shown in

Fig. 29). For spin rotational interaction parameters the dominant contributions to the

pairing interaction Γij(k, k
′) comes from intra-orbital (ℓ1 = ℓ2 = ℓ3 = ℓ4) scattering processes

with weaker contributions from the inter-orbital processes (ℓ1 = ℓ4 6= ℓ2 = ℓ3). The number,

the shape and the location of the various Fermi surfaces also play a key role in determining

the strength of the pairing interaction and the structure of the gap ∆(k).

As noted by Kuroki et al. 239 for the 1111 Fe material, depending upon the height of the

pnictide and the doping, an additional hole Fermi surface with dxy orbital character may be

present around the (π, π) point of the unfolded Brillouin zone. Figure 30 shows the Fermi

surfaces at two different fillings for a tight binding parameterization of the 1111 Fe material.

In this case, for a filling 〈n〉 = 6.01, there are two hole Fermi surfaces around the Γ point

and two electron Fermi surfaces around (π, 0) and (0, π) in the unfolded 1 Fe/cell Brillouin

zone. However, for the hole doped system with 〈n〉 = 5.95, an additional hole Fermi surface

appears around the (π, π) point. The dominant orbital weight along the Fermi surfaces

are also indicated along with various intra-orbital pair scattering processes. The lefthand

figure shows a pair scattering from the α1 hole Fermi surface around the Γ point to a pair

on the electron Fermi surface β1 centered at (π, 0). Here, electrons in states k and −k

on the α1 Fermi surface are scattered to states k′ and −k′ on the β1 Fermi surface. This

process is illustrated in Fig. 30 using an extended Brillouin zone in which −k′ is replaced by

−k′ + (2π, 0). The orbital weight on both Fermi surfaces is dominantly dyz(ℓ = 2) over the

regions in which there is a reasonable nesting giving rise to a peak in Γ2222 for a momentum

transfer q ∼ (π, 0). There are similar intra-orbital dxz scattering processes between α1 and

the electron β2 Fermi surface which give rise to a peak in Γ1111 for q ∼ (0, π). These processes

lead to a Γij(k, k
′) interaction which favors an A1g s± gap which switches sign between the

α1 and the (β1, β2) Fermi surface. However, as shown in the middle diagram of Fig. 30, there
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FIG. 30. For a filling n = 6.01, the scattering of a pair from the α1 hole Fermi surface to the β1

electron Fermi surface shown in the left hand figure favors pairing in which there is a sign change

of the gap between α1 and β1. A similar pair scattering process between α1 and β2 leads to a gap

which has the same sign on β1 and β2. However, the β2–β1 pair scattering shown in the middle

figure tends to frustrate this, since they favor a gap which has opposite signs on the β2 and β1

Fermi surfaces. As shown in the right hand figure, for a filling 〈n〉 = 5.95, an additional hole pocket

γ appears and β2–γ, as well as β1–γ, pair scattering processes stabilize the s± gap.

are inter-orbital dxz–dxy pair scattering processes between β2 and β1. These act to frustrate

a uniform s± state. This same behavior is seen in the FRNG calculations56,245. In addition,

unless the Fermi surface areas weighted by v−1
F (k) are such that the electron and hole regions

exactly balance, the short range Coulomb interaction can be reduced by an anisotropic A1g

gap. As a consequence, for a filling 〈n〉 = 6.01 and a typical set of interaction parameters,

one finds the A1g gap structure shown on the left of Fig. 31 and as the blue curve in Fig. 32.

Here the gap has nodes on the β electron Fermi surfaces. The possibility of such accidental

nodes in the A1g state is consistent with the linear low temperature T dependence seen in

the penetration depth of LaFePO246.

The gap ∆(k) for 〈n〉 = 6.01 and 〈n〉 = 5.95 is shown in Fig. 31. For 〈n〉 = 6.01 the

(π, π) Fermi surface is absent while for a doping 〈n〉 = 5.95, there is an additional hole

Fermi surface around the (π, π) point of the 1 Fe/cell Brillouin zone. In this latter case,

intra-orbital dxy pair scattering processes like the one shown in the right panel of Fig. 30

favor a more uniform s±A1g state and as shown on the right hand side of Fig. 31 and the red

curve in Fig. 32, the nodes on the β Fermi surfaces are lifted. In addition the overall pairing
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FIG. 31. The gap eigenfunctions g(k) for a spin rotationally invariant parameter set Ū = 1.3,

Ū ′ = 0.9, J̄ = J̄ ′ = 0.2, for dopings n = 6.01 (left) and n = 5.95 (right). Here, one sees how the s±

gap is stabilized by the β1–γ and β2–γ pair scattering processes shown in the right hand portion

of Fig. 30 (after Kemper et al.236).

strength is larger when the extra hole (π, π) Fermi surface is present. In similar calculations

in which the bandstructure parameters were changed so that the (π, π) Fermi surface had

dominant d3z2−r2 weight, the nodes of the gap were not lifted. Thus the orbital weights as

well as the Fermi surface topology play an important role in determining the gap structure

as well as Tc
236,239,243,245,247.

V. SUMMARY AND OUTLOOK

Here it has been proposed that the interaction which is responsible for pairing in some

families of heavy fermion materials, the 115 Pu actinides, the high Tc cuprates and the

Fe-based superconductors arises from the exchange of spin-fluctuations. Just as different

materials ranging from Hg and Pb to Nb3Sn and MgB2 have a phonon mediated pairing

interaction, the suggestion is that this class of unconventional superconducting materials,

though clearly different from each other, share a common pairing mechanism. As noted

earlier, one should also include the organic Bechgaard salts3–6 in this group.248 Looking back

with this perspective, one would say that this class of antiferromagnetic spin-fluctuation me-

diated superconductors began with the seminal discoveries of superconductivity in the heavy

fermion material CeCu2Si2 by Steglich et al.
249 and in the organic material (TMTSF)2PF6
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FIG. 32. The gap function g(k) on the β1 pocket for n = 5.95 solid (red) and n = 6.01 dashed

(blue) from Fig. 31. Here the angle φ is measured from the kx-axis (after Kemper et al.236).

by Jérome et al.
250 .

Theoretical proposals that spin-fluctuations near a spin-density-wave instability could

give rise to unconventional pairing in some organic Bechgaard salts and some heavy fermion

materials were made in 1986 (Emery 251 , Cyrot 252 , Miyake et al. 93 , Scalapino et al. 94). Then,

following the discovery of the cuprate superconductors various suggestions were made to also

include the cuprates in this group103,253,254. However, while the antiferromagnetism and d-

wave superconductivity appeared in close proximity in the phase diagrams of the electron

doped cuprates, in the hole doped cuprates, a pseudogap phase appears adjacent to the

superconducting phase. Furthermore, the undoped cuprates are antiferromagnetic charge-

transfer Mott insulators. Thus there were arguments made that superconductivity in the

high Tc cuprates arose from a different underlying mechanism, and that it was inappropriate
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to speak of a spin-fluctuation pairing glue255. Now the question of whether there is a pairing

glue is basically a question regarding the dynamics of the pairing interaction256. As discussed

in Sec. IV, numerical calculations of the pairing interaction for the Hubbard model provide

evidence which supports the view that its dynamics dominantly reflects that of the dynamic

spin susceptibility218–220. Thus there is pairing glue in the Hubbard models and the question

becomes “Should one speak of a spin-fluctuation pairing glue for this class of real materials?”

The discovery of the Fe-based superconductors22,23 provided renewed support for the

idea that indeed there exists a class of materials in which superconductivity does not arise

from the traditional phonon exchange mechanism257. In addition, as noted in Sec. II, a

variety of measurements show that antiferromagnetic spin-density-wave-like fluctuations are

ubiquitous in these materials and are the primary excitations which scatter the electrons.

Now in principle, one would like to determine the k and ω dependence of the normal and

anomalous (gap) self-energies and from these infer the structure and origin of the pairing

interaction. In particular, the k-dependence of the gap on the multi-Fermi surfaces of the

Fe-based superconductors can provide a more detailed probe of the k-dependence of the

pairing interaction providing a test of different pairing mechanisms. For example, the spin-

fluctuation theory finds that there can be a near-degeneracy between an anisotropic sign-

changing s-wave (A1g) state and a dx2−y2 (B1g) state due to the near nesting of Fermi surface

sheets96,258. This is also clearly seen in the DCA results for the bilayer model discussed in

Sec. IV. Thus the k-dependence of the gap on the multi-Fermi surfaces of the Fe-based

superconductors can provide a test of the theory. In addition, as dicussed in Sec. IV, there

are a number of experiments which are exploring the ω dependence of the gap. The recent

progress in material quality, the increase in the frequency and momentum resolution of

ARPES, neutron scattering and RIXS, along with tunneling and STMS hold the promise of

providing the kind of detailed information that will be needed. There will also be support

for these ideas if they can provide guidance in the search for new and possibly higher Tc

superconductors. This review concludes by summarizing some of the ideas which have been

discussed that may help in this search.

The numerical calculations for the doped single band Hubbard model with a near neighbor

hopping t and an onsite Coulomb interaction U , show that Tc is maximized for U of order

the bandwidth 8t. As U increases beyond the bandwidth, the characteristic energy of the

spin fluctuations is suppressed and Tc decreases. In addition, Tc is found to decrease in
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the underdoped regime. Here, the superfluid stiffness tends to zero as the Mott state is

approached259. In addition, there is the reduction of the quasi-particle weight due to the

Mott correlations which suppress the intrinsic pairfield susceptibility P0d. Thus optimal

superconductivity is obtained by doping the single layer Hubbard model away from half-

filling. In the doped bilayer case, Tc is enhanced when t⊥/t is increased and in this way the

system is again moved away from the Mott regime to a semi-metallic state. Thus optimal

superconductivity in these models is expected to be found at intermediate coupling away

from the Mott regime. In this regime, the fluctuation-exchange (FLEX) approximation100

gives results in reasonable agreement with the numerical calculations and it has been used

to address further issues.

The phase diagram obtained for a two-dimensional Hubbard model with U/t = 4 using

FLEX is shown in Fig. 33. Here one sees that as the system is doped, the SDW antifer-
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FIG. 33. Phase diagram for a two-dimensional Hubbard model with U/t = 4 calculated within

the fluctuation-exchange approximation. As the system is doped away from half-filling, the Néel

temperature is suppressed and a dx2−y2 superconducting phase appears (after Bickers et al.100).

romagnetic phase is suppressed and dx2−y2-wave superconductivity appears. As discussed

by Vorontsov et al.
47 and Fernandes et al.

45 there can be a coexistence region near the

intersection of the antiferromagnetic and superconducting transitions. As the doping in-
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creases, in the absence of the superconducting transition, the antiferromagnetic transition

is suppressed towards T = 0 giving rise to a quantum critical point (QCP)73,235. The shape

of the phase boundaries as well as the temperature dependence of the transport properties

reflect the antiferromagnetic spin fluctuations associated with the QCP68,260,261. The precise

role of the QCP remains under study. Within the framework of FLEX calculations, the

characteristic antiferromagnetic energy at zero doping TN(x = 0) is large compared with Tc.

In this case, to optimize Tc one changes the doping x so as to reduce the frequency of the

antiferromagnetic fluctuations to some multiple of Tc in order to optimize the pairing. Since

TN ≫ Tc, this means that one will indeed have to tune the doping x close to the critical

concentration xc where TN (xc) would vanish in the absence of superconductivity.

With a near neighbor hopping t, a nominal filling 〈n〉 ∼ 0.85 and U/t fixed, the size of

the transition temperature Tc scales with the energy scale t. In this framework then, the

range of Tc values found between the heavy fermion materials and the cuprates is seen as a

reflection of their electronic energy scales. This notion, that the variation of Tc depended on

a basic electronic energy scale of the material, was considered within a fluctuation-exchange

treatment of the single-band Hubbard model by Moriya and Ueda 103 who related this scale

to a spin fluctuation energy TSF. In their approach TSF ≃ 1.25 × 104/γ with the specific

heat γ measured in mJ/mol K2 and the spin-fluctuation cut-off wave vector taken to be

of order the zone boundary wave vector. Based on these results, they proposed a unified

picture in which Tc varied as TSF. Alternatively, Uemura 262 has used an effective Fermi

energy obtained from the penetration depth in place of TSF. The basic idea is similar to

what one finds in the Hubbard model where with U and 〈n〉 optimized, Tc is set by the

energy scale t. Figure 34 shows this type of Moriya-Ueda plot with the addition of the 115

Pu actinides. Curro et al.
263 noted that the 115 Pu actinides could be added to this group of

materials providing a natural bridge between the heavy fermions and the high Tc cuprates.

In this case, the larger Tc values of the 115 Pu compounds relative to the 115 Ce systems is

a reflection of the larger hybridization among the 5f electrons of the 115 Pu compounds and

hence to a larger value of the basic energy scale37,264. In a similar way, the unit cell volume

of PuCoIn5 is nearly 28% larger than that of PuCoGa5
15, leading to a weaker hybridization

and a reduced Tc.

In addition to the intermediate coupling requirement and the size of a basic energy scale,

the topology of the Fermi surface as well as the orbital weights on the Fermi surface play
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FIG. 34. A Moriya-Ueda like plot of the temperatures of various unconventional superconductors

plotted against TSF, a characteristic temperature indicating the energy spread of the wave vector-

dependent part of the spin-fluctuations (after Curro et al.263).

an important role in determining Tc. As noted in Sec. IV, the lattice structure and/or

doping can alter the number of Fermi surfaces of the Fe-pnictide materials. Kuroki et al. 239

have suggested that the pnictogen height hpn above the Fe layer controls the appearance of

a dxy hole pocket around the (π, π) point of the unfolded 1 Fe/cell Brillouin zone. They

noted that when hpn is such that the pnictogen ions form a nearly regular tetrahedron as in

NdFeAsO(Tc ∼ 50K), the nearest-neighbor hopping for the dxy orbital (here x, y, z refer to

the single Fe/cell lattice) decreases and an additional dxy(π, π) hole pocket appears. Spin

fluctuation mediated scattering of pairs between this pocket and the dxy regions of the β1

and β2 electron pockets at (π, 0) and (0, π) lead to a nodeless A1g gap. However for LaFePO,

the pnictide P is closer to the Fe plane and the Fe-pnictogen-Fe angle is considerably larger

than that of a regular tetrahedron. In this case, the (π, π) hole Fermi pocket is absent and as
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discussed in Sec. IV, the spin-fluctuation and the Coulomb interaction favor a nodal A1g gap

which has a lower Tc. Similarly, as discussed by Usui and Kuroki, for the 1111 Fe-pnictide

structure, if the Fe-pnictogen-Fe angle becomes small relative to the regular tetrahedron,

the α1 hole Fermi surface disappears and Tc decreases.

Multi-orbital effects also appear to play a role in the relative Tc values of the cuprates.

Based on electronic structure calculations, Pavarini et al. 266 observed that the Tc of the hole

cuprate materials was related to the energy of a hybrid orbital formed between the apical-

oxygen and the planar coopers. They noted that the axial orbital controlled the range

r of the intralayer hoppings and Tc was found to increase with r. This range parameter

r was found to increase as the apical O moved away from the CuO2 plane. It was also

suggested by Ohta et al.
267 that Tc of the hole doped cuprates was correlated with the

energy difference between the apical O pz and planar O pσ orbitals. Recently, Sakakibara

et al.
268 argued that these correlations could be understood in terms of a two orbital Hubbard

model that included in addition to the dx2−y2 Cu orbit of the standard one-band Hubbard

model an additional d3z2−r2 orbit. They focused on the question of why the superconducting

transition temperature of the single layer HgBa2CuO4+δ (Tc ∼ 90K) is significantly higher

than the single layer La2−x(Sr/Ba)xCuO4 (Tc ∼ 40K). Within the fluctuation-exchange

approximation, they found that the eigenvalue of the Bethe-Salpeter equation (13) decreased

when the dx2−y2 orbital weight on the Fermi surface was reduced by an admixture of d3z2−r2

orbital weight. They noted that the d3z2−r2 orbital weight was controlled by the height of the

apex oxygen and the Madelung potential difference between the planar and apical oxygens,

in agreement with the earlier proposals. The reduction of the pairing strength arising from

the admixture of other orbitals was also found in FRG calculations243. Similarly, the level

splitting of a two orbital model of the 115 CeCoIn5 and CeRhIn5 heavy fermion materials

has also been used to discuss their Tc differences244. Here the Γα levels are split by the

tetragonal crystal field and Tc was found to increase with this splitting.

With respect to guidance in the search for new and possibly higher temperature super-

conductors, these results suggest that one is looking for materials containing quasi 2D layers

of 3d ions. One wants magnetic ions to boost the amplitude of the spin fluctuations and

3d ions rather than 4d or 5d ions which have a smaller effective Coulomb interaction or 4f

or 5f ions which have a narrower bandwidth and hence a smaller basic energy scale. One

wants 2D layers so that the antiferromagnetic order is suppressed and the spectral weight
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of the spin fluctuations is in a frequency range several times the maximum gap where it

is most effective in pairing. In addition, in 2D it is possible that a larger fraction of a

cylindrical Fermi surface or surfaces can simultaneously be “optimized” with respect to the

pairing269. The Fe-pnictides suggest a further optimization scheme in which adding an addi-

tional Fermi surface239,265 with a particular orbital character allows for additional scattering

processes leading to a higher Tc. Here, as discussed not only the presence of the additional

Fermi surface is important but it must have the right orbital character. It is generally better

with respect to both the pairing strength and Tc to have a nodeless gap instead of a nodal

gap, and therefore a multi-Fermi surface system is favored.

Finally, it may be possible to find structures which have spatial or dynamic properties

which enhance Tc. Here one has the idea of optimal inhomogeneity in which a composite

material consisting of a “pairing region” with a large gap scale is coupled to a “metallic

region” which provides phase stiffness43. Examples of this range from weakly coupled two-

leg ladder systems270 which could have a period 4 bond-centered stripe structure to layered

materials271. As noted in Sec. IV, one might also wonder whether it might be possible to

alter the dynamic structure of the spin-fluctuation spectrum in a manner that would increase

Tc. Here the idea would be to move the low frequency spin fluctuations to higher frequency

in the normal system so as to obtain the increase in the pairing strength that is ultimately

available in the usual superconducting state in which the pairing gap has opened. Here of

course one would need to do this without suppressing the intrinsic pairfield susceptibility.

So we will end this review as it began by noting that while, in principle, the momentum

and frequency dependence of the superconducting gap can provide a fingerprint to identify

the pairing interaction, it will be the material record1 that will tell us whether these ideas

proved useful in providing guidance in the search for new superconductors.

Appendix A: The Structure of Two Pairing Interactions

As discussed in Sec. IV, the Coulomb interaction U gives rise to short-range antiferro-

magnetic spin fluctuations which produce a pairing interaction that is non-local in space and

retarded. In particular, as illustrated in Fig. 19, this pairing interaction is repulsive for two

electrons on the same site but attractive if the electrons are on near neighbor sites. Thus

if the paired electrons are spatially correlated so as to avoid occupying the same site, they
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can take advantage of the non-local near-neighbor attractive part of the interaction. This

spatial non-local nature of the Hubbard model pairing interaction has an analogy with the

temporal, retarded nature of the familiar electron-phonon screened Coulomb pairing inter-

action. In this appendix, the structure of the traditional electron-phonon screened Coulomb

interaction will be compared with the structure of the spin-fluctuation interaction. Here to

ease the notation, we will drop the superscript index pp and Γ will denote the irreducible

particle-particle vertex which we will call the pairing vertex.

1. The Electron-phonon Screened Coulomb Pairing Interaction

To begin, consider the well-known approximation of the pairing vertex for the traditional

electron-phonon screened Coulomb model272 illustrated in Fig. 35

= +
−k′ ↓ −k ↓

k′ ↑ k ↑

Γ(k,k′)

FIG. 35. The traditional approximation to the pairing vertex Γ(k, k′) for the electron-phonon

screened Coulomb model. Here the wavy line represents the dressed phonon propagator, the dots

the dressed electron-phonon couplings and the dashed line a screened Coulomb interaction.

Γ(q, ωm) = − |gq|22ωq

ω2
m + ω2

q

+
4πe2

q2 + κ2
. (A1)

Here q = k′ − k and ωm = ωn′ − ωn are the momentum and Matsubara energy transferred

in the scattering, and we have omitted a sum over the phonon polarizations. The first term

in Eq. (A1) is the phonon-exchange term with gq the electron-phonon coupling constant

and ωq the phonon energy. The second term is the screened Coulomb interaction with κ

the Thomas-Fermi screening wavevector. This form of the vertex, with the phonon frequen-

cies and the electron-phonon coupling determined from bandstructure and linear response

calculations, has provided a useful approximation for the conventional superconductors273.

In this case, as discussed by Migdal and Eliashberg, vertex corrections to the electron-

phonon term are of order the ratio of the Debye energy to the Fermi energy and can be
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neglected. Furthermore, for materials with negligible magnetic correlations, the screened

Coulomb term (which ultimately is replaced by a Coulomb pseudopotential µ∗276,277) has

proved an adequate representation of the Coulomb interaction.

Continuing with the traditional approach, we note that the important pair scattering

processes take place on the Fermi surface and the dominant part of the phase space is

associated with large momentum transfers of order 2pF . For these large momentum transfers,

gq and ωq are slowly varying functions of q, as is the screened Coulomb interaction. This

means that the interaction is local in space but retarded in time. Averaging the momentum

transfer over the Fermi surface, and taking an Einstein spectrum ωq = Ω for the phonons,

the pairing interaction becomes

Γ(ωm) ≅ − 2|g|2Ω
ω2
m + Ω2

+ Vc (A2)

Here,

Vc =

〈

4πe2

q2+κ2

〉

FS

N(0)
(A3)

with N(0) the single spin density of states at the Fermi surface.

A plot of Γ(ωm) is shown in Fig. 36a for a typical set of parameters for which −2|g|2
Ω

+Vc >

0. In this case, the effective pairing interaction is positive for all Matsubara frequencies ωm

and might näıvely appear to be repulsive.278 Nevertheless, at a critical temperature Tc one

finds that there is a solution ∆(ωn) of the linearized BCS gap equation

− Tc

∑

n′

πN(0)Γ(ωn − ωn′)

|ωn′| ∆(ωn′) = ∆(ωn) (A4)

This is because, while Γ(ωm) is a positive function of ωm, it increases over an energy scale set

by the characteristic phonon frequency Ω. In this case, the pair scattering strength is large

and positive for processes in which a pair is scattered from a smaller Matsubara frequency

ωn′ to a larger one ωn such that |ωn−ωn′ | > Ω. Then if ∆(ωn′) is positive, the gap equation

(A4) can be satisfied provided ∆(ωn) is negative as shown in Fig. 36b. This “sign-changing”

frequency structure of the gap reflects the internal structure of a pair in which the electrons

are dynamically correlated to avoid the “instantaneous” screened Coulomb interaction while

taking advantage of the retarded phonon mediated attraction.

Another way to see that Γ(ωm) describes an attractive pairing interaction is to replace

iωm by ω + iδ and take the Fourier transform to determine the time dependence of the
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FIG. 36. (a) The vertex Γ(ωm) multiplied by the single particle density of states N(0) versus

ωm = 2mπT . (b) The resulting gap ∆(ωn) associated with Γ(ωm) versus ωn = (2n + 1)πT . The

change in sign of ∆(ωn) is such that the gap Eq. (A4) can be satisfied even though N(0)Γ(ωm) is

positive for all ωm.

pairing interaction189

Γ(t) =

∫

dω

2π
e−iωt

(

2|g|2Ω
(ω + iδ)2 − Ω2

+ Vc

)

(A5)

then

ReΓ(t) = −|g|2 sin Ωte−δt + Vc 6 δ(t) (A6)

with 6 δ(t) a broadened δ-function of width µ−1
F . For a more general phonon spectrum peaked

at Ω with a width ∆Ω, the first term decays for times larger than ∼ ∆Ω−1. Taking these

features into account, Fig. 37 shows a schematic plot of ReΓ(t) in which one sees that the

repulsive Coulomb interaction lasts for only a brief time of order the inverse of the Fermi

energy while the attractive part of the interaction lasts for a much longer time set by the

phonon spectral weight.
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FIG. 37. Schematic plot of ReΓ(t) versus t. The interaction is repulsive for times less than of order

µ−1
F and then attractive for times between µ−1

F and the inverse of a typical phonon frequency Ω−1.

2. The Spin-Fluctuation Exchange Pairing Interaction

In weak coupling, the leading RPA diagrams for the irreducible singlet particle-particle

scattering vertex Γ are shown in Fig. 38. These give

+

+= + ...

+ + ...

−k′ ↓ −k ↓

k′ ↑ k ↑

Γ(k,k′)

FIG. 38. The RPA diagrams for the Hubbard model pairing interaction. The solid lines are bare

single-particle Green’s functions and the dashed lines the interaction U . Here one clearly sees that

the electrons which make up the spin-fluctuation pairing interaction are the same electrons that

pair.
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Γ(k, k′) =
U

1− U2χ2
0(k

′ + k)
+

U2χ0(k
′ − k)

1− Uχ0(k′ − k)
(A7)

Here k = (k, iωn) and k′ = (k′, iωn′) and

χ0(q, iωm) =
1

N

∑

k

f(εk+q)− f(εk)

iωm − εk+q + εk
. (A8)

For a single, even frequency pair, the gap function is even under k goes to −k, so that one

can replace k′ + k by k′ − k in the first term of Eq. (A7). Then, rearranging the terms in

Eq. (A7) gives

Γ(k, k′) =
3

2
U2 χ0(k

′ − k)

1− Uχ0(k′ − k)
+

U2

2

χ0(k
′ − k)

1 + Uχ0(k′ − k)
+ U. (A9)

The first term is the contribution of the spin fluctuations with χ0(1 − Uχ0)
−1 the RPA

spin susceptibility. The second term represents the charge fluctuations and U is the onsite

Coulomb interaction. This interaction was first used by Berk and Schrieffer to describe the

depression of Tc due to spin-fluctuations for s-wave superconductivity in Pd.

For the 2D Hubbard model doped near half-filling, the dominant contribution to Γ comes

from the first term which peaks near (π, π) reflecting the short range antiferromagnetic

correlations. A plot of Γ(q, 0) versus momentum transfer q is given in Fig. 39 for q along a

path in the Brillouin zone shown in the inset. This interaction is positive for all momentum

transfers. Therefore, for there to be a transition to a superconducting state, the gap function

∆(k) must have a change of sign on the Fermi surface in order to satisfy the BCS equation.

∆(k) = − 1

N

∑

k′

Γ(k − k′)∆(k′)

2εk
tanh(βcεk/2). (A10)

For the nearly half-filled 2D Hubbard model, Eq. (A10) leads to the well-known ∆(k) =

∆0(cos kx− cos ky) dx2−y2 gap. In this case, (k ↑,−k ↓) pairs with k near (π, 0) which have a

negative gap are strongly scattered by the antiferromagnetic spin fluctuations to (k′ ↑,−k′ ↓)
pairs with k′ near (0, π) which have a positive gap, satisfying Eq. (A10). This sign change

in the momentum dependence of ∆(k) reflects an internal structure of a pair in which the

electrons are spatially correlated such that they avoid occupying the same site while taking

advantage of the non-local attractive regions of the interaction. It is a dx2−y2 pair rather

than an extended s-wave (cos kx + cos ky) pair because it is made up from states near the

nearly half-filled Fermi surface. This structure of the interaction is illustrated in Fig. 40,

which shows the spatial Fourier transform of Γ(q). Here one member of the pair is located
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FIG. 39. Γ(q, 0) versus q for q along a path in the Brillouin zone which is shown in the inset. An

effective interaction that is peaked at a large momentum transfer is the origin of the unconventional

superconductivity discussed in this review. Here U = 2t, t′ = 0, 〈n〉 = 0.87 and T = 0.25t.

1 2 3

Γ(ℓx,0)

ℓx

FIG. 40. The spatial Fourier transform Γ(ℓx, ℓy = 0) versus ℓx. Here one member of a pair is at

the origin and Γ(ℓx, 0) is the interaction energy when a second electron is added in a single state

at site ℓx.

at the origin and another at site (ℓx, 0).

Thus both the conventional and the unconventional superconductors have “sign changing
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gaps.” For the conventional case this sign change occurs in the frequency dependence of the

gap and reflects the dynamic correlations of the electrons which form the Cooper pairs. In

the case of the unconventional superconductors, the sign change occurs in the momentum

dependence of the gap and reflects the spatial correlations of the paired electrons. Naturally,

there are also dynamic correlations since the spin-fluctuations are retarded and similarly in

the phonon case there are some spatial correlations due to the momentum dependence of

the electron-phonon interaction. However, the characteristic feature of the spin-fluctuation

interaction is its momentum dependence which leads to a spatially non-local pairing inter-

action, while the characteristic feature of the phonon mediated pairing interaction is its

frequency dependence which leads to a retarded pairing interaction.
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B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, H. Takagi, A. B. Antunes, I. Sheikin,



82

K. Behnia, and L. Taillefer, Phys. Rev. Lett. 104, 057005 (2010).

179 L. Taillefer, J. Phys.: Condens. Matter 21, 164212 (2009).

180 A. J. Millis and M. R. Norman, Phys. Rev. B 76, 220503(R) (2007).

181 E. G. Moon and S. Sachdev, Phys. Rev. B 80, 035117 (2009).
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and S. V. Borisenko, Eur. Phys. J. ST 188, 153 (2010).

196 J. H. Yun, J. M. Bok, H.-Y. Choi, W. Zhang, X. J. Zhou, and C. M. Varma, Phys. Rev. B

84, 104521 (2011).

197 D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).

198 C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000).

199 T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi, Science 328, 474 (2010).

200 B. Muschler, W. Prestel, E. Schachinger, J. P. Carbotte, R. Hackl, S. Ono, and Y. Ando, J.

Phys: Condens. Mat. 22, 375702 (2010).

201 S. Caprara, C. D. Castro, B. Muschler, W. Prestel, R. Hackl, M. Lambacher, A. Erb, S. Komiya,

Y. Ando, and M. Grilli, Phys. Rev. B 84, 054508 (2011).

202 M. Sutherland, D. G. Hawthorn, R. W. Hill, F. Ronning, S. Wakimoto, H. Zhang, C. Proust,

E. Boaknin, C. Lupien, L. Taillefer, R. Liang, D. A. Bonn, W. N. Hardy, R. Gagnon, N. E.

Hussey, T. Kimura, M. Nohara, and H. Takagi, Phys. Rev. B 67, 174520 (2003).

203 J. Lee, K. Fujita, K. McElroy, J. A. Slezak, M. Wang, Y. Aiura, H. Bando, M. Ishikado,

T. Masui, J.-X. Zhu, A. V. Balatsky, H. Eisaki, S. Uchida, and J. C. Davis, Nature (London)

442, 546 (2006).

204 A. N. Pasupathy, A. Pushp, K. K. Gomes, C. V. Parker, J. Wen, Z. Xu, G. Gu, S. Ono,

Y. Ando, and A. Yazdani, Science 320, 196 (2008).

205 N. Jenkins, Y. Fasano, C. Berthod, I. Maggio-Aprile, A. Piriou, E. Giannini, B. W. Hoogen-

boom, C. Hess, T. Cren, and Ø. Fischer, Phys. Rev. Lett. 103, 227001 (2009).

206 O. Ahmadi, L. Coffey, J. F. Zasadzinski, N. Miyakawa, and L. Ozyuzer, Phys. Rev. Lett. 106,

167005 (2011).

207 D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).

208 E. van Heumen, E. Muhlethaler, A. B. Kuzmenko, H. Eisaki, W. Meevasana, M. Greven, and

D. van der Marel, Phys. Rev. B 79, 184512 (2009).

209 J. P. Carbotte, T. Timusk, and J. Hwang, Rep. Prog. Phys. 74, 066501 (2011).

210 X. J. Zhou, T. Cuk, T. Devereaux, N. Nagaosa, and Z.-X. Shen, in Handbook of High-

Temperature Superconductivity, edited by J. R. Schrieffer and J. Brooks (Springer, 2007)



84

Chap. 3.

211 J. M. Bok, J. H. Yun, H.-Y. Choi, W. Zhang, X. J. Zhou, and C. M. Varma, Phys. Rev. B

81, 174516 (2010).
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