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Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical

severity scores and available assays such as blood lactate reflect global illness severity with

suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis.

Here, we present prognostic models for 30-day mortality generated independently by three

scientific groups by using 12 discovery cohorts containing transcriptomic data collected from

primarily community-onset sepsis patients. Predictive performance is validated in five cohorts of

community-onset sepsis patients in which the models show summary AUROCs ranging from

0.765–0.89. Similar performance is observed in four cohorts of hospital-acquired sepsis. Com-

bining the new gene-expression-based prognostic models with prior clinical severity scores leads

to significant improvement in prediction of 30-day mortality as measured via AUROC and net

reclassification improvement index These models provide an opportunity to develop molecular

bedside tests that may improve risk stratification and mortality prediction in patients with sepsis.
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S
epsis, recently defined as organ dysfunction caused by a
dysregulated host response to infection1, contributes to half
of all in-hospital deaths in the US and is the leading cost for

the US healthcare system2,3. Although in-hospital sepsis out-
comes have improved over the last decade with standardized
sepsis care, mortality rates remain high (10–35%)4. Sepsis treat-
ment still focuses on general management strategies including
source control, antibiotics, and supportive care. Despite dozens of
clinical trials, no treatment specific for sepsis has been success-
fully utilized in clinical practice5. Two consensus papers suggest
that continued failure of proposed sepsis therapies is due to
substantial patient heterogeneity in the sepsis syndrome and a
lack of tools to accurately categorize sepsis at the molecular
level5,6. Current tools for risk stratification include clinical
severity scores such as APACHE or SOFA as well as blood lactate
levels. While these measures assess overall illness severity, they do
not adequately quantify the patient’s dysregulated response to the
infection and therefore fail to achieve the personalization neces-
sary to improve sepsis care7. Some peptide markers of sepsis
severity have been validated (e.g. proadrenomedullin8 among
others9), but these are not yet cleared for clinical use.

A molecular definition of the severity of the host response in
sepsis would provide several benefits. First, improved accuracy in
sepsis prognosis would improve clinical care through appropriate
matching of patients with resources: the very sick can be diverted
to intensive care unit (ICU) for maximal intervention, while
patients predicted to have a better outcome may be safely watched
in the hospital ward or discharged early. Second, more-precise
estimates of prognosis would allow for better discussions
regarding patient preferences and the utility of aggressive inter-
ventions. Third, better molecular phenotyping of sepsis patients
has the potential to improve clinical trials through both (1)
patient selection and prognostic enrichment for drugs and
interventions (e.g., excluding patients predicted to have good vs.
bad outcomes) and (2) better assessments of observed-to-
expected ratios for mortality5,6. Finally, as a direct quantitative
measure of the dysregulation of the host response, molecular
biomarkers could potentially help form a quantitative diagnosis of
sepsis as distinct from non-septic acute infections10,11. Thus,
overall, a quantitative test for sepsis could be a significant asset to
clinicians if deployed as a rapid assay.

Previously, a number of studies have used whole-blood tran-
scriptomic (genome-wide expression) profiling to risk-stratify
sepsis patients12–15. Important insights from these studies suggest
that more-severe sepsis is accompanied by an overexpression of
neutrophil proteases, adaptive immune exhaustion, and an overall
profound immune dysregulation12,13,16–19. Quantitative evalua-
tion of host response profiles based on these observations has
been validated prospectively to show specific outcomes14,15, but
none have yet been translated into clinical practice. Still, the
availability of high-dimensional transcriptomic data from these
accumulated studies has created unprecedented opportunities to
address questions across heterogeneous representations of sepsis
(different ages, pathogens, and patient types) that could not be
answered by any individual cohort.

Transcription-based modeling has been deployed across many
diseases to improve prognostic accuracy. These are typically
developed in a method-specific manner using data collected from
single cohorts. As a result, prognostic models often lack the
generalizability that is necessary to confer utility in clinical
applications20. In contrast, community modeling approaches
(where multiple groups create models using the same training
data) can provide an opportunity to explicitly evaluate predictive
performance across a diverse collection of prognostic models
sampled from across a broad solution space21–25. Here, we
systematically identified a large collection of both public and

privately held gene expression data from clinical sepsis studies at
the time of sepsis diagnosis. Three scientific groups were then
invited to build models to predict 30-day mortality based on gene
expression profiles. These three groups produced four different
prognostic models, which were then validated in external
validation cohorts composed of patients with either community-
acquired sepsis or hospital-acquired infections (HAIs).

Results
Analysis overview. We used a community approach to build
gene-expression-based models predictive of sepsis-induced
mortality using all available gene expression datasets (21 total
cohorts, Table 1). In this community approach, three different
teams (Duke University, Sage Bionetworks, and Stanford
University) performed separate analyses using the same input
data; we thus sampled the possible model space to determine
whether output performance is a function of analytical
approaches (Fig. 1). Two models (Duke and Stanford) used
parameter-free difference-of-means formula for integrating gene
expression, and the other two models (both from Sage Bionet-
works) used parametrized penalized logistic regression (LR)26 and
random forests (RF)27.

Each of the four models was trained using 12 discovery cohorts
(485 survivors and 157 non-survivors) composed primarily of
patients with community-acquired sepsis. Performance was
evaluated across two groups of heterogeneous validation datasets
(five community-acquired sepsis cohorts with 161 survivors and
28 non-survivors and 4 HAI cohorts with 258 survivors and 24
non-survivors, Table 1). The community-acquired sepsis and
HAI cohorts were considered separately in validation because of
their known differences in host-response profiles. Due to the
nature of public datasets, we had limited information on
demographics, infection, severity, and treatment and so these
variables were not controlled for in model selection. The cohorts
included patients from multiple age groups, countries, and
hospital wards (emergency department, hospital ward, medical
ICU, and surgical/trauma ICU). As expected in varied patient
populations, mortality rates varied widely across cohorts (mean
23.2%± 13.4%).

Prognostic power assessments. Model performance was
primarily evaluated using receiver operating characteristic (ROC)
analysis separately in the discovery, validation, and HAI cohorts.
Boxplots of the AUROCs for each model are shown in Fig. 2; data
from individual cohorts and summary ROC curves are shown in
Supplementary Tables 1 and 2 and Supplementary Fig. 4. Across
the five community-acquired sepsis validation datasets, the four
models showed generally preserved prognostic power, with
summary AUROCs ranging from 0.75 (95% CI 0.63–0.84, Sage
LR) to 0.89 (95% CI 0.56–0.99, Stanford). Three of the four
models performed well in classifying the HAI datasets (summary
AUROCs 0.81–0.87 in the Duke, Sage LR, and Stanford models);
one model performed poorly in HAI (summary AUROC 0.52,
95% CI 0.36–0.68, Sage RF). Overall, most models performed
equivalently in discovery, validation, and HAI datasets. To
judge other performance metrics including accuracy, specificity,
negative predictive value, and positive predictive value, we set
thresholds for each model at the nearest sensitivity >90%
(Supplementary Fig. 5). The raw prediction scores for each
sample in each model are available for further interpretation28.

Using the validation and HAI cohorts, we compared the
present models to a single prognostic model made with all genes
previously associated with mortality (see Supplementary
Methods)13,17–19,29,30. We found that that three of the four
models show substantial improvement (average increase of
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Table 1 Datasets included in the analysis

Dataset

accession

First author Cohort description Timing of sepsis diagnosis Percent

bacterial

infection

Age Sex

(%

male)

Severity Country No.

survived

No.

died

1a: Discovery Cohorts

E-MEXP-

3567

Irwin Children with

meningococcal sepsis

+/− HIV co-infection

Admission to ED 100 2.0 (IQR

0.6–6.9)

55 unk. Malawi 6 6

E-MEXP-

3850

Kwan Children w/

meningococcal sepsis

Admission to hospital;

sampled at multiple times

0–48 h

100 1.3 (range

0.8–2.0)

40 PELOD;

29.2

(range

11–61)

UK 19 5

E-MTAB-

1548

Almansa Adult surgical patients

with sepsis (EXPRESS

study)

Average post-operation

day 4 (hospital acquired)

100 69.7 (std.

dev. 13.1)

67 APACHE II

17.0 (std.

dev. 5.4)

Spain 50 24

GSE10474 Howrylak Adults in MICU with

sepsis +/− ALI

Admission to ICU 75+ 57 (std.

dev. 4.3)

45 APACHE II

20.7 (std.

dev. 1.6)

USA 22 11

GSE13015a Pankla Adults with sepsis,

many from burkholderia

Within 48 h of diagnosis;

both community-acquired

and hospital-acquired

100 54.7 (std.

dev. 11.7)

54 unk. Thailand 35 13

GSE13015b 8 7

GSE27131 Berdal Adults with severe H1N1

influenza requiring

mechanical ventilation

Admission to ICU 0 unk. unk. SAPS II

29.3 (std.

dev. 10.3)

Norway 5 2

GSE32707 Dolinay Adults in MICU with

sepsis+/− ARDS

Admission to ICU unk. 57.1 (std.

dev. 14.9)

53 APACHE II

26.7 (std.

dev. 8.5)

USA 31 17

GSE40586 Lill Infants, children, and

adults with bacterial

meningitis

Within 48 h of hospital

admission

100 43.4

(range

17 days

–70 years)

unk. unk. Estonia 19 2

GSE63042 Langley Adults with sepsis

(CAPSOD study)

Admission to ED 80+ 59.1 (std.

dev. 18.3)

59 APACHE II

16.5 (std.

dev. 7.3)

USA 76 28

GSE66099 Wong Children in ICU with

sepsis/septic shock

Admission to ICU 72 3.7 58 PRISM 15.7 USA 171 28

GSE66890 Kangelaris Adults in ICU with

sepsis +/− ARDS

Admission to ICU 63 (std.

dev 19)

56 APACHE

III 100

(std. dev.

35)

USA 43 14

1b: Validation cohorts

GSE21802 Bermejo-

Martin

Adults in ICU with

severe H1N1 influenza

Within 48 h of admission

to ICU

0 43 (std.

dev. 11)

47 SOFA 4.1

(std. dev.

3.5)

Spain 7 4

GSE33341 Ahn Adults with 2+ SIRS

criteria and bacteremia

Within 24 h of admission

to hospital

100 58 (range

24–91)

61 unk. USA 49 2

GSE54514 Parnell Adults in ICU with

sepsis

Admission to ICU unk. 61 (std.

dev. 16)

40 APACHE II

21 (std.

dev. 6)

Australia 26 9

GSE63990 Tsalik Adults with bacterial

infection plus 2 + SIRS

criteria

Admission to ED 100 49 (range

14–88)

50 unk. USA 64 6

E-MTAB-

4421.51

Davenport Adults with sepsis

(GAinS study)

Day of hospital admission 92 64.2 (std.

dev. 15.2

55 APACHE II

18.6 (std.

dev. 9.7)

UK 15 7

1c: Hospital-acquired infection cohorts

Duke HAI Tsalik

(unpublished)

Adults who developed

ventilator-associated

pneumonia (VAP)

Hospital days 1–30 unk. 58.0 (std.

dev. 17.9)

75 unk. USA 60 10

Glue Grant

Burns

Glue Grant

authors

Adults with severe

burns (whole blood)

Hospital days 1–30 100 14.1 (std.

dev. 16.2)

64 Denver

Score 1.5

(S 1.7)

USA 84 8

Glue Grant

Trauma

Glue Grant

authors

Adults with severe

traumatic injuries (buffy

coat)

Hospital days 1–30 100 33.2 (std.

dev. 10.2)

74 MODS 6.4

(std. dev.

3.3)

USA 48 1

UF P50

12H

Moldawer

(unpublished)

Adults with hospital-

acquired sepsis

Hospital days 1–30 100 unk. unk. SOFA 5.5

(std. dev.

3.9)

USA 66 5

Unk, unknown data or not available; IQR, inter-quartile range; std. dev., standard deviation; ED, emergency department; ICU, intensive care unit; MICU, medical ICU; ARDS, acute respiratory distress

syndrome; SIRS, systemic inflammatory response syndrome; VAP, ventilator-associated pneumonia

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03078-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:694 |DOI: 10.1038/s41467-018-03078-2 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


roughly 0.1) compared to the prior models; this reached
significance for the Duke and Stanford models (Supplementary
Table 3).

To assess whether the models contained complementary
orthogonal information, we evaluated the prediction accuracy of
an ensemble model based on the predictions of all four individual
models (see Supplementary Methods). The prognostic power of
the ensemble model was at an average AUROC of 0.81 across all
five validation datasets (paired t-tests vs. individual models all
P =NS, Supplementary Table 4) indicating that the present
diagnostic accuracy may be a rough estimate of the ceiling of
prognostic accuracy inherent in these data.

Performance in predicting non-survivors was evaluated using
the area under the precision–recall curve (AUPRC)31 (Fig. 2b and
Supplementary Table 5). The AUPRCs for non-survivor predic-
tion were notably lower than the AUROCs, as was expected from
the highly unbalanced classes (rare mortalities). This suggests that
the models’ primary utility may be in ruling out mortality for
individuals much less likely to die within 30 days (those less likely
to require substantial intervention) as opposed to accurately
identifying the minority of patients who are highly likely to die
within 30 days. On the contrary the AUPRC of the ensemble
model was averaged at 0.428 in validation cohorts (Supplemen-
tary Table 4), suggesting complementarity in discriminatory
power between individual models.

We examined the effects of clinical time course on the gene
scores in the two validation datasets that tracked longitudinal
data (GSE21802 and GSE54154; Supplementary Fig. 6). We found
no differences in slope (change in score over time) between the
survivors and non-survivors, although the scores in non-survivors
were significantly higher than in survivors during the entire
hospital stay, possibly indicating a failure to restore homeostasis.

Comparison to standard predictors. We next assessed whether
the performance of these gene expression-based predictors of

mortality outperformed standard clinical severity scores. Notably,
clinical measures of severity were only available in a subset of
cohorts (eight discovery, three validation, three HAI; Table 2).
The mean differences in the AUROCs of the gene model over
clinical severity scores were: Duke −0.044; Sage LR 0.010; Sage RF
0.094; Stanford 0.064; only the Stanford model trended towards
significance (paired t-test P = 0.098). However, we combined gene
models and clinical severity scores into joint predictors, and each
combination significantly outperformed clinical severity scores
alone (mean difference Duke 0.077; Sage LR 0.076; Sage RF 0.16;
Stanford 0.098; all paired t-tests p ≤ 0.01).

We next examined continuous net reclassification improve-
ment (cNRI) index to quantify how well the model with gene
scores reclassifies survivors over the model with clinical severity
scores in each of these same datasets (Table 3). In the validation
and HAI cohorts, the mean NRI was 0.53–0.84 (potential range
0–2, where 2 reflects all patients with improved classification). For
the Duke and Stanford scores, half of the validation and HAI
datasets showed significant NRI compared to standard predictors
alone. This suggests that the gene expression-based predictors
add significant prognostic utility to standard clinical metrics.

Finally, we examined test characteristics at a high-sensitivity
cutoff (95%) and a high-specificity cutoff (95%) for the gene
scores in comparison to baseline error models (Supplementary
Table 6) and in comparison to clinical severity scores (Supple-
mentary Table 7). Overall mean accuracy of the joint clinical and
gene scores was higher in the validation and HAI datasets
(0.58–0.72 and 0.64–0.79 across the models, respectively)
compared to clinical scores alone (0.57 and 0.62, respectively).

Comparison across models. We next studied whether models
were correctly classifying the same patients or different groups of
patients. We tested model correlations across all patients by
comparing the relative ranks of each patient within each model
instead of comparing raw model scores. We found the models
were moderately correlated (Spearman rho = 0.35 – 0.61,
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whole blood,

sepsis only,

48 h since admission
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Secondary validation
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Fig. 1 Overview of analysis: schema of our community-modeling-based

approach to multi-cohort analysis. Three phases are shown, as described in

the Methods section: (i) discovery, (ii) validation, and (iii) secondary

validation (HAI cohorts)
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Fig. 2 Model performance of the four genomic mortality predictors as

measured by (a) AUROC and (b) AUPRC. The three panels (top, middle,

bottom) show boxplots of the performance across all Discovery, Validation,

and HAI cohorts
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Supplementary Fig. 7). We then evaluated the agreement between
the four models by comparing model-specific patient classifica-
tions (Supplementary Table 8). For this purpose, we chose cutoffs
for each model that yielded 90% sensitivities for non-survivors.
We then labeled patients as being either always misclassified,
correctly classified by 1 or 2 models (no consensus), or correctly
classified in at least 3 of 4 models (consensus). As expected by the
90% sensitivity threshold, 10% of patients were misclassified by all
models. In the remaining cases, 63% were correctly predicted by
consensus and 27% do not reach consensus. Together, the model
correlation and consensus analyses showed that 73% of patients
were classified by at least one model, with variance leading to
discordance in the remaining 27%. These results suggest that
although the models use different genes, they are reaching the
same conclusions about most patients.

Biology of the gene signatures of mortality. Gene predictors
were chosen for both optimized prognostic power and sparsity in
our data-driven approach and so do not necessarily represent key
nodes in the pathophysiology of sepsis. Still, we examined whe-
ther interesting biology was being represented in the models. We
first looked for overlap in the gene sets used for prediction across
the four models, but found few genes in common (Table 4). Since
each signature had too few genes for robust analysis, we analyzed
the genes from all four models in aggregate, resulting in 58 total
genes (31 upregulated and 27 downregulated; Supplementary
Table 9).

First, we studied whether the differential gene expression
identified may be indicative of cell-type shifts in the blood. The
pooled gene sets were tested in several known in vitro gene
expression profiles of sorted cell types to assess whether gene
expression changes are due to cell-type enrichment (Supplemen-
tary Fig. 8). No significant differences were found, but the trend
showed an enrichment of M1-polarized macrophages and band
cells (immature neutrophils), and underexpression in dendritic
cells. This is consistent with a heightened pro-inflammatory
response and a decrease in adaptive immunity in patients who
ultimately progress to mortality12.

We next tested the 58 genes for enrichment in curated gene
sets from gene ontologies, Reactome and KEGG pathways using
two different enrichment methodologies: gene-based over-
representation analysis and expression-based GSEA. After multi-
ple hypothesis testing corrections, 4 out of 3330 gene sets tested
were significantly over-represented at an FDR of 5% (Supple-
mentary Table 10a). These include genes related to the regulation
of T cell activation and proliferation, cytokine-mediated signaling
pathway and RHO GTPases activation of CIT. The relatively low
number of pathways enriched in over-representation analysis
may be due to the low number of genes in the predictor set.
Enrichment of 58 gene predictors’ expression were also tested
using GSEA. Out of 1576 curated pathways, 546 were enriched at
an FDR of 5%; top pathways are shown in Supplementary
Table 10b. A brief examination of enriched pathways activated in
non-survivors showed mostly inflammation-related pathways,
while survivors showed largely developmental pathways. Since the
models were generated in a way that penalized the inclusion of
genes that were redundant for classification purposes, and since
genes redundant for classification purposes are often from the
same biological pathway, their exclusion from the models limits
the utility of enrichment analyses.

Discussion
Sepsis is a heterogeneous disease, including a wide possible range
of patient conditions, pre-existing comorbidities, severity levels,
infection incubation times, and underlying immune states. Many
investigators have hypothesized that molecular profiling of the
host response may better predict sepsis outcomes. Here, we
extensively assessed the predictive performance of whole-blood
gene expression using a community-based modeling approach.
This approach was designed to evaluate predictive capabilities in
a manner that was independent of specific methodological pre-
ferences, and instead created robust prognostic models across a
broad solution space. We developed four state-of-the-art data-
driven prognostic models using a comprehensive survey of
available data including 21 different sepsis cohorts (both
community-acquired and hospital-acquired, N = 1113 patients),

Table 2 AUROC with genomic features and clinical severity

Dataset Score type Severity

alone

Duke Sage LR Sage RF Stanford

Gene

model

alone

Joint

model

Gene

model

alone

Joint

model

Gene

model

alone

Joint

model

Gene

model

alone

Joint

model

Discovery datasets

EMEXP3850 PELOD 1 0.947 1 0.916 1 1 1 1 1

EMTAB1548 SOFA 0.735 0.817 0.843 0.863 0.87 1 1 0.849 0.863

GSE10474 APACHE II 0.551 0.53 0.626 0.682 0.758 1 1 0.722 0.697

GSE27131 SAPS II 1 0.7 1 0.7 1 1 1 1 1

GSE32707 APACHE II 0.546 0.514 0.537 0.712 0.702 0.996 0.996 0.81 0.805

GSE63042 APACHE II 0.774 0.679 0.797 0.866 0.868 1 1 0.742 0.815

GSE66099 PRISM 0.781 0.806 0.84 0.916 0.913 1 1 0.881 0.892

GSE66890 APACHE II 0.723 0.802 0.847 0.711 0.759 1 1 0.834 0.849

Validation datasets

EMTAB4421 APACHE 0.705 0.695 0.771 0.81 0.762 0.714 0.752 0.829 0.838

GSE21802 SOFA 0.812 0.333 0.833 0.708 0.792 0.583 0.833 0.75 0.833

GSE54514 APACHE 0.776 0.936 0.944 0.701 0.739 0.902 0.927 0.816 0.825

HAI datasets

Glue Burns

D1-D30

Denver score 0.482 0.808 0.842 0.721 0.731 0.606 0.604 0.74 0.756

Glue Trauma

D1-D30

MODS score 0.927 1 1 0.938 0.979 0.667 0.958 1 1

UF P50 12H SOFA 0.941 0.573 0.945 0.652 0.945 0.6 0.952 0.682 0.945

Some gene model AUCs may differ from Supplementary Table 2 since samples without severity scores were dropped from this analysis

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03078-2 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:694 |DOI: 10.1038/s41467-018-03078-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


with summary AUROCs around 0.85 for predicting 30-day
mortality. We also showed that combining the gene-expression-
based models with clinical severity scores leads to significant
improvement in the ability to predict 30-day mortality, indicating
clinical utility.

Prediction of outcomes up to 30 days after the time of sampling
represents a difficult task, given that the models must account for

all interventions that occur as part of the disease course. An
accuracy of 100% is likely not only unachievable but also unde-
sirable, as it would suggest that mortality is pre-determined and
independent of clinical care. Given this background, and since
similar prognostic power was observed across all individual
models and the ensemble model, our prognostic accuracy may
represent an upper bound on transcriptomic-based prediction of

Table 3 Continuous net reclassification index for gene scores over clinical severity scores

A: NRI, confidence intervals, and P-values for mortality prediction for each of the four gene scores over clinical severity scores alone. B: Summary statistics for aggregate samples, broken up by data type

(discovery, validation, HAI). NRI, continuous net reclassification index. CI, confidence interval; HAI, hospital-acquired infection. Bold values indicate p < 0.05.
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sepsis outcomes. In addition, since prognostic accuracy was
retained across broad clinical phenotypes (children and adults,
with bacterial and viral sepsis, with community-acquired and
HAIs, from multiple institutions around the world) the models
appear to have successfully incorporated the broad clinical het-
erogeneity of sepsis. The derived discriminatory power of the
gene models (AUCs near 0.85) is at least similar to the AUC of
proadrenomedullin (0.83) in a recent large prospective trial
(TRIAGE study)8. Furthermore, the impact of the addition of the
severity score to clinical practice could be substantial. If envi-
sioned as a rule-out test for mortality (e.g. setting the threshold at
a 95% sensitivity), the Duke and Stanford scores showed large
increases in specificity (13–21 percentage point absolute increase)
compared with standard clinical severity scores alone. However,
peptide assays have the significant advantage of potentially very
rapid turnaround times. Moreover, a paucity of randomized data
in application of existing biomarkers makes it unclear whether
improved risk stratification will actually improve health and/or
reduce costs9.

Sepsis remains difficult to define. The most recent definition of
sepsis (Sepsis-3) requires the presence organ dysfunction as
measured by an increase in SOFA of two or more points over
baseline1. Determining the SOFA score can help guide which
organ systems are dysfunctional, but this fails to characterize the
biological changes are driving the septic response. Molecular tools
like the ones developed here provide an opportunity to provide a
simple, informative prognosis for sepsis by improving patient risk
stratification. Host-response profiles could also help to classify
patients with sepsis as opposed to non-septic acute infections.
Identifying such high-risk patients may also lead to greater suc-
cess in clinical trials through improved enrichment strategies.
This identification of subgroups or ‘endotypes’ of sepsis has
already been successfully applied to both pediatric and adult
sepsis populations14,15.

The goal of this study was to generate predictive models but
not necessarily to define sepsis pathophysiology. However, our
community approach identified a large number of genes asso-
ciated with sepsis mortality that may point to underlying biology.
The association with immature neutrophils and inflammation in
sepsis has been previously shown32. Results of this study confirm
this finding as we note increases in the neutrophil chemoat-
tractant IL-8 as well as neutrophil-related antimicrobial proteins
(DEFA4, BPI, CTSG, MPO). These azurophilic granule proteases
may indicate the presence of very immature neutrophils (meta-
myelocytes) in the blood33. Many of these genes have also been
noted in the activation of neutrophil extracellular traps (NETs)
34,35. NET activation leads to NETosis, a form of neutrophil cell
death that can harm the host35. Whether these involved genes are
themselves harmful or are markers of a broader pathway is
unknown. Along with immune-related changes, there are changes

in genes related to hypoxia and energy metabolism (HIF1A,
NDUFV2, TRIB1). Of particular interest is the increase in HIF1A,
a hypoxia-induced transcription factor. This upregulation is
corroborated by previous findings in patients with higher early
mortality in the larger E-MTAB-4421.51 cohort13. This may be
evidence of either a worsening cytopathic hypoxia in septic
patients who progress to mortality, or of a shift away from oxi-
dative metabolism (“pseudo-Warburg” effect), or both36. Mod-
ification of the Warburg effect due to sepsis has been implicated
in immune activation37, trained immunity38, and
immunoparalysis39.

The present study has several limitations. First, as a retro-
spective study of primarily publically available data, we are not
able to control for demographics, infection, patient severity, or
individual treatment. However, our successful representation of
this heterogeneity likely contributed to the successful validation
in external community-acquired and hospital-acquired sepsis
cohorts. Second, despite a large amount of validation data, we do
not present the results of any prospective clinical studies of these
biomarkers. Prospective analysis will be paramount in translating
the test to a clinically relevant assay. In addition, while some rapid
PCR techniques could bring the potential turnaround time of a
gene-expression-based assay to under 30 min, this will require a
substantial engineering effort. Third, the genes identified here
were specifically chosen for their performance as biomarkers, not
based on known relevance to the underlying pathophysiology of
mortality in sepsis. As such, the biological insights gained from
these biomarkers will need to be confirmed and expanded on by
studies focused on the entire perturbation of the transcriptome
during sepsis and through targeted study of individual genes and
pathways. Fourth, the use of 30-day mortality as our endpoint is a
crude measure of severity, and may miss important intermediate
endpoints such as prolonged ICU stay or poor functional
recovery. While such intermediate outcomes were not available in
the current data, the models’ abilities to predict these functional
outcomes will need to be tested prospectively. Fifth, despite a
seemingly large total N (1113), we were unable to perform robust
subgroup analyses (such as infection site or pathogen type),
although a broad range of clinical circumstances is included
across the datasets. Finally, we note that some may find as a
weakness the limited overlap in genes chosen by the four models.
However, in the search for sparse models using highly collinear
data such as gene expression, near-random selection of variables
can occur40. The similar performance of the classifiers using
disparate gene sets is thus further evidence that these models may
be near an upper bound of discriminatory ability using whole-
blood gene expression data.

Researchers, clinicians, funding agencies, and the public are all
advocating for improved platforms and policies that encourage
sharing of clinical trial data41. Meta-analysis of multiple studies

Table 4 Genomic predictors of sepsis mortality

Model name Direction of change in patients with

mortality

Genomic features

Duke Up (5 genes) TRIB1, CKS2, MKI67, POLD3, PLK1

Down (13 genes) TGFBI, LY86, CST3, CBFA2T3, RCBTB2, TST, CX3CR1, CD5, MTMR11, CLEC10A, EMR3,

DHRS7B, CEACAM8

Sage LR Up (9 genes) CFD, DDIT4, DEFA4, IFI27, IL1R2, IL8, MAFF, OCLN, RGS1

Down (9 genes) AIM2, APH1A, CCR2, EIF5A, GSTM1, HIST1H3H, NT5E, RAB40B, VNN3

Sage RF Up (13 genes) B4GALT4, BPI, CD24, CEP55, CTSG, DDIT4, G0S2, MPO, MT1G, NDUFV2, PAM, PSMA6,

SEPP1

Down (4 genes) ABCB4, CTSS, IKZF2, NT5E

Stanford Up (8 genes) DEFA4, CD163, PER1, RGS1, HIF1A, SEPP1, C11orf74, CIT

Down (4 genes) LY86, TST, OR52R1, KCNJ2
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leads to results that are more reproducible than from similarly
powered individual cohorts42. The community approach used
here has shown that aggregated transcriptomic data can be used
to define novel prognostic models in sepsis. This collaboration of
multidisciplinary teams of experts encompassed both analytical
and statistical rigor along with deep understandings of both the
transcriptomics data and clinical data. To advance beyond the
work presented here, more data must be made available,
including demographics, treatments, and clinical outcomes, as
well as other data types like proteomics and metabolomics. Data-
driven collaborative modeling approaches using these data can be
effective in discovering new clinical tools.

We have shown comprehensively that patients with sepsis can
be risk-stratified based on their gene expression profiles at the
time of diagnosis. The overall performance of expression-based
predictors paired with clinical severity scores was significantly
higher than clinical scores alone in multiple cohorts with het-
erogeneous sepsis. These gene expression models reflect a
patient’s underlying biological response state and could poten-
tially serve as a valuable clinical assay for prognosis and for
defining the host dysfunction responsible for sepsis. These results
serve as a benchmark for future prognostic model development
and as a rich source of information that can be mined for addi-
tional insights. Improved methods for risk stratification would
allow for better resource allocation in hospitals and for prognostic
enrichment in clinical trials of sepsis interventions (removing
those patients who will likely survive regardless of intervention).
Ultimately, prospective clinical trials will be needed to confirm
and extend the findings presented here.

Methods
Systematic search. Two public gene expression repositories (NCBI GEO, EMBL-
EBI ArrayExpress) were searched for all clinical-gene expression microarray or
next-generation sequencing (NGS/RNAseq) datasets that matched any of the fol-
lowing search terms: sepsis, SIRS, trauma, shock, surgery, infection, pneumonia,
critical, ICU, inflammatory, nosocomial. Clinical studies of acute infection and/or
sepsis using whole blood were retained. Datasets that utilized endotoxin or lipo-
polysaccharide infusion as a model for inflammation or sepsis were excluded.
Datasets derived from sorted cells (e.g., monocytes, neutrophils) were also
excluded.

Overall, 16 studies containing 17 different cohorts were included (Table 1a, b).
These 16 studies include expression profiles from both adult15,17,19,43–52 and
pediatric48,53–56 cohorts. In these cases, the gene expression data were publicly
available. When mortality and severity phenotypes were unavailable in the public
data, the data contributors were contacted for this information. This included
datasets E-MTAB-1548 (refs. 13,57), GSE10474 (ref. 44), GSE21802 (ref. 50),
GSE32707 (ref. 47), GSE33341 (ref. 51), GSE63042 (ref. 19), GSE63990 (ref. 52),
GSE66099 (ref. 56), and GSE66890 (ref. 49). Furthermore, where longitudinal data
were available for patients admitted with sepsis, we only included data derived
from the first 48 h after admission. The E-MTAB-4421 and E-MTAB-4451 cohorts
both came from the GAinS study15, used the same inclusion/exclusion criteria, and
were processed on the same microarray type. Thus, after re-normalizing from raw
data, we used ComBat normalization58 to co-normalize these two cohorts into a
single cohort, which we refer to as E-MTAB-4421.51. For this study, data were
included only for patients sampled on the day of hospital admission. In addition to
the above 17 datasets, we identified four additional privately held datasets
(Table 1c) representing patients with HAI. In-depth summaries of each HAI cohort
can be found in the supplementary text.

We selected cohorts as either discovery or validation based on their availability.
Studies for which outcome data were readily available were included as discovery
cohorts. Only GSE54514 (ref. 17) was initially held out for validation given its large
size and representative patient characteristics. After we had trained the models
some outcomes data became newly available, so these were added as validation
cohorts15,50–52. Additionally, given the known differences in sepsis
pathophysiology and gene expression profiles as compared to patients with
community-acquired sepsis56,59, the HAI datasets were set aside as a second
validation cohort. The validation cohorts were not matched to the discovery cohort
on any particular criteria but rather provide a validation opportunity across a
heterogeneous range of clinical scenarios.

Gene expression normalization. All Affymetrix datasets were downloaded as CEL
files and re-normalized using the gcRMA method (R package affy60). Output from
other array types were normal-exponential background corrected and then

between-arrays quantile normalized (R package limma61). For all gene analyses, the
mean of probes for common genes was set as the gene expression level. All probe-
to-gene mappings were downloaded from GEO from the most current SOFT files.

Two of the cohorts, CAPSOD19 and the Duke HAI cohort, were assayed via
NGS. For compatibility with microarray studies, expression from NGS datasets
were downloaded as counts per million total reads (CPM) and were normalized
using a weighted linear regression model using the voom method62 (R package
limma61). The estimated precision weights of each observation were then
multiplied with the corresponding log2(CPM) to yield final gene expression values.

Prediction models. Prediction models were built by comparing patients who died
within 30 days of hospital admission with sepsis to patients who did not. In the
CAPSOD dataset (which was used in model training) we excluded two patients
with unclear mortality outcomes, and one patient who died in-hospital but after
30 days. Mortality was modeled as a binary variable as since time-to-event data
were not available. Overall, a total of four prognostic models were built by three
different academic groups (Duke University, Sage Bionetworks, and Stanford
University). All four models started with the same gene expression data in the
discovery phase. Each model was built in two phases: a feature selection phase
based on statistical thresholds for differential gene expression across all discovery
cohorts, and then a model construction phase optimizing classification power. Full
descriptions of the four models can be found in the supplementary text and in
Supplementary Figs. 1–3.

Comparison with severity scores. We compared the prognostic accuracy of the
gene scores with the prognostic accuracy of clinical severity scores (APACHE II,
PELOD, PRISM, SAPS II, SOFA, and the Denver score) where such information
was available. No datasets had more than one clinical severity score type available.
These clinical severity scores were not necessarily built to predict mortality in the
specific populations in which they were used here, but nonetheless serve as
important comparators for the gene expression models. To compare prognostic
power in the datasets which included subject-level severity data, LR was performed
to predict mortality using either the clinical severity score or the given gene model’s
output score. We then tested a joint model (mortality as a function of clinical
severity and gene score, without interaction term) and measured the AUROC of
the combined model. Comparisons were made between AUROCs with paired t-
tests. We further computed cNRI index to quantify how well our joint model
reclassifies over clinical severity scores alone63. The cNRI is the sum of two scores:
the improvement in classification of a positive event (here, mortality) by the tested
model, plus the improvement in classification of a negative event (here, survival) by
the tested model. Each improvement has a possible range of [−1, 1], so the full
cNRI has a possible range of [−2, 2]. A score of −2 would mean that every pre-
diction is made worse by the addition of the tested model; a score of 2 means that
every prediction is made more accurate by the addition of the tested model. Finally,
we calculated test characteristics at both a high-sensitivity cutoff and a high-
specificity cutoff, for both clinical scores and gene scores separately, and for the
joint clinical-gene models. These are reported as mean ± standard deviation across
datasets in summary tables.

Discriminatory power analyses. We examined class discriminatory power for
separating survivors from non-survivors using ROC curves of the gene scores
within datasets. The area under the ROC curves (AUROC) was calculated using the
trapezoidal method. Summary ROC curves were calculated via the method of
Kester and Buntinx64. We examined the ability of the models to predict non-
survivors using precision–recall curves generated from the gene scores in each
examined dataset. Precision–recall curves of the gene scores were constructed
within datasets, and the AUPRC)was calculated using the trapezoidal method.

Enrichment analysis. We conducted two analyses to evaluate the functional
enrichment of the genes selected as predictors by the four models. This included a
targeted enrichment analysis for cell types as previously described56 and an
exploratory enrichment analysis that assessed a large number of functionally
annotated gene sets.

In a mixed tissue such as blood, shifts in gene expression can be caused by
changes in cell-type distribution. To check for this effect, we used gene expression
profiles derived from known sorted cell types to determine whether a given set of
genes is enriched for genes represented in a specific cell type. In each curated cell-
type vector, a ‘score’ is calculated by the geometric mean of the upregulated genes
minus the geometric mean of the downregulated genes. A higher ‘score’ represents
a greater presence of the given cell type in the differential gene expression
signature.

For exploratory enrichment, we curated thousands of gene sets from three
widely used databases: gene ontology (GO)65, the Reactome database of pathways
and reactions in human biology66, and the Kyoto Encyclopedia of Genes and
Genomes (KEGG)67. Our 12 discovery cohorts had approximately 6000 genes in
common, which formed a ‘background’ set of genes. Genes that are present in the
GO/Reactome/KEGG sets but not in the background sets were removed prior to
enrichment. We then retained all GO/Reactome/KEGG gene sets containing at
least 10% and at least three genes overlapping with the predictor genes. The
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remaining GO/Reactome/KEGG gene sets were removed to reduce the multiple
testing burden. Exploratory enrichment in each of the curated reference gene sets
was performed using two different methodologies: gene-based Fisher’s exact test
(FET), and, using discovery datasets, expression-based gene set enrichment analysis
(GSEA) using GSVA package from bioconductor68. Significantly enriched
reference gene sets were discovered after adjusting the nominal P-values using the
Benjamini–Hochberg method.

Statistics, normalized data and code availability. All computation and calcu-
lations were carried out in the R language for statistical computing (version 3.2.0)
and Matlab R 2016a (The MathWorks, Inc.). Significance levels for P-values were
set at 0.05 and analyses were two-tailed. Analysis source code, final sample scores
for the four models along with other relevant analysis results are made available
through Synapse, an open source collaborative research platform69.

Data availability. All the raw and normalized gene expression data, mortality and/
or clinical outcomes data, results are made available through Synapse69. Readers
may access these data for independent research provided they (i) register onto
Synapse and (ii) agree to properly acknowledge both the data contributor(s) and
the synapse portal as described on the Data Use Requirements page69.
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