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Abstract 48 

Background: Antimicrobial resistant (AMR) Neisseria gonorrhoeae is an urgent threat to public 49 

health, as strains resistant to at least one of the two last line antibiotics used in empiric therapy of 50 

gonorrhoea, ceftriaxone and azithromycin, have spread internationally. Whole genome 51 

sequencing (WGS) data can be used to identify new AMR clones, transmission networks and 52 

inform the development of point-of-care tests for antimicrobial susceptibility, novel antimicrobials 53 

and vaccines. Community driven tools that provide an easy access to and analysis of genomic 54 

and epidemiological data is the way forward for public health surveillance. 55 

Methods: Here we present a public health focussed scheme for genomic epidemiology of N. 56 

gonorrhoeae at Pathogenwatch (https://pathogen.watch/ngonorrhoeae). An international 57 

advisory group of experts in epidemiology, public health, genetics and genomics of N. 58 

gonorrhoeae was convened to inform on the utility of current and future analytics in the platform. 59 

We implement backwards compatibility with MLST, NG-MAST and NG-STAR typing schemes as 60 

well as an exhaustive library of genetic AMR determinants linked to a genotypic prediction of  61 

resistance to eight antibiotics. A collection of over 12,000 N. gonorrhoeae genome sequences 62 

from public archives has been quality-checked, assembled and made public together with 63 

available metadata for contextualization.  64 

Results: AMR prediction from genome data revealed specificity values over 99% for 65 

azithromycin, ciprofloxacin and ceftriaxone and sensitivity values around 99% for benzylpenicillin 66 

and tetracycline. A case study using the Pathogenwatch collection of N. gonorrhoeae public 67 

genomes showed the global expansion of an azithromycin resistant lineage carrying a mosaic mtr 68 

over at least the last 10 years, emphasizing the power of Pathogenwatch to explore and evaluate 69 

genomic epidemiology questions of public health concern. 70 

Conclusions: The N. gonorrhoeae scheme in Pathogenwatch provides customized bioinformatic 71 

pipelines guided by expert opinion that can be adapted to public health agencies and departments 72 

with little expertise in bioinformatics and lower resourced settings with internet connection but 73 

limited computational infrastructure. The advisory group will assess and identify ongoing public 74 

health needs in the field of gonorrhoea, particularly regarding gonococcal AMR, in order to further 75 

enhance utility with modified or new analytic methods. 76 

 77 

 78 

 79 

 80 
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Background 82 

Antimicrobial resistance (AMR) is an urgent threat to public health. Neisseria gonorrhoeae, the 83 

strictly human pathogen causing the sexually-transmitted infection (STI) gonorrhoea, has 84 

developed or acquired resistance to the last-line antibiotics used in empiric therapy to treat the 85 

infection, and thus has become one of the major global priorities in order to tackle AMR. In 2017, 86 

due to the increase in AMR infections and the absence of an effective vaccine, the World Health 87 

Organization (WHO) included N. gonorrhoeae as a high priority pathogen in need of research and 88 

development of new antimicrobials and ideally a vaccine (1). In 2019, the Centers for Disease 89 

Control and Prevention (CDC) again included the gonococcus on the list of urgent threats in the 90 

United States (2). The most recent WHO estimates from 2016 indicate an annual global incidence 91 

of 87 million cases of gonorrhoea among adults (3, 4). Untreated cases can develop complications 92 

including an increased acquisition and transmission of HIV. In women, long-term infections can 93 

cause infertility, pelvic inflammatory disease, ectopic pregnancy, miscarriage or premature labour 94 

(5). Infections during pregnancy can transmit to newborns at birth causing eye damage that can 95 

have permanent effects on vision (6).  96 

Strains of N. gonorrhoeae resistant to every recommended treatment have rapidly emerged, 97 

including resistance to penicillins, tetracyclines, fluoroquinolones, macrolides and the extended-98 

spectrum cephalosporins (ESCs) (5-8). The current recommended treatment in many countries 99 

is a dual therapy with injectable ceftriaxone plus oral azithromycin, although reports of decreased 100 

susceptibility to ceftriaxone as well as azithromycin resistance have increased globally (7, 8). One 101 

case of failure of dual treatment was reported in 2016 in the United Kingdom (UK) (9). Additionally, 102 

in 2018 a gonococcal strain with resistance to ceftriaxone combined with high-level resistance to 103 

azithromycin was detected in both the UK and Australia (10). The transmission of a ceftriaxone-104 

resistant clone (FC428) has been documented internationally since 2015, raising concerns about 105 

the long-term effectiveness of the current treatment in the absence of an available alternative 106 

(11). In some countries such as in Japan, China and since 2019 in the UK, a single dose of 107 

ceftriaxone 1 gram is the recommended treatment due to the increasing incidence of azithromycin 108 
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resistance in N. gonorrhoeae and other STI pathogens such as Mycoplasma genitalium (12). 109 

Extensive investigations have been ongoing for years to unveil the genetic mechanisms that 110 

explain most of the observed susceptibility patterns for the main classes of antimicrobials for N. 111 

gonorrhoeae. For ciprofloxacin, nearly all resistant strains have the GyrA S91F amino acid 112 

alteration (13-15), however, resistance prediction from genomic data is not as straightforward for 113 

other antibiotics. Known resistance mechanisms often involve additive or suppressive effects as 114 

well as epistatic interactions that all together explain just part of the observed phenotypic 115 

resistance. For example, there is good evidence that many mosaic structures of the penA gene 116 

are associated with decreased susceptibility to ESCs (16, 17), however, mosaics do not explain 117 

all cases of ESC resistance, especially for ceftriaxone, and some mosaic penA alleles do not 118 

cause decreased susceptibility or resistance to this antibiotic (16-19). On top of these, variants 119 

that overexpress the MtrCDE efflux pump, mutations in porB1b that reduce drug influx and non-120 

mosaic mutations in penicillin-binding proteins also contribute to decreased susceptibility to ESCs 121 

(20). Furthermore, mutations in the rpoB and rpoD genes, encoding subunits of the RNA 122 

polymerase, have been recently related to resistance to ESCs in clinical N. gonorrhoeae isolates 123 

(21). Mutations in the 23S rRNA gene (A2045G and C2597T in N. gonorrhoeae nomenclature, 124 

coordinates from the WHO 2016 reference panel (22), A2059G and C2611T in Escherichia coli) 125 

are frequently associated with azithromycin resistance, as do variants in mtrR or its promoter that 126 

increase the expression of the MtrCDE efflux pump (5). Recently, epistatic interactions between 127 

a mosaic mtr promoter region and a mosaic mtrD gene have also been reported to increase the 128 

expression of this pump, contributing to macrolide resistance (23, 24). Mutations in rplD have also 129 

been associated with reduced susceptibility to this antibiotic (25) and contrarily, loss-of-function 130 

mutations in mtrC have been linked to increased susceptibility to several antibiotics including 131 

azithromycin (26). Thus, we can relatively confidently predict decreased susceptibility or 132 

resistance to an antimicrobial using the current known genetic mechanisms, however, phenotypic 133 

testing is still necessary to detect resistant cases caused by unknown or novel mechanisms. 134 

These inconsistencies with the genomic data will allow the discovery of these new mechanisms, 135 

which will keep improving the resistance predictions from WGS.  136 
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A myriad of methods have been used to discriminate among strains of N. gonorrhoeae, from 137 

phenotypic to DNA-based techniques (27), but whole genome sequencing (WGS) can provide 138 

the complete genome information of a bacterial strain. The cost of amplifying all loci of the different 139 

typing schemes via nucleic acid amplification and traditional Sanger sequencing can be more 140 

expensive than the cost of WGS of one bacterial genome in many settings. With WGS, multiple 141 

genetic AMR mechanisms as well as virulence and typing regions can be targeted simultaneously 142 

with the appropriate bioinformatic tools and pipelines. It also provides a significant improvement 143 

in resolution and accuracy over traditional molecular epidemiology and typing methods, allowing 144 

a genome-wide comparison of strains that can: identify AMR clones, outbreaks, transmission 145 

networks, national and international spread, known and novel resistance mechanisms as well as 146 

also inform on the development of point-of-care tests for antimicrobial susceptibility, novel 147 

antimicrobials and vaccines (28, 29). However, implementation of WGS for genomic surveillance 148 

poses practical challenges, especially for Low- and Middle-Income Countries (LMICs), due to the 149 

need of a major investment to acquire and maintain the required infrastructure.  150 

WGS produces a very high volume of data that needs to be pre-processed and analysed using 151 

bioinformatics. Bioinformatics expertise is not always readily available in laboratory and public 152 

health settings, and currently there are no international standards and proficiency trials for which 153 

algorithms to use to process WGS data. There are several open-source tools specialised in each 154 

step of the pipeline as well as proprietary software containing workflows that simplify the analyses. 155 

However, these are less customizable and may not be affordable for all (30, 31). Choosing the 156 

best algorithms and parameters when analysing genomic data is not straightforward as it requires 157 

a fair knowledge of the pathogen under study and its genome diversity. Multiple databases 158 

containing genetic determinants of AMR for bacterial pathogens are available (30, 31), however, 159 

choosing which one is most complete for a particular organism frequently requires an extensive 160 

literature search. Public access web-based species-specific tools and AMR databases revised 161 

and curated by experts would be the most approachable option for both well-resourced and LMICs 162 

with a reliable internet connection. Very importantly though, the full benefits of using WGS for 163 
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both molecular epidemiology and AMR prediction can only be achieved if the WGS data are linked 164 

to phenotypic data for the gonococcal isolates and, as much as feasible, clinical and 165 

epidemiological data for the patients. 166 

Here, we present a public health focussed system to facilitate genomic epidemiology of N. 167 

gonorrhoeae within Pathogenwatch (https://pathogen.watch/ngonorrhoeae), which includes the 168 

latest analytics for typing, detection of genetic AMR determinants and prediction of AMR from N. 169 

gonorrhoeae genome data, linked to metadata where available, as well as a collection of over 170 

12,000 gonococcal genomes from public archives for contextualization. We formed an advisory 171 

group including experts in the field of N. gonorrhoeae epidemiology, public health, AMR, genetics 172 

and genomics to consult on the development and design of the tool, such as the analytics and 173 

genetic AMR mechanisms to include, in order to adapt the platform for ongoing public health 174 

needs. We present this scheme as a community-steered model for genomic surveillance that can 175 

be applied to other pathogens. 176 

 177 

Methods 178 

The Pathogenwatch platform: technical summary 179 

Pathogenwatch is a web-based platform with several different components. The main interface is 180 

a React (32) single-page application with a style based on Material Design Lite (33). Phylogenetic 181 

trees are plotted using Phylocanvas (34), maps using Leaflet (35) and networks with Sigma (36). 182 

The back end is written in Node.js and contains an API service for the user interface and four 183 

“Runner” services for the following analyses: species prediction, single-genome analyses, tree 184 

building and core genome multi-locus sequence typing (cgMLST) clustering. Docker containers 185 

are used for queuing tasks, streaming input or result files through standard input and storing 186 

JSON data from standard output. A MongoDB cluster is used for data storage and task 187 

queuing/synchronisation. Pathogenwatch shares some visualization components with Microreact 188 
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(37), such as those associated with the phylogenetic tree and the map. However, Pathogenwatch 189 

includes an analytical framework which is unique to this platform. 190 

Generation of the N. gonorrhoeae core genome library 191 

Pathogenwatch implements a library of core genome sequences for several supported organisms. 192 

In the case of N. gonorrhoeae, a core gene set was built from the 14 finished reference genomes 193 

that constitute the 2016 WHO reference strain panel (22) using the pangenome analysis tool 194 

Roary (38) as described in Harris et al (2018) (15). Briefly, the minimum percentage of identity for 195 

blastp was set to 97% and the resulting core genes were aligned individually using MAFFT. The 196 

resulting genes with a percentage of identity above 99% were post-processed as described in 197 

(39). Representatives for each family were selected by choosing the sequence with the fewest 198 

differences to the others on average and searched using tblastn (percentage of identity >= 80%, 199 

E-value <= 1e-35) against the 14 high quality reference genomes. Families without a complete 200 

match in every reference (100% coverage) or had multiple matches were removed. Overlapping 201 

genes from each reference were merged into pseudocontigs and grouped by gene composition. 202 

For each family, a representative was selected as before and searched/filtered using the 203 

references as before. The final core gene set contains 1,542 sequences that span a total of 204 

1,470,119 nucleotides (approximately 67% of a typical N. gonorrhoeae genome length, 2.2Mb). 205 

A BLAST database was constructed from these core segments and used to profile new 206 

assemblies. 207 

Profiling new assemblies 208 

New genome assemblies can be uploaded by a user (drag and drop) or calculated from high-209 

throughput short read data directly within Pathogenwatch using SPAdes (40) as described in (41). 210 

A taxonomy assignment step for species identification is performed on the uploaded assemblies 211 

by using Speciator (42). New assemblies are then queried against a species-specific BLAST 212 

database using blastn. For N. gonorrhoeae, every core loci needs to match at least 80% of its 213 

length to be considered as present. Further filtering steps are applied to remove loci that can be 214 
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problematic for tree building, such as paralogs or loci with unusually large number of variant sites 215 

compared to an estimated substitution rate on the rest of the genome, as described in (43). The 216 

overall substitution rate is calculated as the number of total differences in the core library divided 217 

by the total number of nucleotides. Indels are ignored to minimise the noise that could be caused 218 

by assembly or sequencing errors. The expected number of substitutions per locus is determined 219 

by multiplying this substitution rate by the length of the representative sequence. 220 

The number of substitutions observed for each locus between the new assembly and the 221 

reference sequence are scaled to the total number of nucleotides that match the core library, 222 

creating a pairwise score that is saved on a distance matrix and is used for Neighbour-Joining 223 

tree construction, as described in (44). 224 

Algorithms for sequence typing and cgMLST clustering 225 

Alleles and sequence types (STs) for Multi-Locus Sequence Typing (MLST) (45) and cgMLST 226 

(core genome MLST, N. gonorrhoeae cgMLST v1.0) (46) were obtained from PubMLST (47, 48), 227 

for N. gonorrhoeae Multi-Antigen Sequence Typing (NG-MAST) (49) from (50) and for N. 228 

gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) (51) from (52) (Table 1). 229 

A search tool implemented as part of Pathogenwatch is used to make the assignments for MLST, 230 

cgMLST and NG-STAR, while NGMASTER (53) is used for NG-MAST. Briefly, exact matches to 231 

known alleles are searched for, while novel sequences are assigned a unique identifier. The 232 

combination of alleles is used to assign a ST as described in (54). Databases are regularly 233 

updated and novel alleles and STs should be submitted by the user to the corresponding schemes 234 

for designation. 235 

cgMLST typing information is used for clustering individual genomes with others in the 236 

Pathogenwatch database using single linkage clustering as described in (55). Users can select 237 

the clustering threshold (i.e. number of loci with differing alleles) and a network graph based on 238 

the SLINK (56) algorithm is calculated within individual genome reports. 239 

 240 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.07.03.186726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

AMR library and detection of genetic AMR determinants 241 

Genes and point mutations (single nucleotide polymorphisms (SNPs) and indels) were detected 242 

using Pathogenwatch AMR v2.4.9 (57). Pathogenwatch AMR also provides a prediction of AMR 243 

phenotype inferred from the combination of identified mechanisms. Genetic determinants 244 

described in the literature as involved in AMR in N. gonorrhoeae were collated into a library in 245 

TOML format (version 0.0.11). A test dataset containing 3,987 isolates from 13 studies (15, 18, 246 

22, 58-67) (Additional file 1: Table S1) providing minimum inhibitory concentration (MIC) 247 

information for six antibiotics (benzylpenicillin, tetracycline, ciprofloxacin, cefixime, ceftriaxone 248 

and azithromycin) was used to benchmark and to curate this library. A validation benchmark was 249 

posteriorly run with a dataset of 1,607 isolates from 3 other publications (68-70) with MIC 250 

information for the same six antibiotics plus spectinomycin (Additional file 1: Table S1). EUCAST 251 

clinical breakpoints v9.0 (71) were used to define susceptibility (S), susceptibility with an 252 

increased exposure (I) or resistance (R) (SIR) categorical interpretations of MICs for all antibiotics 253 

except for azithromycin, for which the EUCAST epidemiological cut-off (ECOFF) was used to 254 

define non-susceptibility/resistance (ECOFF>1mg/L). As a result of the benchmark analyses, 255 

sensitivity, specificity and positive/negative predictive values (PPV/NPV) were obtained for the 256 

AMR mechanisms implemented in the library and, globally, for each of the antibiotics. Confidence 257 

intervals (95%) for these statistics were calculated using the epi.tests function in the epiR R 258 

package v1.0-14 (72). Individual or combined AMR mechanisms with a PPV below 15% were 259 

discarded from the library to optimise the overall predictive values. Visual representations of the 260 

observed ranges of MIC values for a particular antibiotic for each of the observed combinations 261 

of genetic AMR mechanisms on the test dataset were used to identify and assess combinations 262 

of mechanisms that have an additive or suppressive effect on AMR. These were included in the 263 

library.  264 

As part of the accuracy testing of the AMR library, we ran the 2016 WHO N. gonorrhoeae 265 

reference genomes 2016 panel (n=14) through Pathogenwatch and compared the detected list 266 

of genetic AMR mechanisms with the list published in the original study (22). For the WHO U 267 
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strain, a discrepancy on a mutation in parC was further investigated by mapping the original raw 268 

Illumina data (European Nucleotide Archive (ENA) run accession ERR449479) to the reference 269 

genome assembly (ENA genome accession LT592159.1) and visualized using Artemis (73).  270 

In short-read assemblies, the four copies of the 23S rRNA gene are collapsed into one, thus the 271 

detection of the A2045G and C2597T mutations is dependent on the consensus bases resulting 272 

from the number of mutated copies (63, 66, 74). 273 

Quality check and assembly of public sequencing data 274 

Public N. gonorrhoeae genomes with geolocation data were obtained from the ENA in November 275 

2019. This list was complemented by an exhaustive literature search of studies on N. gonorrhoeae 276 

genomics without metadata submitted to the ENA but instead made available as supplementary 277 

information in the corresponding publications. Raw paired-end short read data from a list of 278 

12,192 isolates was processed with the GHRU assembly pipeline v1.5.4 (75). This pipeline runs 279 

a Nextflow workflow to quality-check (QC) paired-end short read fastq files before and after 280 

filtering and trimming, assembles the data and quality-checks the resulting assembly. Results 281 

from the pipeline are provided in Additional file 2. In this pipeline, QC of short reads was performed 282 

using FastQC v0.11.8 (76). Trimming was done with Trimmomatic v0.38 (77) by cutting bases 283 

from the start and end of reads if they were below a Phred score of 25, trimming using a sliding 284 

window of size 4 and cutting once the average quality within the window fell below a Phred score 285 

of 20. Only reads with length above a third of the original minimum read length were kept for 286 

further analyses. After trimming, reads were corrected using the kmer-based approach 287 

implemented in Lighter v1.1.1 (78) with a kmer length of 32 bp and a maximum number of 288 

corrections allowed within a 20 bp window of 1. ConFindr v0.7.2 was used to assess intra- and 289 

inter-species contamination (79). Mash v2.1 (80) was applied to estimate genome size using a 290 

kmer size of 32 bp and Seqtk v1.3 (81) to down sample fastq files if the depth of coverage was 291 

above 100x. Flash v1.2.11 (82) was used to merge reads with a minimum overlap length of 20 bp 292 

and a maximum overlap of 100 bp to facilitate the subsequent assembly process. SPAdes v3.12 293 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.07.03.186726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

(40) was used for genome assembly with the --careful option selected to reduce the number of 294 

mismatches and short indels with a range of kmer lengths depending on the minimum read length. 295 

The final assemblies were quality-checked using Quast v5.0.2 (83) and ran through the species 296 

identification tool Bactinspector (84). QC conditions were assessed and summarised using 297 

Qualifyr (85). 298 

Fastq files with poor quality in which the trimming and filtering step discarded all reads from either 299 

one or both pairs were excluded from the analyses because the assembly pipeline is optimised 300 

for paired-end data. Assemblies with an N50 below 25,000 bp, a number of contigs above 300, a 301 

total assembly length above 2.5 Mb or a percentage of contamination above 5% were also 302 

excluded. 303 

Metadata for public genomes  304 

Geolocation data (mainly country), collection dates (day, month and year when available), ENA 305 

project accession and associated Pubmed ID were obtained from the ENA API for all the genomes 306 

in the pipeline (86). A manual extensive literature search was performed to identify the 307 

publications containing the selected genomes. In order to complete published studies as much 308 

as possible, extra genomes were downloaded and added to the dataset. Metadata for the final 309 

set was completed with the information contained in supplementary tables on the corresponding 310 

publications, including phenotypic antimicrobial susceptibility data. Submission date was 311 

considered instead of collection date when the latter was not available, however, this occurred in 312 

only a few cases (<0.5%).  313 

Creation of the N. gonorrhoeae Pathogenwatch Scientific Steering Group 314 

International experts in the field of N. gonorrhoeae AMR, microbiology, genetics, genomics, 315 

epidemiology and public health were approached and agreed to participate as members of the 316 

‘N. gonorrhoeae Pathogenwatch Scientific Steering Group’ in order to discuss the analytics in 317 

Pathogenwatch and make sure they met the current needs of the public health and scientific 318 

community. During the updates made to the platform and the preparation of this manuscript, these 319 
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experts participated in virtual sessions to discuss the list of genetic AMR determinants and their 320 

association with SIR categories (Table 2) based on experimental and/or computational evidence. 321 

Some of the members of the group had previously been directly involved in many of these studies. 322 

Other current and future updates were also discussed, such as the inclusion of the NG-STAR 323 

typing scheme (51) and the organization of published genomes into public collections, data 324 

sharing, privacy and the interconnectivity of Pathogenwatch with other platforms, such as 325 

PubMLST (48) or the ENA. The group will regularly discuss new updates to the platform. 326 

Data sharing and privacy 327 

Sequencing data and metadata files uploaded to Pathogenwatch by the user are kept within the 328 

user’s private account. Genomes can be grouped into collections and these can be toggled 329 

between private and accessible to collaborators via a URL. Collection URLs include a 12-letter 330 

random string to secure them against brute force searching. Setting a collection to ‘off-line mode’ 331 

allows users to work in challenging network conditions, which may be beneficial in LMICs – all 332 

data are held within the browser. Users can also integrate private and potentially confidential 333 

metadata into the display without uploading it to the Pathogenwatch servers (locally within the 334 

browser on a user’s machine). 335 

 336 

Results 337 

N. gonorrhoeae genome analytics in Pathogenwatch 338 

Pathogenwatch is a web-based platform for epidemiological surveillance using genome 339 

sequencing data. After upload, different analytics are run simultaneously (Figure 1): cgMLST (46), 340 

MLST (45), NG-MAST (49) and NG-STAR (51) typing schemes (Table 1), a genotypic prediction 341 

of phenotypic resistance using a customized AMR library (Table 2) that includes known genetic 342 

AMR mechanisms for 8 antimicrobials, as well as statistics on the quality of the assemblies 343 

(Additional file 3: Figure S1). These analytical features differentiate Pathogenwatch from a parallel 344 
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platform from the same group, Microreact (37), which shares one of the main layouts with 345 

Pathogenwatch (a phylogenetic tree, a map and a table or timeline), but it is intended for 346 

visualization of pre-computed phylogenetic trees with accompanying metadata, while 347 

Pathogenwatch also includes analytical tools. 348 

Genomes from one or multiple studies can be grouped into collections (Figure 2 and Additional 349 

file 3: Figure S2), and the genomic data are automatically processed by comparing with a core N. 350 

gonorrhoeae genome built from WHO reference strain genomes (15, 22). A phylogenetic tree is 351 

obtained as a result, representing the genetic relationship among the isolates in the collection. 352 

Metadata can be uploaded at the same time as the genome data, and if the collection location 353 

coordinates for an isolate are provided, this information is plotted into a map (Additional file 3: 354 

Figure S1). If date or year of isolation is also provided, this information is represented in a timeline. 355 

The three panels on the main collection layout - the tree, the map and a table or timeline – are 356 

functionally integrated so filters and selections made by the user update all of them 357 

simultaneously. Users can also easily switch among the metadata and the results of the main 358 

analytics: typing, genome assembly statistics, genotypic AMR prediction, AMR-associated SNPs, 359 

AMR-associated genes and the timeline (Additional file 3: Figure S1). cgMLST is used for finding 360 

close genomes in the database based on allele differences to one individual isolate (Additional 361 

file 3: Figure S3). A video demonstrating the usage and main features of Pathogenwatch is 362 

available (87). Notes on data sharing and privacy are available in the Methods section. 363 

 364 

 365 
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 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

Figure 1. Main workflow in Pathogenwatch. New genomes can be uploaded and combined with public data for 380 

contextualisation. The collection view allows data exploration through a combined phylogenetic tree, a map, a timeline 381 

and the metadata table, which can be switched to show typing information (Multi-Locus Sequence Typing, MLST; N. 382 

gonorrhoeae Sequence Typing for Antimicrobial Resistance, NG-STAR; and N. gonorrhoeae Multi-Antigen Sequence 383 

Typing, NG-MAST) as well as known genetic AMR mechanisms for eight antibiotics. Genome reports summarise the 384 

metadata, typing and AMR marker results for individual isolates and allow finding other close genomes in 385 

Pathogenwatch based on core genome MLST (cgMLST). SNPs: single nucleotide polymorphisms. 386 

 387 
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 388 

Figure 2. Main display of a Pathogenwatch collection, showing a phylogenetic tree, a map and a table of SNPs 389 

associated with AMR of 395 N. gonorrhoeae genomes from a global study (64, 88). Isolates carrying three mosaic 390 

penA marker mutations are marked in red in the tree and the map. The table can be switched to show the metadata, a 391 

timeline, typing results (Multi-Locus Sequence Typing, MLST; N. gonorrhoeae Sequence Typing for Antimicrobial 392 

Resistance, NG-STAR and N. gonorrhoeae Multi-Antigen Sequence Typing, NG-MAST) as well as AMR analytics 393 

(known genetic mechanisms and genotypic AMR prediction) implemented in the platform. Further detail is shown in 394 

Additional file 3: Figure S1. 395 

 396 

 397 

Table 1. N. gonorrhoeae sequence typing schemes implemented in Pathogenwatch. 398 
 399 

Typing 

scheme* 

Loci (number) Note Pathogenwatch 

implementation 

References 

cgMLST (N=1,649) N. gonorrhoeae 

cgMLST v1.0 

Typing algorithm, database 

from PubMLST  

(46-48, 89) 

MLST abcZ, adk, aroE, 

fumC, gdh, pdhC, 

pgm (N=7) 

Housekeeping genes 

in Neisseria spp. 

In-house typing tool, database 

from PubMLST 

(45, 47, 48, 89)  

NG-MAST porB, tbpB (N=2) Genes encoding 

highly-variable 

membrane proteins 

NG-MASTER, database from 

NG-MAST website  

(49, 50, 53) 

NG-STAR penA, mtrR, porB, 

ponA, gyrA, parC, 

23S rDNA (N=7) 

Genes involved in 

antimicrobial 

resistance 

In-house typing tool, database 

from NG-STAR website  

(51, 52, 89) 

* Typing scheme: cgMLST = core genome Multi-Locus Sequence Typing, MLST = Multi-Locus Sequence Typing, NG-400 
MAST = N. gonorrhoeae Multi-Antigen Sequence Typing, NG-STAR = N. gonorrhoeae Sequence Typing for 401 
Antimicrobial Resistance.  402 
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Table 2. List of N. gonorrhoeae genetic antimicrobial resistance (AMR) determinants in Pathogenwatch. References 403 

that report evidence of association of each mechanism to AMR in clinical isolates and/or where their role on AMR has 404 

been confirmed in the laboratory through, e.g. transformation experiments, are included in the table. Effect: R = 405 

resistance, I = susceptibility but increased exposure, A = additive effect, N = negative effect. R and I follow the EUCAST 406 

clinical breakpoints except for azithromycin, for which the epidemiological cut-off (ECOFF) is reported and used instead. 407 

 408 

Antibiotic 

(MIC breakpoint 

mg/L) 

Genetic AMR determinants Effect Evidence  

(References) 

Azithromycin  

(R: MIC>1, ECOFF) 

 

 

23S rDNA 2045A>G substitution (2059A>G in E. coli) 

23S rDNA 2597C>T substitution (2611C>T in E. coli) 

ermA, ermB, ermC, ermF genes 

ereA, ereB genes 

mefA gene 

macAB promoter -48G>T substitution* 

mtrR promoter mosaic** 

        N. meningitidis-like mosaic (n=1) 

        N. lactamica-like mosaic (n=2) 

mtrD mosaic** 

        N. meningitidis-like mosaic (n=1) 

        N. lactamica-like mosaic (n=2) 

mtrR promoter -57delA* 

mtrR G45D  

mtrC loss-of-function 

rplV ARAK tandem duplication (position 90) 

rplV KGPSLK tandem duplication (position 83) 

rplD G70D 

R 

R 

R 

R 

R 

R 

 

R 

R 

 

R 

R 

A 

A 

N 

R 

R 

A 

(74)  

(90) 

(91, 92) 

(22) 

(92, 93) 

(94) 

 

(23) 

(23) 

 

(23) 

(23) 

(95, 96)  

(97, 98) 

(26) 

(18) 

(18) 

(25) 

Ceftriaxone*** 

(R: MIC>0.125) 

 

penA mosaic (A311V, I312M, V316P/T, T483S and G545S) 

penA V316P, T483S, A501P/V, G542S 

rpoB P157L, G158V, R201H 

rpoD D92-95 deletion, E98K 

R 

R 

R 

I 

(99-101)  

(99, 100) 

(21) 

(21) 

Cefixime***  

(R: MIC>0.125) 

mtrR G45D 

penA mosaic (I312M, V316T, G545S) 

penA mosaic (A311V, I312M, V316P/T, T483S and G545S) 

penA V316P, T483S, A501P 

rpoB P157L, G158V, R201H 

rpoD D92-95 deletion, E98K 

A 

R 

R 

I 

I 

I 

(97, 98) 

(99-101)  

(99-101)  

(99, 100) 

(21) 

(21) 

Ciprofloxacin  

(I: 0.03<MIC£0.06; 

R: MIC>0.06) 

gyrA S91F, D95A/N 

gyrA D95G 

norM promoter -7A>G, -104C>T substitutions* 

parC D86N, S87R  

parC S87I/N, S88P, E91K 

parE G410V 

R 

I 

I 

R 

I 

I 

(102) 

(102) 

(103) 

(102) 

(102) 

(104) 

Tetracycline**** 

(I: 0.5<MIC£1; 

R: MIC>1) 

mtrR A39T, G45D 

mtrR loss-of-function 

mtrR promoter -56A>C substitution, -57delA deletion* 

mtrR promoter -131G>A (mtrC -120G>A substitution, mtr120)* 

rpsJ V57M 

tetM gene 

A 

I 

I 

I 

I 

R 

(97, 98) 

(22) 

(23, 95, 96) 

(97) 

(105) 

(106) 
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Penicillins 

(I: 0.06<MIC£1; 

R: MIC>1) 

 

blaTEM gene 

mtrR G45D 

mtrR A39T 

mtrR loss-of-function 

mtrR promoter -56A>C, -57delA* 

mtrR promoter -131G>A (mtrC -120G>A substitution, mtr120)* 

penA I312M, V316P/T, ins346D, T483S, A501P/T/V, G542S, 

G545S, P551S 

penA mosaic (I312M, V316T, G545S) 

ponA1 L421P 

porB1b G120K, A121N/D 

R 

I 

A 

I 

I 

I 

I 

 

A 

I 

I 

(107) 

(97, 98) 

(97) 

(22) 

(23, 96) 

(97) 

(99, 100) 

 

(99-101)  

(108) 

(109) 

Spectinomycin 

(R: MIC>64) 

16S rDNA 1184C>T (1192C>T in E. coli) 

rpsE T24P 

rpsE V27- deletion, K28E 

R 

R 

R/A 

(110) 

(111) 

(111) 

Sulfonamides 

***** 

folP R228S R (22, 112) 

 409 
*Nomenclature of the mutations on the macAB, mtrR and norM promoter regions is based on N. gonorrhoeae coordinates considering 410 
the distance from the start of the macAB, mtrR and norM genes, respectively. **Note that mosaics are caused by recombination events, 411 
which can have variable breakpoints with different effects on azithromycin MIC if any. In this version, we have included the three 412 
mosaics described by Wadsworth et al. (23), but the list will be expanded as new mosaic mtr (intergenic region between mtrR and 413 
mtrC) and mtrD alleles having an effect on azithromycin MICs are published. ***The list of genetic AMR mechanisms for the ESCs 414 
ceftriaxone and cefixime do not include all known porB1b or mtrR-associated variants as their effect was found not to be relevant in 415 
increasing MIC on the benchmark analyses for phenotypic AMR prediction purposes despite the experimental evidence reported in 416 
Zhao et al. (113). In case of strains carrying penA-associated mutations, their immediate predicted phenotype is that of those carrying 417 
penA-associated variants. ****The list of genetic AMR mechanisms for tetracycline does not include porB1b mutations as their effect 418 
was found not to be relevant in increasing MIC on the benchmark analyses for phenotypic AMR prediction purposes. *****Sulfonamides 419 
are not a treatment alternative for gonorrhoea, however the folP R228S mutation is kept in this version of the library for surveillance 420 
purposes. 421 

Library of genetic AMR mechanisms: genotypic and phenotypic benchmarks 422 

We compiled described genetic AMR mechanisms previously reported for N. gonorrhoeae up to 423 

the writing of this manuscript into the AMR library in Pathogenwatch (Table 2).A genotypic 424 

accuracy testing of the AMR library was performed using the 14 N. gonorrhoeae reference 425 

genomes from the WHO 2016 panel (22), which were uploaded into Pathogenwatch. All the 426 

genetic AMR determinants described as present in these isolates and implemented in the 427 

Pathogenwatch AMR library were obtained as a result (Additional file 1: Table S2). Only one 428 

discrepancy was found when compared to the original publication. The WHO U strain was 429 

reported as carrying a parC S87W mutation. However, mapping the original Illumina data from 430 

this isolate with the final genome assembly revealed that this strain carries a wild type allele 431 

(Additional file 3: Figure S4). MLST and NG-MAST types were the same as those reported in the 432 

original publication (note that NG-STAR was not available at that time) and the porA mutant gene 433 

was found in WHO U as previously described. This mutant porA has nearly a 95% nucleotide 434 
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identity to N. meningitidis and 89% to N. gonorrhoeae, and it is included as screening because it 435 

has previously been shown to cause false negative results in some molecular detection tests for 436 

N. gonorrhoeae (114). 437 

Then, we also performed a genotypic-phenotypic benchmark using a test dataset of 3,987 N. 438 

gonorrhoeae isolates from 13 different studies containing MIC information for at least part of the 439 

following six antibiotics: ceftriaxone, cefixime, azithromycin, ciprofloxacin, benzylpenicillin and 440 

tetracycline (Additional file 1: Table S1). EUCAST clinical breakpoints were applied for five of the 441 

antimicrobials except for azithromycin, for which the adoption of an ECOFF>1 mg/L is now 442 

recommended to distinguish isolates with azithromycin resistance determinants, instead of a 443 

clinical resistance breakpoint (115, 116). A visualization of the range of MICs on each particular 444 

combination of genetic AMR mechanisms observed on the isolates from the benchmark test 445 

dataset (Figure 3a-b and Additional file 3: Figures S5-S10) revealed combinations that show an 446 

additive effect on AMR. These combinations were included in the AMR library to improve the 447 

accuracy of the genotypic prediction. For example, rpsJ V57M and some mtrR-associated 448 

mutations individually are associated with a decreased susceptibility or intermediate resistance 449 

to tetracycline (MICs of 0.5-1 mg/L), however, a combination of these variants can increase MICs 450 

above the EUCAST resistance breakpoint for tetracycline (MICs>1 mg/L) (Additional file 3: Figure 451 

S9). This is the case of the combination of rpsJ V57M with the mtrR promoter -57delA mutation 452 

(N=681 isolates, 94.9% positive predictive value, PPV) or with mtrR promoter -57delA and mtrR 453 

G45D (N=83 isolates, 93.9% PPV). Several combinations of penA, ponA1, mtrR and porB1b 454 

mutations were observed to be able to increase the benzylpenicillin MIC above the resistant 455 

threshold in most of the cases (Additional file 3: Figure S10). This is the case of the porB1b 456 

mutations combined with mtrR A39T (N=31 isolates, 100% PPV), with the mtrR promoter -57delA 457 

deletion (N=286 isolates, 96.5% PPV) or with mtrR promoter -57delA and ponA1 L421P (N=269 458 

isolates, 96.3%). Despite mosaic penA not being a main driver of resistance to penicillins, a 459 

combination of the porB1b mutations with the three main mosaic penA mutations (G545S, I312M 460 

and V316T) was also associated with a resistant phenotype in all cases (N=17 isolates, 100% 461 
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PPV). A recent publication showed that loss-of-function mutations in mtrC increased susceptibility 462 

to azithromycin and are associated with isolates from the cervical environment (26). We included 463 

the presence of a disrupted mtrC as a modifier of antimicrobial susceptibility in the presence of 464 

an mtr mosaic, as we did not have enough evidence from the test dataset to assess the MIC 465 

ranges of isolates with the 23S rDNA A2045G and C2597T mutations with and without a disrupted 466 

mtrC gene.  467 

 468 

 469 

Figure 3. Distribution of minimum inhibitory concentration (MIC) values (mg/L) for the last-line antibiotics for N. 470 

gonorrhoeae azithromycin (a) and ceftriaxone (b) in a collection of 3,987 N. gonorrhoeae isolates with different 471 

combinations of genetic antimicrobial resistance (AMR) mechanisms. Only combinations observed in at least 5 isolates 472 

are shown (see Additional file 3: Figure S5-S10 for expanded plots for six antibiotics). Dashed horizontal lines on the 473 

violin plots mark the EUCAST epidemiological cut-off (ECOFF) for azithromycin and EUCAST clinical breakpoint for 474 

ceftriaxone. Point colours inside violins represent the genotypic AMR prediction by Pathogenwatch on each 475 

combination of mechanisms (indicated by black circles connected vertically; horizontal thick grey lines connect 476 

combinations of mechanisms that share an individual determinant). Barplots on the top show the abundance of isolates 477 

with each combination of mechanisms. Bar colours represent the differences between the predicted and the observed 478 

SIR (i.e. red for a predicted susceptible mechanism when the observed phenotype is resistant). (c) Radar plots 479 

comparing the sensitivity, specificity, positive and negative predictive values (PPV/NPV) for six antibiotics for the test 480 
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and validation benchmark analyses. AZM = Azithromycin, CFM = Cefixime, CIP = Ciprofloxacin, CRO = Ceftriaxone, 481 

PEN = Benzylpenicillin, TET = Tetracycline. 482 

 483 

Results from the benchmark (Additional file 1: Table S3) show sensitivity values (true positive 484 

rates, TP/(TP+FN); TP=True Positives, FN=False Negatives) above 96% for tetracycline (99.2%), 485 

benzylpenicillin (98.1%), ciprofloxacin (97.1%) and cefixime (96.1%), followed by azithromycin 486 

(71.6%) and ceftriaxone (33.3%). These results reflect the complexity of the resistance 487 

mechanisms for azithromycin and ceftriaxone, where the known genetic determinants explain 488 

only part of the antimicrobial susceptibility. However, specificity values (true negative rates, 489 

TN/(TN+FP); TN=True Negatives, FP=False Positives) for these two antibiotics as well as 490 

ciprofloxacin were above 99% (Additional file 1: Table S3), demonstrating that the genetic 491 

mechanisms included in the database have a role in AMR. The specificity value for cefixime was 492 

lower but nearly 90%, mainly due to the high number of isolates with an MIC below the threshold 493 

but with three mutations characterising a mosaic penA allele (G545S, I312M and V316T, TP=367, 494 

TN=323, PPV=53.2%; Additional file 1: Table S4). Benzylpenicillin and tetracycline showed 495 

specificity values of 77.3% and 61.3%, respectively. In the first case, all the mechanisms included 496 

in the library showed a PPV value above 94%. For tetracycline, a considerable number of false 497 

positive results are mainly caused by the presence of rpsJ V57M, for which PPV=83.8% 498 

(TP=1083, FP=209; Additional file 1: Table S4). However, this mutation was kept in the AMR 499 

library because it can cause intermediate resistance to tetracycline on its own (Additional file 3: 500 

Figure S9). 501 

Results from the benchmark analysis on the 3,987-isolates dataset were used to curate and 502 

optimize the AMR library. Thus, in order to objectively validate it, the benchmark analysis was 503 

also run on a combination of three different collections (N=1,607, Additional file 1: Table S1) with 504 

available MIC information for seven antibiotics including spectinomycin (Additional file 1: Table 505 

S3) (69, 70, 117). Results from the test and validation benchmark runs were compared, showing 506 

that sensitivity values on the six overlapping antibiotics were very similar, with the validation 507 

benchmark performing even better for azithromycin and ceftriaxone (Figure 3c). In terms of 508 
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specificity, both datasets performed equally well for all antibiotics except for benzylpenicillin, in 509 

which specificity drops in the validation benchmark. This is due to the penA_ins346D mutation 510 

(TP=1125, FP=83) and the blaTEM genes (TP=525, FP=36), which despite showing false 511 

positives, have a PPV above 93% (Additional file 1: Table S5). In general, discrepancies found 512 

between the test and the validation benchmarks can be explained by particular mechanisms that 513 

on their own show high predictive values and affect antibiotics for which we do not currently 514 

understand all the factors involved in resistance, such as azithromycin and the ESCs (Additional 515 

file 1: Table S5). 516 

Over 12,000 public genomes available  517 

Data for 11,461 isolates were successfully assembled and passed all quality cut-offs, resulting in 518 

12,515 isolates after including the previously-available Euro-GASP 2013 dataset (15). New 519 

assemblies were uploaded and made public on Pathogenwatch, which now constitutes the largest 520 

repository of curated N. gonorrhoeae genomic data with associated metadata, typing and AMR 521 

information at the time of submission of this manuscript. Updated data spans 27 different 522 

publications (18, 53, 58-61, 63-65, 67-70, 117-131) and is organized into individual collections 523 

associated with the different studies (Additional file 1: Table S6). Available metadata was added 524 

for the genomes from these publications while basic metadata fields were kept for others (country, 525 

year/date and ENA project number).  526 

We cross-checked that the main clusters found in the phylogenetic trees obtained after creating 527 

the public collections in Pathogenwatch were consistent with those observed in the trees in the 528 

corresponding publications. For example, recent works defined two major clusters of N. 529 

gonorrhoeae, termed Lineages A and B, which were found to be consistent with the corresponding 530 

Pathogenwatch trees as exemplified for isolates from England in Town et al (2020) (68) (Figure 531 

S11a). We were also able to differentiate the cefixime-resistant penA10 and penA34-carrying 532 

clones from Vietnam from Lan et al (2020) (124) (Figure S11b) as well as the 10 major clusters 533 

defined in the N. gonorrhoeae population circulating in New York City (NYC) as described in 534 
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Mortimer et al (2020) (120) (Figure S11c). In the last case, we also liked to emphasize the 535 

usefulness of Microreact (37) as a parallel tool to Pathogenwatch for more complex visualization 536 

purposes, such as showing the 10 major clusters in NYC as metadata blocks of different colours. 537 

The N. gonorrhoeae public data available on Pathogenwatch spans nearly a century (1928-2018) 538 

and almost 70 different countries (Additional file 3: Figure S12). However, sequencing efforts are 539 

unevenly distributed around the world, and over 90% of the published isolates were isolated in 540 

only 10 countries, headed by the United Kingdom (N=3,476), the United States (N=2,774) and 541 

Australia (N=2,388) (Additional file 1: Table S7, Figure 4). A total of 554 MLST, 1,670 NG-MAST 542 

and 1,769 NG-STAR different STs were found in the whole dataset, from which a considerable 543 

number were new profiles caused by previously undetected alleles or new combinations of known 544 

alleles (N=92 new MLST STs, N=769 new NG-STAR STs and N=2,289 isolates with new NG-545 

MAST porB and/or tbpB alleles). These new alleles and profiles were submitted to the 546 

corresponding scheme servers.  547 
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Figure 4. Summary of the geolocalization and collection date of 12,515 public N. gonorrhoeae genomes in 

Pathogenwatch. Coloured bars represent the genotypic antimicrobial resistance (AMR) prediction based on the 

mechanisms included in the library. AZM = Azithromycin, CFM = Cefixime, CIP = Ciprofloxacin, CRO = 

Ceftriaxone, PEN = Benzylpenicillin, TET = Tetracycline.  

 548 

Genomic studies are often biased towards AMR isolates, and this is reflected in the most 549 

abundant STs found for the three typing schemes within the public data. Isolates with MLST 550 

ST1901, ST9363 and ST7363, which contain resistance mechanisms to almost every antibiotic 551 

included in the study, represent over 25% of the data (Figure 5). Isolates with MLST ST1901 and 552 

ST7363 are almost always associated with resistance to tetracycline, sulfonamides, 553 

benzylpenicillin and ciprofloxacin and nearly 50% of isolates from these two types harbour 554 

resistance mechanisms to cefixime. Ciprofloxacin resistance is not widespread among ST9363 555 

isolates, which are associated with azithromycin resistance in nearly 50% of the isolates for this 556 
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ST (Figure 5). NG-STAR ST63 (carrying the non-mosaic penA-2 allele, penA A517G and mtrR 557 

A39T mutations as described in (52)) is the most represented in the dataset and carries resistance 558 

mechanisms to tetracycline, sulfonamides, and benzylpenicillin, but is largely susceptible to 559 

spectinomycin, ciprofloxacin, the ESCs cefixime and ceftriaxone and azithromycin. NG-STAR 560 

ST90 isolates, conversely, are largely associated with resistance to cefixime, ciprofloxacin and 561 

benzylpenicillin as they carry the key resistance mutations in mosaic penA-34, as well as in the 562 

mtrR promoter, porB1b, ponA, gyrA and parC (as described in (52)). NG-MAST ST1407 is 563 

commonly associated with MLST ST1901 and is the second most represented ST in the dataset 564 

following NG-MAST ST2992, which mainly harbours resistance to tetracycline, benzylpenicillin 565 

and sulfonamides (Figure 5). 566 

 

Figure 5. Predicted antimicrobial resistance (AMR) profiles of the top five Multi-Locus Sequence Typing (MLST), 

N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) and N. gonorrhoeae Multi-Antigen 

Sequence Typing (NG-MAST) types in the N. gonorrhoeae public data in Pathogenwatch. Coloured circles in the 

grids show the proportion of genomes from each ST which are predicted to have an intermediate (susceptible but 

increased exposure) or resistant phenotype, red) versus susceptible genomes (in dark blue) from each sequence 

type (ST) and antibiotic. Bars on the top show the number of isolates from each ST coloured by the number of 

antibiotics the genomes are predicted to be resistant to.  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.07.03.186726doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.03.186726
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

 

Case study: global expansion of an mtr mosaic-carrying clone 567 

The genetic mechanisms that have commonly been associated with an increased MIC of 568 

azithromycin in N. gonorrhoeae are two mutations in the 23S rRNA gene (A2045G and C2597T 569 

substitutions, in N. gonorrhoeae nomenclature) as well as mutations in mtrR and its promoter 570 

(132, 133). As described above, other mechanisms have also been recently discovered that 571 

increase the MIC of azithromycin (Table 2), such as mosaicism affecting the efflux pump-encoding 572 

mtrCDE genes and its repressor mtrR, mainly when the mosaic spans the mtrR promoter region 573 

and mtrD gene (23, 24). Some studies have recently reported the local expansion of azithromycin-574 

resistant N. gonorrhoeae lineages carrying an mtr mosaic in the USA (122, 123, 134) and 575 

Australia (118). However, the extent of the dispersion of this mechanism to other parts of the 576 

world has not been studied yet. Here, using the public genomes of N. gonorrhoeae in 577 

Pathogenwatch, we have been able to explore this question.  578 

A total of 1,142 strains with genetic determinants of azithromycin resistance were selected in 579 

Pathogenwatch and combined with 395 genomes from a global collection (64) for background 580 

contextualization (see Pathogenwatch project in (135)) (Figure 6a). 571 of the strains predicted 581 

to be resistant to azithromycin had some form of mosaic in the mtrR promoter and/or mtrD gene 582 

of one of the three types described in Wadsworth et al. (2018) (23) and included in the 583 

Pathogenwatch AMR library (Table 2). These mosaics have been experimentally proven to 584 

increase MIC of azithromycin above 1 mg/L, which is the EUCAST ECOFF value as well as the 585 

Clinical Laboratory and Standards Institute (CLSI) non-susceptibility breakpoint (23, 24). One of 586 

the N. lactamica-like mosaics, termed here ‘mtr_mosaic.2’, was by far the most extended, as it 587 

was found in 545 genomes spanning the mtrR promoter and/or the mtrD gene, with 521 (95.6%) 588 

of them spanning both regions. Twenty-five genomes contained a N. meningitidis-like mosaic 589 

mtrR promoter and/or mtrD gene (‘mtr_mosaic.1’) and in only 9 (36%) of them the mosaic 590 

spanned both loci. The N. lactamica-like ‘mtr_mosaic.3’ was only found in isolate ERR855360 591 

(GCGS834) from Los Angeles (USA, 2012), which is where the reference sequence for this 592 
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mosaic was extracted from. Of the studies where these mtr mosaic-carrying genomes were 593 

obtained from, only those from the USA and Australia specifically targeted and found this genetic 594 

determinant of resistance. The rest did not target this mosaic and some of them found strains with 595 

unexplained increased MICs of azithromycin (69, 121, 129), which could partly be explained by 596 

the presence of these mtr mosaics. 597 

We observed one main lineage carrying mosaic 2 in mtrR promoter and mtrD gene (Figure 6a) 598 

with 520 genomes. Of those, only 3 and 8 isolates carried the 23S rDNA A2045G and C2597T 599 

mutations, respectively. Interestingly, the first strain in the database with this type of mosaic dates 600 

from 2006 (18), however, it was not until the end of 2011-2012 when this lineage started to expand 601 

(Figure 6b). Despite the genomic data contained in Pathogenwatch being biased to the amount 602 

of data sequenced and published from each country and year, we can easily infer that this lineage 603 

has spread across the world as we detect cases in Australia (n=293) (118), the USA (n=195) (18, 604 

120, 122, 123), Norway (n=19) (121), the United Kingdom (n=11) (68, 119), and Ireland (n=3) 605 

(129). A strong association was found to the country of isolation (Figure 6c), with a broad diversity 606 

of sublineages having spread across the USA (strains mostly isolated between 2012 and 2016). 607 

In contrast, an expansion of a particular clone, likely from a single main introduction, was observed 608 

to have occurred in Australia (strains isolated in 2017), followed by a further divergence of a 609 

subclone within the country which correlates with the loss of the porB1b G120K and A121N 610 

mutations (Figure 6d), likely through a recombination event. Despite epidemiological data not 611 

being available for the Australian study (118), from their work we know that the clusters carrying 612 

an mtr mosaic were mostly linked to transmission between men, although bridging among MSM 613 

and heterosexual populations was also observed. 614 

The results from our case study show that there is an emerging lineage of N. gonorrhoeae that 615 

has spread across the world and that is carrying a mosaic mtr that has been associated with low-616 

to-medium resistance to azithromycin. This global lineage, as well as others that may emerge 617 

carrying this or other genetic AMR mechanisms, has to be closely monitored. For this purpose, 618 

an up-to-date genomic epidemiology tool such as Pathogenwatch, which includes a list of genetic 619 
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AMR mechanisms approved by an expert group is a great resource for the scientific community. 620 

At the moment, Pathogenwatch includes references for three types of mosaics in the mtrR 621 

promoter and mtrD genes that have been experimentally proven to increase MIC of azithromycin 622 

(23, 24), and the detection of these mosaics on new genomes respond to a set of similarity rules 623 

(see Data availability section). However, we will keep the database updated with new 624 

experimentally-confirmed reference sequences that may arise from further studies as it is still 625 

unclear whether all mosaics affecting the mtrCDE efflux pump will cause a decreased 626 

susceptibility to azithromycin.   627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 
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 638 

 639 

 640 

 641 
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Figure 6. N. gonorrhoeae genomes carrying genetic AMR mechanisms associated to azithromycin resistance were 642 

selected in Pathogenwatch (n=1,142) and combined with genomes from a global collection (64, 88) (total n=1528) for 643 

background contextualization. (a) Main layout of the combined collection, with the emerging lineage carrying mtr mosaic 644 

2 spanning the mtrR promoter and mtrD marked in red in the tree and the map. (b) Timeline of the genomes carrying 645 

mtr mosaic 2 (in red) and other public genomes in the database without this genetic AMR mechanism. (c) Visualization 646 

of the mtr mosaic 2-carrying lineage (n=520) spreading in the USA and Australia (see legend) using Microreact. The 647 

arrow in turquoise colour marks the divergence of the Australian lineage, shown in more detail in (d) coloured by the 648 

presence (in red) or absence (in white) of the porB1b G120K and A121N mutations. The Pathogenwatch project of this 649 

case study can be explored in (135). 650 

 651 

Discussion 652 

We present a public health focussed N. gonorrhoeae framework at Pathogenwatch, an open 653 

access platform for genomic surveillance supported by an expert group that can be adapted to 654 

any public health or microbiology laboratory. Little bioinformatics expertise is required, and users 655 

can choose to either upload raw short read data or assembled genomes. In both cases, the upload 656 

of high-quality data is encouraged in the form of quality-checked reads and/or quality-checked 657 

assemblies. Recent benchmark analyses show particular recommendations for long-read or 658 

hybrid data (136) as well as short read-only data (40, 137). On upload, several analyses are run 659 

on the genomes, and results for the three main typing schemes (MLST, NG-MAST and NG-STAR) 660 

as well as the detection of genetic determinants of AMR and a prediction of phenotypic resistance 661 

using these mechanisms can be obtained simultaneously. The library of AMR determinants 662 

contained in Pathogenwatch for N. gonorrhoeae has been revised and extended to include the 663 

latest mechanisms and epistatic interactions with experimental evidence of decreasing 664 

susceptibility or increasing resistance to at least one of eight antibiotics (Tables 2). A test and 665 

validation benchmark analyses revealed sensitivity and/or specificity values >90% for most of the 666 

tested antibiotics (Additional file 1: Table S3). Sensitivity values for the antimicrobials in the 667 

current dual treatment, azithromycin (80%) and ceftriaxone (50%), reflect the complexity of the 668 

resistance mechanisms for these antibiotics, for which we can only explain part of the observed 669 

phenotypic resistance. However, their specificity values were above 99% (Additional file 1: Table 670 

S3), further strengthening the associations of the included AMR determinants in increasing MICs 671 
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of these antibiotics. It remains essential to perform phenotypic susceptibility testing so we can 672 

detect inconsistencies between phenotypic and genotypic data that can lead to the identification 673 

and subsequent verification of novel or unknown resistance mechanisms. This will allow to 674 

continuously expand the list of genetic AMR mechanisms, and the AMR prediction from genomic 675 

data will further improve. 676 

The continuous increase in reporting of N. gonorrhoeae AMR isolates worldwide led to a call for 677 

international collaborative action in 2017 to join efforts towards a global surveillance scheme. This 678 

was part of the WHO global health sector strategy on STIs (2016-2021), which set the goal of 679 

ending STI epidemics as a public health concern by year 2030 (7, 8). Several programmes are 680 

currently in place at different global, regional or national levels to monitor gonococcal AMR trends, 681 

emerging resistances and refine treatment guidelines and public health policies. This is the case 682 

of, for example, the WHO Global Gonococcal Antimicrobial Surveillance Programme (WHO 683 

GASP) (7, 8), the Euro-GASP in Europe (6, 15, 138), the Gonococcal Isolate Surveillance Project 684 

(GISP) in the United States (139), the Canadian Gonococcal Antimicrobial Surveillance 685 

Programme (140), the Gonococcal Surveillance Programme (AGSP) in Australia (141) or the 686 

Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and 687 

Wales (142). The WHO in collaboration with CDC has recently started an enhanced GASP 688 

(EGASP) (143) in some sentinel countries such as the Philippines and Thailand (144), aimed at 689 

collecting standardized and quality-assured epidemiological, clinical, microbiological and AMR 690 

data. On top of these programs, WHO launched the Global AMR Surveillance System (GLASS) 691 

in 2015 to foster national surveillance systems and enable standardized, comparable and 692 

validated AMR data on priority human bacterial pathogens (145). Efforts are now underway to link 693 

WHO GASP to GLASS. However, gonococcal AMR surveillance is still suboptimal or even lacking 694 

in many locations, especially in LMICs, such as several parts of Asia, Central and Latin America, 695 

Eastern Europe and Africa, which worryingly have the greatest incidence of gonorrhoea (3). 696 

LMICs often have access to antimicrobials without prescription, have limited access to an optimal 697 

treatment, lack the capacity needed to perform a laboratory diagnosis due to limited or non-698 
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existent quality-assured laboratories, microbiological and bioinformatics expertise or training, 699 

insufficient availability and exorbitant prices of some reagents on top of a lack of funding, which 700 

altogether compromises infection control. 701 

High throughput sequencing approaches have proved invaluable over traditional molecular 702 

methods to identify AMR clones of bacterial pathogens, outbreaks, transmission networks and 703 

national and international spread among others (28, 29). Genomic surveillance efforts to capture 704 

the local and international spread of N. gonorrhoeae have resulted in several publications within 705 

the last decade involving high throughput sequence data of thousands of isolates from many 706 

locations across the world. The analysis of this data requires expertise, not always completely 707 

available, in bioinformatics, genomics, genetics, AMR, phylogenetics, epidemiology, etc. For 708 

lower-resourced settings, initiatives such as the NIHR Global Health Research Unit, Genomic 709 

Surveillance of Antimicrobial Resistance (146) are essential to build genomic surveillance 710 

capacity and provide the necessary microbiology and bioinformatics training for quality-assured 711 

genomic surveillance of AMR.  712 

One of the strengths of genomic epidemiology is being able to compare new genomes with 713 

existing data from a broader geographical level, which provides additional information on, e.g. if 714 

new cases are part of a single clonal expansion or multiple introductions from outside a specific 715 

location. To support this, Pathogenwatch calculates phylogenetic trees from a set of genomes 716 

selected as collections. Currently, over 12,000 isolates of N. gonorrhoeae have been sequenced 717 

using high throughput approaches and publicly deposited on the ENA linked to a scientific 718 

publication. We have quality-checked and assembled these data using a common pipeline and 719 

we made it available through Pathogenwatch, with the aim of representing as much genomic 720 

diversity of this pathogen as possible to serve as background for new analyses. These public 721 

genomes are associated with at least 27 different scientific publications, and have been organized 722 

in Pathogenwatch as individual collections (Additional file 1: Table S6). The clustering of strains 723 

on the resulting reconstructions was found consistent with those in the original publications (some 724 
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examples in Figure S11), while differences in branch lengths may be attributed to the usage of 725 

different reconstruction methods. 726 

The power of Pathogenwatch to investigate questions of public health concern is reflected in a 727 

case study (Figure 6). By selecting 1,142 azithromycin resistant strains from the public data in 728 

Pathogenwatch in the context of a global collection (64), we observed one clone carrying N. 729 

lactamica-like mtr mosaic (‘mosaic_2’) in both the mtrR promoter and mtrD genes, likely resulting 730 

from the same recombination event. Strong geographical structure was found in these 731 

azithromycin resistant strains, with isolates from the USA (mostly from 2012-2016) clearly 732 

differentiated from those from Australia (from 2017), which show a more clonal dispersion, likely 733 

from a single main introduction to the country followed by a rapid spread. Interestingly, a 734 

sublineage of this Australian mtr mosaic-carrying clone seems to have also diverged after losing 735 

the porB1b G120K and D121N mutations. It is important to note that the data from which these 736 

inferences were derived was gathered from surveillance-based studies and outbreak 737 

investigations, which may bias the observed global diversity of strains carrying this mosaic. 738 

Phenotypic susceptibility data for azithromycin or epidemiological information were not available 739 

for over half of these strains, thus impeding making further inferences. This reflects the need of 740 

improving the submission of anonymized epidemiological and antimicrobial susceptibility data for 741 

individual isolates rather than aggregated data to public repositories and/or as supplementary 742 

information of the corresponding publications, as this is where the public data in Pathogenwatch 743 

is coming from.  744 

In this study, we have additionally gathered an advisory group of N. gonorrhoeae experts in 745 

different fields such as AMR, microbiology, genetics, genomics, epidemiology and public health 746 

who will consult and discuss current and future analytics to be included to address the global 747 

public health needs of the community. We suggest this strategy as a role model for other 748 

pathogens in this and other genomic surveillance platforms, so the end user, who may not have 749 

full computational experience in some cases, can be confident that the analytics and databases 750 

underlying this tool are appropriate, and can have access to all the results provided by 751 
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Pathogenwatch through uploading the data via a web browser. We are aware that this is a 752 

constantly moving field and analytics will be expanded and updated in the future. These updates 753 

will be discussed within an advisory group to make sure they are useful in the field and the way 754 

results are reported is of use to different profiles (microbiologists, epidemiologists, public health 755 

professionals, etc.). Future analytics that are under discussion include the automatic submission 756 

of new MLST, NG-STAR and NG-MAST STs and alleles to the corresponding servers, e.g. 757 

PubMLST (48) and the automatic submission of data to public archives such as the ENA. Inter-758 

connectivity and comparability of results with PubMLST is of particular interest, as this database 759 

has traditionally been the reference for Neisseria sequence typing and genomics and it is widely 760 

used by the N. gonorrhoeae community. Plasmid and tetM/blaTEM subtyping as recently 761 

described (147) will also be considered within the development roadmap of Pathogenwatch. 762 

Including a separate library to automatically screen targets of potential interest for vaccine design 763 

(148-150) as well as targets of new antibiotics currently in phase III clinical trials (i.e. zoliflodacin 764 

(151) or gepotidacin (152)) can also be an interesting addition to the scheme. Regarding AMR, 765 

new methods for phenotypic prediction using genetic data are continuously being reported (62, 766 

153, 154), especially those based on machine learning algorithms (155), and will be considered 767 

for future versions of the platform. The prediction of MIC values or ranges instead of SIR 768 

categories will allow users to decide whether to use EUCAST (156) or CLSI (157) guidelines for 769 

categorization. 770 

 771 

Conclusions 772 

In summary, we present a genomic surveillance platform adapted to N. gonorrhoeae, one of the 773 

main public health priorities compromising the control of AMR infections, where decisions on 774 

existing and updated databases and analytics as well as how results are reported will be 775 

discussed with an advisory board of experts in different public health areas. This will allow 776 

scientists from both higher or lower resourced settings with different capacities regarding high 777 
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throughput sequencing, bioinformatics and data interpretation, to be able to use a reproducible 778 

and quality-assured platform where analyse and contextualise genomic data resulting from the 779 

investigation of treatment failures, outbreaks, transmission chains and networks at different 780 

regional scales. This open access and reproducible platform constitutes one step further into an 781 

international collaborative effort where countries can keep ownership of their data in line with 782 

national STI and AMR surveillance and control programs while aligning with global strategies for 783 

a joint action towards battling AMR N. gonorrhoeae. 784 
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