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Predicting the best treatment strategy from genomic information 

is a core goal of precision medicine. Here we focus on predicting 

drug response based on a cohort of genomic, epigenomic and 

proteomic profiling data sets measured in human breast cancer 

cell lines. Through a collaborative effort between the National 

Cancer Institute (NCI) and the Dialogue on Reverse Engineering 

Assessment and Methods (DREAM) project, we analyzed a total 

of 44 drug sensitivity prediction algorithms. The top-performing 

approaches modeled nonlinear relationships and incorporated 

biological pathway information. We found that gene expression 

microarrays consistently provided the best predictive power 

of the individual profiling data sets; however, performance 

was increased by including multiple, independent data sets. 

We discuss the innovations underlying the top-performing 

methodology, Bayesian multitask MKL, and we provide detailed 

descriptions of all methods. This study establishes benchmarks 

for drug sensitivity prediction and identifies approaches that can 

be leveraged for the development of new methods.

The success of precision medicine hinges on our ability to effectively 

translate genomic data into actionable, customized prognosis and 

treatment regimens for individual patients. This requires identifying 

a genomic disease signature from a patient, then matching it with the 

most effective therapeutic intervention. As a scientific community, 

we are moving toward this goal, but many questions still remain, 

including, what data are needed to develop these genomic signatures 

and what methods are needed to extract the appropriate information 

from high-dimensional genomic data sets? The first step in addressing 

these challenges is to generate comprehensive drug sensitivity profil-

ing measurements across many drugs, many disease (sub)types, and 

many genomic profiling technologies. Several of these data sets have 

been generated with a focus on cancer biology1–9, and in particular 

breast cancer4,5,10–14. From these data, the bottleneck then becomes 

identifying robust computational approaches that connect genomic 

profiles to drug and disease response.

In the past 20 years, there has been measurable improvement in 

breast cancer outcomes with a steady decrease in mortality15. The 

identification of HER2 amplification and subsequent discovery of 

HER2-targeted therapies (e.g., trastuzumab (Herceptin), lapatinib 

(Tykerb)) demonstrates that the identification of genomic biomark-

ers can be used to effectively guide treatment decisions and improve 

outcomes. However, identification of such biomarkers is complicated  

by substantial genomic and epigenomic heterogeneity in breast  

cancer2,10,16,17, indicating that multiple ‘drivers’ may serve as targets 

for breast cancer treatment. Effective personalized treatments will 

require matching therapeutic interventions to the complex genomic 

context of each patient.

The ideal data set(s) to build predictive models linking genomic con-

text to treatment would be systematically characterized drug sensitivities 

across a large cohort of patients, but these data are time-intensive to 

generate, prohibitively expensive, and limited in the scope of drugs that 

can be tested. Performing such assays in cell culture and focusing on 

breast cancer affords the opportunity to learn the factors that contribute 

to building effective predictive models in a tractable biological system; 

these factors can then be used for the design of marker-based clinical 

trials. Comparisons have shown that cell lines mirror many aspects of 

the ‘omic’ diversity found in primary tumors4,18,19, suggesting that they 

can be used as a proxy for characterizing the response to therapeutic 

interventions. Previous work has characterized relationships between 

genomic profiles and drug response1,3,6,7,20 and several drug sensitivity 

prediction algorithms have been proposed1,3,20,21,22; however, a thorough 

and unbiased comparison of such methods has not been reported.
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The Dialogue for Reverse Engineering Assessment and Methods 

(DREAM) project (http://www.the-dream-project.org/) is the ideal 

framework to assess predictive models from researchers across the 

world. The DREAM project is organized around a community of 

data scientists, where high-impact data along with challenges are pre-

sented annually, participants submit their best models, and unbiased 

assessment is performed using standardized metrics and blinded gold 

standards. This effort results in a rigorous assessment and perform-

ance ranking of methods, and cultivates a community of scientists 

interested in biomedical research problems.

In collaboration with the NCI, we developed the NCI-DREAM 

drug sensitivity prediction challenge with the goal of identifying and 

benchmarking top-performing methods for predicting therapeutic 

response from genomic, proteomic, and epigenomic profiling data 

(hereafter referred to as profiling data sets) in breast cancer cell lines. 

The scientific community submitted 44 sets of predictions, providing 

a rich sampling of state-of-the-art algorithms. The submissions were 

rigorously scored against an unpublished and hidden gold-standard 

data set. We identify the top-performing methods and discuss the 

details of the top two performers. We relate trends in methodolo-

gies to overall performance, in particular, modeling nonlinearities in 

the data and the benefit of using prior knowledge, often in the form 

of biological pathways. Finally, we provide an analysis of the tested 

therapeutic compounds and cell line profiling data sets.

RESULTS

Summary of data sets and challenge

We assembled a panel of 53 breast cancer cell lines, which have been 

previously profiled for DNA copy-number variation, transcript 

expression, mutations, DNA methylation and protein abundance23. 

In addition, dose-response values of growth inhibition were compiled 

for each cell line exposed to 28 therapeutic compounds (Fig. 1). (See 

Online Methods for a detailed description of the profiling data sets.)

Outlined in Figure 1, participants were supplied with the full set of 

profiling data for all 53 cell lines, and drug response data for 35 cell 

lines for the 28 compounds. The gold-standard evaluation data set, 

which was hidden from the participants, consisted of drug-response 

data for the remaining 18 cell lines. Cell lines were assigned to the train-

ing and test data sets to ensure a balance of breast cancer subtypes.

Participants were challenged to predict a ranked list of the most 

sensitive (to be ranked first) to most resistant (to be ranked last) 

cell lines for each individual drug across all the 18 test cell lines. 

Assessment of predictions was based on participant’s ranking of all 

28 therapeutic compounds across all 18 test cell lines.

Characterizing methods to predict drug sensitivity

Participants submitted 44 sets of predictions that cover a range of 

methodologies. We assigned submissions to one of six categories: 

(i) kernel methods, (ii) nonlinear regression (regression trees),  

(iii) sparse linear regression, (iv) PLS (partial least-squares) or PC 

(principal component) regression, (v) ensemble/model selection 

and (vi) other (those methods not falling cleanly into the previous  

five categories). All methods are listed in Table 1 with a short  

description that covers pre- and postprocessing, along with the  

underlying methodology (expanded team summarizations can be 

found in Supplementary Table 1).

Preprocessing and feature selection are core components of  

building a predictor. In this challenge, features in the profiling  

data sets (P) far outnumber the total samples (N), increasing the risk of 

overfitting. To address this, teams often reduced the number of features 

modeled by correlating the features in the profiling data set to the dose-

response data. Other preprocessing steps included principal component 

analysis, regularized regression (e.g., lasso, ridge or elastic nets) and 

mapping gene-level measurements to biological pathways.

Postprocessing includes summarizing or integrating predictions 

from individual algorithms or data sets into a final set of predic-

tions. For instance, many participants built models for each of the 

six profiling data sets individually, and then integrated these models 

to derive the final cell line response predictions for submission. Most 

frequently, teams computed a weighted average across individual pro-

filing data set predictions. Detailed descriptions of team methods can 

be found in Supplementary Note 1.

Evaluating drug sensitivity predictions

Team predictions were scored using a modified version of the con-

cordance index (c-index)24, the probabilistic c-index (pc-index), where 

variation in the experimentally determined dose-response measure-

ments was directly incorporated into the calculation. We present all 

dose-response values as −log10(GI50), where GI50 is the concentra-

tion that inhibited cell growth by 50% after 72 hours of treatment. 

Raw dose-response measurements can be found in Supplementary 

Table 2. A team’s final score was calculated as the weighted average 

of the pc-index for all 28 tested compounds, which we termed the 

weighted, probabilistic c-index (wpc-index, see Online Methods and 

Supplementary Note 3). Drug weights reflect the statistical signifi-

cance of the gold-standard cell-line ranking compared to a distribution  

of randomly generated predictions. We note that the range of the 

wpc-index will change according to experimental variation in the 

dose-response measurements, thus we also report a scaled version of 

the wpc-index to map the values to the range [0,1]. To verify scoring 

consistency, we also evaluated teams using a resampled Spearman cor-

relation approach (Online Methods). Results from both scoring meth-

ods were consistent (ρ = 0.89; Supplementary Fig. 1); we present the 

wpc-index results in Table 1 and the resampled Spearman correlation 

results in Supplementary Table 3. Additionally, we explored a team’s 

accuracy in predicting sensitive and resistant cell lines irrespective of 

predicted rank order (Supplementary Table 4 and Supplementary 

Fig. 2) and found a tight relationship between this measure of accu-

racy and the wpc-index (ρ = 0.78; Supplementary Fig. 3). For the 

top-performing method, wpc-index = 0.583, which corresponds to 

a balanced accuracy = 0.78. Details of this analysis can be found in 

Supplementary Note 2 with a mapping of the wpc-index to the sensi-

tive and resistant balanced accuracy in Supplementary Table 5.

To evaluate the significance of an individual team score, we  

compared the wpc-index to a null model of randomly predicted  

dose-response values. For 34 of the 44 teams, the null model of  

randomly generated predictions could be rejected (two-sided, t-test, 

false-discovery rate (FDR) < 0.05) (Fig. 2a). These results indicate 

that many diverse methods can be implemented to make drug sensi-

tivity predictions from pretreatment profiling data sets. Consistent 

with previous DREAM challenge results25, we observed that no single  

method category consistently outperformed the others (Fig. 2a  

and Table 1). This suggests that the separation in performance is 

heavily based on factors such as feature selection and method-specific 

implementations. Examples of innovative approaches from the two 

top-performing teams are presented in the following section.

All submissions were subjected to a robustness (resampling) analysis  

by randomly masking 10% of the gold-standard data set, then  

recalculating team scores (Fig. 2b,c). From this analysis, the top  

two teams were reliably ranked the best and second best, both 

when comparing team scores (one-sided, Wilcoxon signed-rank 

test, FDR < 10−10; Fig. 2b) and team ranks (one-sided, Wilcoxon 

http://www.the-dream-project.org/
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signed-rank test, FDR < 10−10; Fig. 2c). When directly compared, the  

top-ranked team outperformed the second-best team for 91%, and 

the remaining teams, for over 99% of the resampled iterations. The 

second-best team outperformed the remaining teams for over 95% of 

the resampled iterations (Supplementary Fig. 4 and Supplementary 

Table 6); however, the third through fourteenth ranked teams were 

not statistically different (Supplementary Tables 6 and 7).

Of the 44 submissions, 23 used all six profiling data sets to make 

their predictions, 8 used five data sets, 4 used three data sets, 5 used 

two data sets and 4 used one data set. We compared the average rank 

performance of teams that used all six profiling data sets to teams 

using five or fewer data sets, but did not find a significant difference 

in their performance (average rank 22.7 versus 22.3). We explored 

several additional variables (missing values being imputed, outside 

information being used, method category) and found that only the 

inclusion of outside information in the form of annotated biological 

pathways26,27 or published drug response data sets1,3,4 improved the 

average team rank (17.4 versus 24.9; one-sided, Wilcoxon rank-sum 

test, p = 0.03).

The observation that integrating predictions across multiple, 

independent teams produces the most robust score has been previ-

ously made25. For such a ‘wisdom of crowds’ phenomenon to hold, 

individual predictions must provide complementary information 

derived from independent methods. We tested this phenomenon 
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Figure 1 The NCI-DREAM drug sensitivity challenge. (a) Six genomic, epigenomic, and proteomic profiling data sets were generated for 53 breast 

cancer cell lines, which were previously described23. Drug responses as measured by growth inhibition were assessed after treating the 53 cell lines 

with 28 drugs. Participants were supplied with all six profiling data sets and dose-response data for 35 cell lines and all 28 compounds (training set). 

Cell line names were released, but drug names were anonymized. The challenge was to predict the response (ranking from most sensitive to most 

resistant) for the 18 held-out cell lines (test set). The training and test cell lines were balanced for cancer subtype, dynamic range and missing values 

(Supplementary Fig. 11). Submissions were scored on their weighted average performance on ranking the 18 cell lines for 28 compounds. (b) Dose-

response values for the training and test cell lines displayed as heatmaps.
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(continued)

Table 1 NCI-DREAM drug sensitivity prediction methods

Team Synopsis wpc-index (scaled) FDR Data

Kernel method

1 Bayesian multitask MKL (see main text). 0.583(0.629) 2.6 × 105 exnmrc OI

2 A predefined number of features were selected using Pearson correlation, training and prediction was done  

using support vector regression (SVR; radial basis).

0.559(0.592) 1.0 × 103 enmrc

3 Separate normalizations were applied to each dataset, several support vector machine (SVM) classifiers were 

independently trained (varying kernels and input data), final predictions were made using a weighted average  

of all SVM outputs.

0.553(0.582) 2.7 × 103 exnmrc

4 Bidirectional search was used to select features, training and prediction was done using a SVM (radial basis). 0.549(0.575) 4.8 × 103 enmrc

Nonlinear regression (regression trees)

1 Features were randomly selected to built an ensemble of unpruned regression trees for each dataset, missing  

values were imputed, weights for the models were calculated, final predictions were made using a weighted  

sum of the individual models.

0.577(0.620) 7.2 × 105 enm

2 Features were filtered based on their correlation to dose-response values, random forests were trained for  

each dataset, missing values were imputed, final rankings were based on a composite score from four  

individual dataset models (enrc).

0.569(0.607) 2.9 × 104 enrc OI

3 Features were filtered based on their correlation to dose-response values, random forests were trained for  

each dataset, missing values were imputed, final rankings were based on a composite score from five  

individual dataset models (enmrc).

0.565(0.601) 5.1 × 104 enmrc OI

4 Features were filtered based on their correlation to dose-response values, random forests were trained for each 

dataset, missing values were imputed, final rankings were based on a composite score from five individual  

dataset models (exnrc).

0.564(0.599) 5.1 × 104 exnrc OI

5 Features were filtered based on their correlation to dose-response values, random forests were trained for  

each dataset, missing values were imputed, final rankings were based on a composite score from individual  

dataset models (exnmrc).

0.559(0.591) 1.0 × 103 exnmrc OI

6 Gene features were selected using linear regression and maximal information coefficient, pathway information  

was also used to derive features, training and prediction was done using a random forest model.

0.551(0.579) 3.3 × 103 exnmrc

7 Random forests were constructed in a stacked approach, an ensemble of regression trees was constructed for  

all drug/dataset pairs, missing values were imputed, predictions were made for individual models and another  

random forest was used to combine the different predictions for the drugs to a final prediction.

0.548(0.575) 5.0 × 103 exnmrc

8 Features were ranked according to the absolute value of Spearman’s correlation, the average rank of all  

cell lines was calculated according to the top features.

0.548(0.574) 5.0 × 103 exnmrc

9 Features were selected using Pearson correlation and a combination of bagging and gradient boosting,  

prediction was made using selected features and a regression tree.

0.544(0.568) 1.0 × 102 exnmrc

10 Features were selected using matrix approximation methods leveraging SVD, training and prediction were  

done using a regression tree models using gradient boosting.

0.538(0.560) 1.9 × 102 en

11 Features were selected for individual cell lines by constructing random forests and pruning (recursive  

feature elimination), missing values were imputed, final predictions were made by training a random forest  

using features from all cell lines. In addition to cell line features, bioactivity spectra of the individual  

compounds were included as compound features.

0.524(0.538) 9.2 × 102 exnmrc

Sparse linear regression

1 Features were simultaneously selected and a ranking model built for each drug by lasso regression. 0.564(0.600) 5.1 × 104 en

2 Features were initially filtered based on linear regression to drug response, training and prediction were done 

using elastic nets.

0.564(0.600) 5.1 × 104 exnmrc

3 Gene and pathway features were determined using a one-dimensional factor analysis, training and predictions 

were made with spike and slab multitask regression, drug dose-response values were recalculated from raw  

growth curves.

0.564(0.598) 5.1 × 104 exnmrc OI

4 Missing features were imputed, combinations of datasets were enumerated and used to train elastic net  

regression models, for each drug, final predictions were made using the best-performing model.

0.551(0.579) 3.3 × 103 exmrc

5 Gene and pathway features were determined using a one-dimension factor analysis, training and predictions  

were made with spike and slab multitask regression, drug dose-response values were recalculated from raw  

growth curves, Heiser et al. data were used to train the model.

0.539(0.560) 1.9 × 102 exnmrc OI

6 Features were removed with low dynamic range, missing feature values were imputed, training and predictions 

were made using lasso regression on individual datasets, final predictions were made using the weighted sum  

of regression models.

0.539(0.560) 1.9 × 102 exnmrc

7 Statistically significant features were selected using Spearman correlation, training and prediction were done 

using an elastic net.

0.532(0.549) 4.7 × 102 e

8 Features were constructed by grouping genes according to GO terms, training and prediction were done using 

relaxed lasso regression.

0.531(0.548) 4.7 × 102 en OI

9 Gene and pathway features were determined using a one-dimension factor analysis, training and predictions  

were made with spike and slab multitask regression, GI50 values were used.

0.531(0.547) 4.9 × 102 exnmrc OI

10 Features were selected using a regression with log penalty, which bridges the L0 and L1 penalty, missing values 

were imputed, penalized regression models were trained on individual datasets, final predictions were made 

using a weighted average.

0.531(0.547) 4.9 × 102 exnrc

11 Features were selected based on elastic nets, missing values were imputed, training and predictions were done 

using ridge regression.

0.527(0.543) 6.7 × 102 exnmrc

12 Features were filtered on dataset-specific criteria, missing values were set to random numbers, training and  

predictions were made using the interior point method for L1-regularization.

0.519(0.529) 1.5 × 101 enmrc

13 Features were selected using a Gompertz growth model, predictions were made using a lasso regression model. 0.517(0.526) 1.8 × 101 exnmrc

14 Putative gene set expression values were calculated from constituent genes, training and predictions were  

made using linear regression.

0.485(0.477) 8.0 × 101 e
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Table 1 NCI-DREAM drug sensitivity prediction methods (continued)

Team Synopsis wpc-index (scaled) FDR Data

PLS or PC regression

1 Removed lowly expressed and/or low variance features, features were selected based on correlation to drug 

response, multiple partial least squares regression models were trained and consensus determined for final  

prediction.

0.562(0.597) 5.5 × 104 en OI

2 Features were selected by using lasso regression and groups of genes predefined by core signaling pathways,  

predictions were made by linear regression of the reduced feature set to drug response, predictor datasets  

were merged in advance of drug response prediction, and responses were predicted simultaneously sharing  

information among drugs.

0.543(0.567) 1.0 × 102 exnmrc OI

3 Training and prediction were done using principal component regression for individual drugs. 0.535(0.554) 3.1 × 102 exnmrc

4 Statistically significant features were selected using correlation, models were fit using principal component 

regression, final predictions were made using a weighted average of models.

0.524(0.538) 9.2 × 102 en

Ensemble/model selection

1 Features were selected using correlation, dimensionality reduced using principal component analysis, lasso  

and ridge method, several regression models were trained for individual drugs and the top cross-validated  

model was selected to make final predictions for each drug.

0.562(0.597) 5.5 × 104 exnmrc

2 Features were selected on outside information, missing values were imputed, predictions were made by  

aggregating results from an ensemble of machine-learning methods.

0.556(0.587) 1.6 × 103 exnmrc

3 Features were selected using Spearman’s rank correlation, missing values were imputed, predictions were  

made using the best-performance method (determined by cross-validation on the training set) among an  

ensemble of methods (random forest, support vector machine and linear regression).

0.554(0.583) 2.6 × 103 exnmrc

4 Gene and pathway features were compiled using outside data, an ensemble of prediction models were trained, 

final predictions were based on a rank-aggregation of combined prediction models.

0.517(0.527) 1.7 × 101 exnmrc OI

5 Features were selected using outside pathway and interaction data, missing values were imputed, individual  

drug predictions were made using the best model selected from an ensemble of methods.

0.506(0.509) 3.7 × 101 e OI

Other

1 Features were weighted based on Pearson’s correlation to drug response, predictions were made using the  

correlation of the weighted features.

0.570(0.608) 2.9 × 104 enr

2 Gene features showing strong survival from the METABRIC dataset were selected, then hierarchically clustered,  

a linear model was built to fit gene clusters to drug response, predictions were made using a regression model.

0.553(0.582) 2.6 × 103 e OI

3 Missing features were imputed, signatures were extracted for each dataset, predictions were made using  

1-nearest-neighbor to training cell lines via Pearson’s correlation between signatures for each data type, final 

predictions are the weighted sum of the individual datasets.

0.553(0.581) 2.7 × 103 exnmrc

4 Features were selected using dataset-specific criteria, missing values were imputed, predictions were made 

using KNN.

0.531(0.549) 4.7 × 102 exnmrc

5 Features were filtered using dataset-specific criteria, an ensemble of Cox regression models were constructed 

using random sampling from top-performing features, final prediction is the average of all models.

0.528(0.543) 6.5 × 102 nmc

6 Features were selected using the concordance index, predictions were made using an integrated voting  

strategy based on each feature’s ability to predict the order of pairs of cell lines.

0.521(0.532) 1.3 × 101 enmrc

The 44 team submissions were categorized according to their underlying methodology. The indexing scheme is used in Figures 2 and 5. Team scores (wpc-index) were re-scaled 

setting the gold-standard ranking to 1 and the inverse to 0. Teams leveraged different genomic datasets, coded as (e) gene expression, (x) exome sequencing, (n) RNA seq, (m) 

methylation, (r) RPPA and (c) copy number variation. The use of outside information, often in the form of biological pathway annotation, was found to be a factor that improved 

average team rank and is noted in the Data column as ‘OI’. Additional method characterizations can be found in Supplemental Table 1.

and found that the wisdom of crowds resulted in better performance 

(Supplementary Fig. 5a), along with increasingly robust predictions 

(i.e., greater mean, lower variance), by integrating greater numbers  

of teams (Supplementary Fig. 5b). Furthermore, predictions from  

the aggregation of a random subset of methods were very often better 

than the best of the individual methods in that subset (Supplementary 

Fig. 5c). These results indicate that individual team methods do  

provide complementary sets of predictions.

Top-performing methods exploit nonlinear modeling

The top-performing team from Aalto University and the University  

of Helsinki (co-authors on this manuscript) developed a machine-

learning method that integrates multiple profiling data sets and 

knowledge-enhanced data representations into a nonlinear, proba-

bilistic regression model to learn and predict drug sensitivities for 

all drugs simultaneously (Fig. 3 and Supplementary Note 1; source 

code provided as Supplementary Software). Their Bayesian multitask  

multiple kernel learning (MKL) method leveraged four machine-

learning principles: kernelized regression, multiview learning,  

multitask learning, and Bayesian inference.

The underlying model was kernelized regression, a regression 

approach that computes outputs from similarities between cell lines, 

which is analogous to the usage of kernel methods in classification 

tasks (e.g., support vector machines). In contrast, other regression 

approaches compute outputs directly from the input features. The ker-

nel formulation28,29 has two advantages. First, it reduces the number 

of model parameters to match the number of samples (training cell 

lines) and not the number of features. Second, it captures nonlinear 

relationships between genomic and epigenomic features, and cell-line 

drug sensitivities.

In multiview learning, heterogeneous input data (views) are inte-

grated into a single model. This makes it possible to include not 

only different profiling data sets but also various representations of 

the same data set. For example, gene expression values can be sum-

marized at the pathway level. We use the term ‘view’ to describe 

these representations (analogous to views in a database). Besides 

the original profiling data sets, three types of computed data views 

were considered, including gene set summaries, data combinations, 

and data discretization (Fig. 3a). Sets of related genes, defined in the 

MSigDB27,30 collections C2 (curated gene sets) and CP (canonical 

pathways), were used to calculate aggregated gene set views (average 

value for expression data, otherwise maximum). Data combination 

views were calculated as the product of individual data sets or accord-

ing to the PARADIGM algorithm31. Finally, discretized views were 
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compiled by binarizing continuous measures. A total of 22 views were 

generated. For the kernelized regression, each of the views was con-

verted into a kernel matrix containing pair-wise similarities between 

all cell lines. Gaussian kernels were used for real-valued views and 

Jaccard similarity coefficients for binary-valued views. To integrate 

the views, the team modeled a global similarity matrix as a weighted 

sum of the view-specific kernel matrices. This approach is known as 

multiple kernel learning or MKL32 (Fig. 3b, left). The kernel weights 

reflect the relevance of each view for predicting drug sensitivities; the 

corresponding model parameters are shared across drugs.

The sharing of information between drugs, implying simultaneous 

modeling of drug sensitivities across all the drugs, is called multitask 

learning33 (Fig. 3b, right). Here, the kernel weight parameters were 

shared, providing robustness to the overall model. The second set 

a Original views Bayesian multitask multiple kernel learning

Multitask learningMultiple kernel learning

Kernels

K
1

K
K

K

Kernel weights
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Cell line 1
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k
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d
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e

Discretized views

Model parameters:

RNA-seq

b

Σ

Shared across drugs Drug specific

Figure 3 The method implemented by the  

best performing team. (a) In addition to the  

six profiling data sets, three different  

categories of data views were compiled  

using prior biological knowledge, yielding  

in total 22 genomic views of each cell line.  

(b) Bayesian multitask MKL combines nonlinear 

regression, multiview learning, multitask 

learning and Bayesian inference. Nonlinear 

regression: response values were computed 

not directly from the input features but from 

kernels, which define similarity measures 

between cell lines. Each of the K data views  

was converted into an N×N kernel matrix Kk  

(k = 1,…,K), where N is the number of training 

cell lines. Specifically, the Gaussian kernel 

was used for real-valued data, and the Jaccard 

similarity coefficient for binary-valued data. 

Multiview learning: a combined kernel matrix K
*
 was constructed as a weighted sum of the view-specific kernel matrices Kk, k = 1,…,K. The kernel 

weights were obtained by multiple kernel learning. Multitask learning: training was performed for all drugs simultaneously, sharing the kernel weights 

across drugs but allowing for drug-specific regression parameters, which for each drug consisted of a weight vector for the training cell lines and  

an intercept term. Bayesian inference: the model parameters were assumed to be random variables that follow specific probability distributions.  

Instead of learning point estimates for model parameters, the parameters of these distributions were learned using a variational approximation scheme.
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Figure 2 Evaluation of individual drug sensitivity prediction algorithms. Prediction algorithms (n = 44) are indexed according to Table 1.  

(a) Team performance was evaluated using the weighted, probabilistic concordance index (wpc-index), which accounts for the experimental  

variation measured across cell lines and between compounds. Overall team ranks are listed on top of each bar. The gray line represents the mean 

random prediction score. (b,c) Robustness analysis was performed by randomly masking 10% of the test data set for 10,000 iterations. Performing 

this procedure repeatedly generates a distribution of wpc-index scores for each team (b). Additionally, after each iteration, teams were re-ranked  

to create a distribution of rank orders (c). The top two teams were reliably ranked the best and second-best performers (one-sided, Wilcoxon  

signed-rank test for b and c, FDR << 10−10).
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of model parameters comprises the core parameters of kernelized 

regression, which were drug-specific: for each drug, there was a vec-

tor of weights for the training cell lines and an individual intercept 

term. To handle the uncertainty resulting from the small sample size, 

all model parameters were learned by Bayesian inference, assuming 

for each model parameter a specific probability distribution, where 

parameters were learned using a computationally efficient variational 

approximation scheme (Supplementary Note 1).

After being benchmarked against the Genomics of Drug Sensitivity 

in Cancer (GDSC) data set3, the Bayesian multitask MKL method was 

applied to the NCI-DREAM test cell lines. By training the model with 

all 22 views, predictive performance was improved by 9% over using 

only the six profiling data sets, yielding a final wpc-index = 0.583  

(one-sided, t-test from random predictions, FDR = 2.5 × 10−5; scaled 

wpc-index = 0.629).

The second-best performing team of Qian Wan and Ranadip Pal 

from Texas Tech University leveraged the strengths of random forest 

regression34 to account for nonlinearities in the NCI-DREAM data 

(Supplementary Note 1). First, an ensemble of unpruned regression trees 

with random feature selection was compiled based on a bootstrapped  

sampling of a given profiling data set. For each profiling data set, a 

final model based on averaging of predictions over the collection 

of trees was generated. Each model was then weighted according to 

its least-squares fit to the training drug sensitivity data. The final 

predictions were calculated as the weighted sum of all six profiling 

data set models, yielding a final wpc-index = 0.577 (one-sided, t-test, 

FDR = 7.2 × 10−5; scaled wpc-index = 0.620). For this approach, the 

most informative profiling data sets were gene expression followed 

by methylation.

Profiling data sets provide nonredundant predictive signals

We used the insights provided by participating teams in a post-

challenge comparative analysis between the Bayesian multitask MKL  

method (kernel 1) and an elastic net to characterize the predic-

tive power of the original six profiling data sets. Teams most often 

reported that gene expression microarrays carried the greatest weight 

in their models (Supplementary Note 1). We tested this observa-

tion by performing 50 independent simulations of the NCI-DREAM 

challenge, randomly splitting all data sets into 35 training and 18 test 

cell lines, balanced for breast cancer subtype. To establish a baseline 

performance, we chose an elastic net model because it had been used 

previously1, was widely used by teams (Supplementary Note 1), and 

could be easily applied off-the-shelf (glmnet R package35). Averaged 

across all tested drugs, we found that the RPPA data showed the high-

est performance for the elastic net, followed closely by gene expression 

data (Fig. 4a). The Bayesian multitask MKL performed better than the 

elastic net using the RPPA data (one-sided, Wilcoxon signed-rank test, 

FDR = 1.3 × 10−6), and Bayesian multitask MKL using gene expression 

data significantly outperformed the use of RPPA data (two-sided, 

Wilcoxon signed-rank test, FDR = 1.3 × 10−6). For both methods, the 

performance varied across individual drugs (Supplementary Fig. 6).  

We also examined the effect of profiling data sets on drug classes 

(as defined in Supplementary Table 8) and found that for Bayesian 

multitask MKL, the ‘Signaling growth’ drugs had higher predictive 

scores in general, with gene expression and RPPA data being the data 

sets with the most predictive power (Supplementary Fig. 6).

Between the six profiling data sets, we explored the issue of data 

complementarity and redundancy, specifically, which data set com-

binations provide performance gains over single data sets. For the 
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Figure 4 Performance comparison of data set views. The top-performing method, Bayesian multitask MKL, and an elastic net predictor were trained on 

(a) the original profiling data sets, (b) computed views, (c) groups of data views, and (d) the fully integrated set of all data views. Boxplots represent the 

distribution of 50 random simulations matching the NCI-DREAM challenge parameters, where whiskers indicate the upper and lower range limit, and 

the black line, the median. (b) The computed views were derived from gene sets, combined data sets, calculated as the product of values between  

data sets, and discretizing continuous measures into binary values. (c) Data view groups were defined as all views derived from one profiling data set. 

(d) For Bayesian multitask MKL, the integration of all data views achieves the best performance. Gene expression is the most predictive profiling data 

set, slightly outperformed by gene set views of expression data and the integration of original and gene set expression data.
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Bayesian multitask MKL method, we found that exome sequencing 

data best complemented gene expression data, whereas for the elastic 

net, methylation data best complemented gene expression data. For 

both methods, all other data sets were best complemented by gene 

expression, to varying degrees (Supplementary Fig. 7). Additionally, 

by evaluating methods trained with five instead of the full six profiling 

data sets, we identified methylation as the most independent, non-

redundant profiling data set because removing methylation showed the 

largest average drop in performance (Supplementary Figs. 7 and 8).

In addition to the original data sets, we explored the performance 

of computed data views, as defined in the previous section. For both 

methods, gene set views (CP and C2) showed improved perform-

ance for copy number variation (CNV) data compared to the original  

data. In contrast, discretization of RNA-seq data improved the per-

formance only with Bayesian multitask MKL and not with the elastic 

net. Comparing all computed views, the gene set view (CP) of gene 

expression data achieved the best performance for both methods 

(Fig. 4b). Finally, we tested whether all views for a single profiling 

data set (original data set plus computed views) could be integrated 

to improve performance. For the elastic net, we only found a slight 

gain in performance for the RNA-seq and CNV groups, whereas 

the Bayesian multitask MKL method showed performance gains 
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Figure 5 Prediction performance on individual drugs. Prediction algorithms are indexed and colored according to Table 1. (a) The heatplot illustrates 

participant performance on individual drugs, grouped by drug class (values can be found in Supplementary Table 9). Drug weights, which take  

into account the number of missing values and the noise in the −log10(GI50) measurements, are displayed at the top of the heatplot. Team  

submissions are ordered according to their overall performance from best performer at the top of the list. (b) The dynamic range of drugs across all  

cell lines was compared to the median team score. The node size reflects the number of distinct −log10(GI50) values for each drug across all  

53 cell lines. The node colors reflect mode-of-action classes. The gray horizontal line is the mean score of random predictions and the vertical gray 

line separates low dynamic range (<2) from high dynamic range (>2), where dynamic range for a drug is the maximum −log10(GI50) − minimum 

−log10(GI50). (c) The distribution of team scores (n = 44) for individual drugs was compared to the null model of random predictions (gray line  

where pc-index = 0.5). The red points correspond to the maximum possible pc index (pc index of gold standard in the test data). On average,  

21/28 drugs performed better than the null model; using the Kolmogorov-Smirnov test, 16/28 drugs were significantly better than the null model  

(*FDR < 0.05; **FDR < 0.01; ***FDR < 0.001). 
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for all groups except for exome sequencing (Fig. 4c), with the top-

performing group coming from gene expression data. Notably, the 

fully integrated model of all 22 data views improved performance 

against the gene expression group (one-sided, Wilcoxon signed-rank 

test, FDR = 7.3 × 10−7; Fig. 4d). Taken together, these results sug-

gest that gene expression data provides the most predictive power 

for any individual profiling data set. Also, predictive power can be 

gained within a data set by generating new computational views that 

integrate across profiling data sets and incorporate prior knowledge. 

Notably, this improvement comes with no additional experimental 

cost (Supplementary Figs. 9 and 10).

A predictive signal can be identified for most drugs

Teams were scored according to their ability to rank cell lines across  

all 28 tested therapeutic compounds. Here, we explored teams’  

abilities to predict individual drug response. Inhibition of cell growth 

was predicted well for some compounds (e.g., bromopyruvate  

(glycolysis), PD184352 (MEK)), whereas for other compounds, 

teams generally performed poorly (e.g., chloroquinine (autophagy), 

FR180304 (ERK)) (Fig. 5a). To characterize factors that influence 

compound predictability, we measured the Pearson correlation 

between the pc-index and a compound’s dynamic range (minimum to 

maximum −log10(GI50) values). A mild positive trend exists (ρ = 0.14), 

though it is not statistically significant (p = 0.49) (Fig. 5b). We found 

that proteasome inhibitors tend to be predicted more accurately than 

other drug classes (as defined in Supplementary Table 8), though 

with a relatively small number of compounds in each class, this analy-

sis is not well-powered. One factor that did confound our assessment  

of individual drug performance was the number of −log10(GI50)  

values measured for a drug (Fig. 5b). That is, missing values and 

multiple cell lines with the same measured response resulted in under-

powered, drug-specific statistics. This observation is the basis for 

weighting drugs to calculate the wpc-index score.

We further assessed the predictability of individual drugs by com-

paring the distribution of team predictions to a random model and 

found that 21/28 drugs performed better than the average null model, 

and 16/28 drugs were significantly better (Kolmogorov-Smirnov test, 

FDR < 0.05; Fig. 5c). This strongly indicates that a predictive signal 

is being identified by a majority of teams for more than half of the 

tested compounds. Further, these observations demonstrate that it is 

possible to identify predictive features for compounds representing 

diverse modes of action. We also quantified the gap in performance 

between team predictions and the best possible ranking (as defined 

by the rank order of the test cell lines). Across 28 compounds, the 

Bayesian multitask MKL method accounted for 73% of the maximum 

possible score, with the second-best performing team accounting  

for 71% of the maximum possible signal. Although promising, this 

indicates that these drug sensitivity predictions could benefit from 

further refinement.

DISCUSSION

Over a period of 5 months, 127 researchers focused their time and 

efforts on addressing the challenge of drug sensitivity prediction. To 

our knowledge, no previous studies have assessed a comprehensive 

benchmarked set of algorithms for predicting therapeutic response 

based on genomic, epigenomic, and proteomic profiles of untreated 

cells. The Bayesian multitask MKL method provides an excellent 

example of how the NCI-DREAM challenge drove innovation in 

algorithm development. Considering all 44 submitted methods,  

the insights gained provide a valuable resource for future algorithm 

development (Supplementary Note 1).

In particular, our analysis of this collection of algorithms revealed 

several insights about predicting drug sensitivity. First, we found that 

modeling nonlinearities in the data was a common component of top-

performing methods. Second, the Bayesian multitask MKL method 

showed improved performance by learning weights for the input data 

sets. Sharing the weights across drugs provided greater robustness of 

the prediction model and resulted in an increased overall perform-

ance, particularly for the drugs with many missing values. Finally, the 

application of prior knowledge, particularly in the form of biological 

pathways, improved drug sensitivity predictions. This was demon-

strated in the Bayesian multitask MKL method through data views, 

though many top-performing teams implemented similar approaches 

to leverage pathway information.

We observed that gene expression was the most informative data 

set in many approaches, which may partly reflect the fact that analysis 

tools for this data type are more abundant and advanced. That is, we 

do not yet know the best approaches to extract predictive informa-

tion from the other large profiling data sets; in particular the sparsity  

of exome sequencing data requires novel analysis methods36. 

However, when combined with expression data, these other data sets 

can enhance prediction performance.

The analysis of individual compounds showed that predictors of 

response could be robustly identified for the majority of compounds 

tested. This suggests a prioritization scheme for identifying compounds 

and their associated signatures with the most promise for validation 

in patient populations. Both targeted and nontargeted compounds, 

as well as those with both high and low dynamic ranges of response 

could be predicted, indicating that predictive features are present in 

the profiling data sets for a diverse array of drug mechanisms.

The −log10(GI50) drug response measurement used in this study 

represents one available metric to quantify drug response. Recent 

studies have demonstrated that dose-response curves can be param-

eterized in many meaningful ways1,37. It is possible that applying the 

algorithms assessed here to other parameters of the curves would yield 

more robust predictions for some of the compounds for which predic-

tions were poor. In addition, the −log10(GI50) reflects the combined 

effect of growth inhibition and apoptosis, two related but distinct 

processes that can be modeled separately, and even targeted sepa-

rately as a cancer treatment strategy38. Expanding the measurements 

to include endpoints that mediate oncogenic behavior of cells39 would 

allow for improved model construction and has recently been shown 

to be experimentally and technologically feasible40.

A limitation of this work is the small number of cell lines and com-

pounds tested. The efforts by NCI-DREAM participants have laid 

the groundwork for the development of improved drug sensitivity 

models that can be applied to newly generated data sets1,3. Another 

consideration is that preclinical work is only a very early step in the 

translation to clinical samples. Now that genomic, epigenomic and/or 

proteomic profiles are frequently a component of clinical trials (e.g., 

I-SPY 2 Trial: http://www.ispy2.org/), these data will be available to 

test and refine models developed from this challenge in human tri-

als. Moreover, participants were not given any information about the 

mode of action, target or chemical structure of the compounds, which 

could be included as additional features for the models22.

The success of precision medicine will depend on our ability to 

translate large compendia of genomic, epigenomic, and proteomic 

data into clinically actionable predictions. Examples such as the 

recent Sage Bionetworks-DREAM breast cancer prognosis challenge41  

and this NCI-DREAM drug sensitivity challenge demonstrate the  

evolution of challenge-based competitions, resulting in rapid  

advancement of robust algorithms and establishment of benchmarked 

http://www.ispy2.org/
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models. Equally important, challenge-based competitions build  

the critical mass of collaborative scientists necessary to address  

fundamental biomedical questions42. The evolution of the DREAM 

project will continue as the challenges in biomedical research expand 

to the genome scale.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Accession codes. EBI: EGAS00000000059 and EGAS00001000585, 

E-TABM-157 and E-MTAB-181. GEO: GSE48216 and GSE42944.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNOWLEDGMENTS

The data were kindly provided before publication for this challenge by J.W.G.  
We acknowledge the contributions of all participants in the co-organized NCI 
and DREAM Summit held on April 23, 2012, for the development of the challenge 
(http://www.the-dream-project.org/sites/the-dream-project.org/files/documents/
dream7/dream_participant_list.docx). This work is supported in part by the 
following: MaGNeT grant (5U54CA121852-08); National Institutes of Health, 
National Cancer Institute grant U54 CA 112970; Stand Up To Cancer-American 
Association for Cancer Research Dream Team Translational Cancer Research grant 
SU2C-AACR-DT0409; Prospect Creek Foundation; Howard Hughes Medical 
Institute (HHMI); and The Academy of Finland (Finnish Center of Excellence in 
Computational Inference Research COIN, grant nos. 251170  
and 140057).

We acknowledge the computational resources provided by Aalto Science-IT 
project.

AUTHOR CONTRIBUTIONS

J.C.C., M.P.M., L.M.H., M.B., D.G., D.S., J.S.-R., J.J.C., J.W.G. and G.S. designed  
the challenge. The top-performing approach was designed by E.G., M.G., M.A., 
P.H., S.A.K., J.-P.M., O.K., A.H., T.A., K.W. and S.K. Data analysis for the  
top-performing approach was conducted by E.G., M.G., M.A., P.H., S.A.K. and  
S.K. M.G. and S.K. designed the Bayesian model and M.G. implemented the 
inference algorithm for the top-performing approach. The NCI-DREAM 
Community provided drug sensitivity predictions and Supplementary Note 1.  
descriptions. J.C.C., L.M.H. and M.P.M. performed analysis of challenge 
predictions. J.C.C., L.M.H., E.G., M.P.M., J.S.-R., S.K. and G.S. interpreted the 
results of the challenge and performed follow-up analyses for the manuscript. 
L.M.H., N.J.W. and J.W.G. generated experimental data. J.C.C., L.M.H., E.G.,  
M.G., M.P.M., J.J.C., J.S.-R., S.K., J.W.G. and G.S. wrote the paper. 

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/

reprints/index.html.

1. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling 

of anticancer drug sensitivity. Nature 483, 603–607 (2012).

2. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast 

tumours. Nature 490, 61–70 (2012).

3. Garnett, M.J. et al. Systematic identification of genomic markers of drug sensitivity 

in cancer cells. Nature 483, 570–575 (2012).

4. Heiser, L.M. et al. Subtype and pathway specific responses to anticancer compounds 

in breast cancer. Proc. Natl. Acad. Sci. USA 109, 2724–2729 (2012).

5. International Cancer Genome Consortium. et al. International network of cancer 

genome projects. Nature 464, 993–998 (2010).

6. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect 

small molecules, genes, and disease. Science 313, 1929–1935 (2006).

7. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for 

therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 

(2013).

8. Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen.  

Nat. Rev. Cancer 6, 813–823 (2006).

9. Wilson, T.R. et al. Widespread potential for growth-factor-driven resistance to 

anticancer kinase inhibitors. Nature 487, 505–509 (2012).

10. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast 

tumours reveals novel subgroups. Nature 486, 346–352 (2012).

11. Reis-Filho, J.S. & Pusztai, L. Gene expression profiling in breast cancer: 

classification, prognostication, and prediction. Lancet 378, 1812–1823 (2011).

12. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor 

subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 

(2001).

13. van ‘t Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast 

cancer. Nature 415, 530–536 (2002).

14. Wu, J. et al. Identification and functional analysis of 9p24 amplified genes in 

human breast cancer. Oncogene 31, 333–341 (2012).

15. Howlader, N. et al. SEER Cancer Statistics Review, 1975–2010 (National Cancer 

Insitute, Bethesda, MD, 2013).

16. Stephens, P.J. et al. The landscape of cancer genes and mutational processes in 

breast cancer. Nature 486, 400–404 (2012).

17. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. 

Science 318, 1108–1113 (2007).

18. Kao, J. et al. Molecular profiling of breast cancer cell lines defines relevant tumor 

models and provides a resource for cancer gene discovery. PLoS ONE 4, e6146 

(2009).

19. Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally 

distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

20. Daemen, A. et al. Modeling precision treatment in breast cancer. Genome Biol. 14, 

R110 (2013).

21. Bussey, K.J. et al. Integrating data on DNA copy number with gene expression 

levels and drug sensitivities in the NCI-60 cell line panel. Mol. Cancer Ther. 5, 

853–867 (2006).

22. Masica, D.L. & Karchin, R. Collections of simultaneously altered genes as biomarkers 

of cancer cell drug response. Cancer Res. 73, 1699–1708 (2013).

23. Menden, M.P. et al. Machine learning prediction of cancer cell sensitivity to drugs 

based on genomic and chemical properties. PLoS ONE 8, e61318 (2013).

24. Harrell, F.E. Regression Modeling Strategies (Springer, New York, 2001).

25. Marbach, D. et al. Wisdom of crowds for robust gene network inference.  

Nat. Methods 9, 796–804 (2012).

26. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 

Acids Res. 28, 27–30 (2000).

27. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach 

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 

15545–15550 (2005).

28. Schölkopf, B. & Smola, A.J. Learning with Kernels: Support Vector Machines, 

Regularization, Optimization, and Beyond (MIT Press, 2001).

29. Shawe-Taylor, J. & Cristianni, N. Kernel Methods for Pattern Analysis (Cambridge 

University Press, New York, NY, 2004).

30. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 

1739–1740 (2011).

31. Vaske, C.J. et al. Inference of patient-specific pathway activities from multi-

dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237–i245 

(2010).

32. Gönen, M. & Alpaydin, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 

12, 2211–2268 (2011).

33. Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).

34. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

35. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear 

models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

36. Leiserson, M.D., Blokh, D., Sharan, R. & Raphael, B.J. Simultaneous identification 

of multiple driver pathways in cancer. PLoS Comput. Biol. 9, e1003054  

(2013).

37. Fallahi-Sichani, M., Honarnejad, S., Heiser, L.M., Gray, J.W. & Sorger, P.K. 

Comparing drug activity across cell line banks reveals systematic variation in 

properties other than potency. Nat. Chem. Biol. 9, 708–714 (2013).

38. Kwong, L.N. et al. Oncogenic NRAS signaling differentially regulates survival and 

proliferation in melanoma. Nat. Med. 18, 1503–1510 (2012).

39. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 

646–674 (2011).

40. Rantala, L.M., Kwon, S., Korkola, J.E. & Gray, J.W. Expanding the diversity of 

image-based RNAi screen applications using cell spot microarrays. Microarrays 2, 

97–114 (2013).

41. Margolin, A.A. et al. Systematic analysis of challenge-driven improvements in molecular 

prognostic models for breast cancer. Sci. Transl. Med. 5, 181re1 (2013).

42. Costello, J.C. & Stolovitzky, G. Seeking the wisdom of crowds through challenge-based 

competitions in biomedical research. Clin. Pharmacol. Ther. 93, 396–398  

(2013).

http://www.nature.com/doifinder/10.1038/nbt.2877
http://www.nature.com/doifinder/10.1038/nbt.2877
https://www.ebi.ac.uk/ega/studies/EGAS00000000059
https://www.ebi.ac.uk/ega/studies/EGAS00001000585
http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-157/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-181/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48216
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42944
http://www.nature.com/doifinder/10.1038/nbt.2877
http://www.the-dream-project.org/sites/the-dream-project.org/files/documents/dream7/dream_participant_list.docx
http://www.the-dream-project.org/sites/the-dream-project.org/files/documents/dream7/dream_participant_list.docx
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


©
2
0
1
4
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

NATURE BIOTECHNOLOGY   ADVANCE ONLINE PUBLICATION 11

A N A LY S I S

NCI-DREAM Community

Jean-Paul Abbuehl15, Tero Aittokallio7, Jeffrey Allen16, Russ B Altman17, Muhammad Ammad-ud-din4,  
Shawn Balcome18, Mukesh Bansal6, Alexis Battle19, Andreas Bender20, Bonnie Berger21, Jonathan Bernard15,  
Madhuchhanda Bhattacharjee22,23, Krithika Bhuvaneshwar24, Andrew A Bieberich25, Fred Boehm26,27,  
Andrea Califano6, Christina Chan28–30, Beibei Chen16, Ting-Huei Chen31, Jaejoon Choi32, Luis Pedro Coelho33, 
Thomas Cokelaer5, James C Collins1,2,10, James C Costello1,2,13, Chad J Creighton34, Jike Cui35, Will Dampier36, 
V Jo Davisson25, Bernard De Baets37, Raamesh Deshpande18, Barbara DiCamillo38, Murat Dundar39,  
Zhana Duren40, Adam Ertel41, Haoyang Fan26,27, Hongbin Fang42, Dan Gallahan11, Robinder Gauba24,  
Elisabeth Georgii4, Mehmet Gönen4, Assaf Gottlieb17, Michael Grau43, Joe W Gray3, Yuriy Gusev24,  
Min Jin Ha31, Leng Han44, Michael Harris24, Laura M Heiser3, Nicholas Henderson26,27, Hussein A Hejase45,  
Petteri Hintsanen7, Krisztian Homicsko15, Antti Honkela8, Jack P Hou46, Woochang Hwang32, Adriaan P IJzerman47,  
Olli Kallioniemi7, Bilge Karacali48, Samuel Kaski4,8, Sunduz Keles26,27, Christina Kendziorski26,27,  
Suleiman A Khan4, Junho Kim32, Min Kim16, Youngchul Kim49, David A Knowles19, Daphne Koller19,  
Junehawk Lee32,50, Jae K Lee49, Eelke B Lenselink47, Biao Li51, Bin Li35, Jun Li44,52, Han Liang44,53, Jian Ma46, 
Subha Madhavan24,54, Michael P Menden5, Sean Mooney51, John-Patrick Mpindi7, Chad L Myers18,  
Michael A Newton26,27, John P Overington55, Ranadip Pal56, Jian Peng57, Richard Pestell36, Robert J Prill58,  
Peng Qiu59, Bartek Rajwa60, Anguraj Sadanandam15, Julio Saez-Rodriguez5, Francesco Sambo38, Hyunjin Shin35, 
Dinah Singer11, Jiuzhou Song61, Lei Song24, Arvind Sridhar62, Michiel Stock37, Gustavo Stolovitzky12,  
Wei Sun31, Tram Ta26,27, Mahlet Tadesse63, Ming Tan42, Hao Tang16, Dan Theodorescu64, Gianna Maria Toffolo38,  
Aydin Tozeren36, William Trepicchio35, Nelle Varoquaux65–67, Jean-Philippe Vert65–67, Willem Waegeman37, 
Thomas Walter65–67, Qian Wan56, Difei Wang24,54, Nicholas J Wang3, Wen Wang18, Yong Wang40,  
Zhishi Wang26,27, Joerg K Wegner68, Krister Wennerberg7, Tongtong Wu69, Tian Xia18, Guanghua Xiao16, 
Yang Xie16, Yanxun Xu44,70, Jichen Yang16, Yuan Yuan44,53, Shihua Zhang40, Xiang-Sun Zhang40, Junfei Zhao40, 
Chandler Zuo26,27, Herman W T van Vlijmen68 & Gerard J P van Westen55

15Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. 16Quantitative 

Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA. 17Departments of Genetics and Bioengineering, Stanford 

University, Stanford, California, USA. 18Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA. 19Department 

of Computer Science, Stanford University, Palo Alto, California, USA. 20Unilever Centre, Cambridge University, Cambridge, UK. 21Computer Science and Artificial 

Intelligence Laboratory, MIT, Cambridge, Massachusetts, USA. 22Department of Statistics, University of Pune, Pune, India. 23School of Mathematics and Statistics, 

University of Hyderabad, Hyderabad, India. 24Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.  
25Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, W. Lafayette, Indiana, USA. 26Department of Statistics, University of 

Wisconsin, Madison, Wisconsin, USA. 27Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA. 28Department of 

Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA. 29Department of Chemical Engineering and Materials Science, Michigan 

State University, East Lansing, Michigan, USA. 30Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA. 
31Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA. 32Korea Advanced Institute of Science and Technology, Daejeon, Korea. 
33Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal. 34Department of Medicine, Dan L. Duncan Center Division 

of Biostatistics, Baylor College of Medicine, Houston, Texas, USA. 35Translational Medicine, Millennium Pharmaceuticals, Cambridge, Massachusetts, USA. 36Center 

for Integrated Bioinformatics, Drexel University, Philadelphia, Pennsylvania, USA. 37Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent 

University, Ghent, Belgium. 38Department of Information Engineering, University of Padova, Padova, Italy. 39Computer and Information Science Department, IUPUI, 

Indianapolis, Indiana, USA. 40National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of 

Sciences, Beijing, China. 41Jefferson Kimmel Cancer Center, Drexel University, Philadelphia, Pennsylvania, USA. 42Department of Biostatistics, Bioinformatics and 

Biomathematics, Georgetown University Medical Center, Washington, DC, USA. 43Department of Physics, University of Marburg, Marburg, Germany. 44Department 

of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. 45Department of Computer Science and 

Engineering, Michigan State University, East Lansing, Michigan, USA. 46Department of Bioengineering and Institute for Genomic Biology, University of Illinois, 

Champaign-Urbana, Illinois, USA. 47Leiden Academic Center for Drug Research, University of Leiden, Leiden, Netherlands. 48Izmir Institute of Technology, Izmir, 

Turkey. 49Division of Biostatistics, University of Virginia School of Medicine, Charlottesville, Virginia, USA. 50Korea Institute of Science and Technology Information, 

Daejeon, Korea. 51Buck Institute, Novato, California, USA. 52CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, 

Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China. 53Graduate Program in Structural and Computational Biology and 

Molecular Biophysics, Baylor College of Medicine, Houston, Texas, USA. 54Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University 

Medical Center, Washington, DC, USA. 55ChEMBL Group, The EMBL-European Bioinformatics Institute, Cambridge, UK. 56Electrical and Computer Engineering, 

Texas Tech University, Lubbock, Texas, USA. 57Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts, USA. 58IBM Almaden 

Research Center, IBM Almaden Research Center, San Jose, California, USA. 59Department of Bioinformatics and Computational Biology, University of Texas MD 

Anderson Cancer Center, Houston, Texas, USA. 60Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, USA. 61Department of Animal and Avian 

Science, University of Maryland, College Park, Maryland, USA. 62Embedded Systems Laboratory (ESL), Institute of Electrical Engineering, Swiss Federal Institute of 

Technology Lausanne (EPFL), Lausanne, Switzerland. 63Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA. 64The University 

of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado, USA. 65Centre for Computational Biology, Mines ParisTech, Fontainebleau, 

France. 66Institut Curie, Paris, France. 67INSERM U900, Paris, France. 68Janssen Pharmaceutica, Beerse, Belgium. 69Department of Biostatistics and Computational 

Biology, Rochester University Medical Center, Rochester, New York, USA. 70Department of Statistics, Rice University, Houston, Texas, USA.



©
2
0
1
4
 N

a
tu

re
 A

m
e
ri

c
a
, 
In

c
. 
 A

ll
 r

ig
h

ts
 r

e
s
e
rv

e
d

.

NATURE BIOTECHNOLOGY doi:10.1038/nbt.2877

ONLINE METHODS
Challenge data and gold standard. The NCI-DREAM drug sensitivity predic-

tion challenge is outlined in Figure 1. A total of seven data sets were provided 

for 53 breast cancer cell lines, as discussed in detail in two recent publications: 

Heiser et al.4 and Daemen et al.23. The cell lines were selected to represent the 

major, clinically relevant subtypes of breast cancer, including luminal, basal, 

claudin-low, ERBB2-amplified, and nonmalignant. The drugs were selected 

based on data availability (on average, drugs were tested on 80% of the 53 

cell lines) and novelty (drug response data were unpublished, not distrib-

uted throughout the community of participants, and not available from other 

sources (Supplementary Note 4)). Most of the included drugs have not been 

tested clinically in breast cancer, and therefore have the potential to serve as 

novel therapeutics.

A total of six genomic, epigenomic and proteomic profiling data sets were 

collected from untreated cells in growth conditions. Descriptions of each pro-

filing data set can be found in the annotation files associated with each data set 

supplied through the DREAM website (http://www.the-dream-project.org/). 

Not all profiling data were collected for every cell line, and drugs were not 

equally sampled across all of the cell lines.

(1) DNA copy-number variation (CNV). Affymetrix Genome-Wide  

Human SNP6.0 Array. Copy number ratios were estimated relative to a set  

of 20 normal samples, and data were segmented using circular binary  

segmentation (CBS)43;

(2) Transcript expression values. Affymetrix GeneChip Human Gene  

1.0 ST microarrays were processed using the R package aroma.affymetrix44 

(over 18,000 expression values);

(3) Whole exome sequencing (exome seq). Mutation status was obtained 

from exome-capture sequencing (Agilent Sure Select system). Mutations across 

all cell lines were filtered as follows: (i) average sum of the base quality scores 

of all mismatches in the reads containing the mutant allele ≤ 20; (ii) average 

number of other mismatches in the reads ≤ 1.5; (iii) average distance of the 

mutant alleles to the 3′ end of their respective reads between 0.2 and 0.8;  

(iv) mutant allele read support ≥ 4; (v) number of reads per variant  

supporting either the reference or mutant allele < 400 (over 33,000 reported 

mutations);

(4) RNA sequencing data (RNA-seq). RNA-seq libraries were prepared  

using the TruSeq RNA Sample Preparation Kit (Illumina) and Agilent 

Automation NGS system per manufacturers’ instructions. Expression  

analysis was performed with the ALEXA-seq software package45 (just under 

37,000 RNAs);

(5) DNA methylation data. The Illumina Infinium Human Methylation27 

BeadChip Kit was used for the genome-wide detection of 27,578 CpG loci, 

spanning 14,495 genes46. GenomeStudio Methylation Module v1.0 was used to 

express the methylation for each CpG locus as a value between 0 (completely 

unmethylated) and to 1 (completely methylated) (over 27,000 CpGs);

(6) RPPA. An antibody-based method to quantitatively measure pro-

tein abundance. RPPA data were generated and preprocessed as previously 

described47 (131 proteins assayed).

In addition to the profiling data, drug response for each of the 53 cell lines to 

28 drugs was tested. Dose-response curves were generated and the GI50[M] 

was calculated. To estimate the GI50, a series of assays were done, as previ-

ously described48. Briefly, cells were treated for 72 h with a set of nine doses 

of each compound in 1:5 serial dilution. Cell viability was determined using 

the Cell Titer Glo assay. We used nonlinear least-squares to fit the data with a 

Gompertz curve. The fitted curve was transformed into a GI curve using the 

method (http://dtp.nci.nih.gov/branches/btb/ivclsp.html) described in Monks, 

et al.49. In cases where the underlying growth data were of high quality, but 

the GI50 was not reached, the values were set to the highest concentration 

tested. The drug response data were filtered according to previously described 

criteria4. All reported drug response values and calculations for scoring were 

done using −log10(GI50). The complete set of unfiltered raw drug response 

data is in Supplementary Table 2.

Participants were supplied with the full set of profiling data for all of the 

cell lines and drug response data for 35 (of the 53) cell lines for all 28 drugs. 

The gold-standard evaluation data set consisted of drug response data for the 

remaining 18 cell lines, which were hidden from the participants. Cell lines 

were assigned to the training and test data sets to ensure a balanced set of 

breast cancer subtypes.

Participants were challenged to predict a ranked list of the most sensitive (to 

be ranked first) to most resistant (to be ranked last) cell lines for each individ-

ual drug across all the 18 test cell lines. We note that the drug response values, 

−log10(GI50), ranked from highest to lowest values, correspond to a ranking of 

the most-sensitive to the most-resistant cell lines. Assessment of predictions 

was based on participant’s ranking of the 18 test cell lines. Participants supplied 

their final submission as a comma-separated text file with the drugs listed as 

columns and cell lines listed as rows. The cells in the matrix represent ranks 

of each cell line for a given drug.

Team scoring. Drug response measurements, −log10(GI50), are subject to  

noise. To account for these uncertainties, a pooled variance, 
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was calculated for each tested drug individually, d, over n = 53 cell lines, where 

ri and si
2  are the replicate number and variance of the ith cell line, respec-

tively. There were several drugs (bromopyruvate (glycolysis), chloroquine 

(autophagy), GW5074 (RAF1), and QNZ (NFκB)) with low replicate num-

bers; in these instances, the global pooled variance across all drugs and cell 

lines was used. Values used to calculate the pooled variance can be found in 

Supplementary Table 10. The pooled variance was then taken into account 

when scoring team submissions as described in the following section.

The final team submissions were evaluated using two independent  

scoring methods. The first scoring method, a weighted, probabilistic  

concordance-index (wpc-index), was used to report the final team rankings 

of the challenge. The second method, a resampled Spearman correlation,  

was used to verify the consistency between team rankings based on a separate  

scoring method and implementation. Team scores were then subjected to  

a resampled, robustness analysis to ensure team rankings were not affected 

by perturbations to the gold-standard test cell lines. Team scores were based 

on the set of 18 test cell lines.

Weighted probabilistic concordance-index (wpc-index). The concordance 

index (c-index) is a nonparametric scoring method that provides a measure 

of similarity between two lists of measurements or ranks24. For a detailed 

description of the scoring methodology, see Supplementary Note 3.

Resampled Spearman correlation. The key idea motivating this scoring met-

ric is to compare the predicted ranked list for each drug, d, and n cell lines  

(n = 18 for the set of test cell lines), Rd = (r1, r2,…, rn) against an ensemble of  

t different possible realizations of the gold standard, ˆ ( , , , ), , , ,G G G Gd t d d d t= 1 2 … ,  

for the same drug and cell lines, where each realization Gd is defined as  

Gd = (g1, g2,…, gn). Each of the possible t realizations of the gold-standard 

samples a drug’s −log10(GI50) dose in a cell line from the normal distribution, 

N(xd,n, sd) where xd,n is the sample mean of the drug response for d and cell 

line n, and sd is the pooled s.d. for d over all tested cell lines. The ensemble of 

gold standards, ˆ
,Gd t , is then converted into ranked gold-standard cell lines, Rd

* .  

Afterwards we compared these rank gold-standard cell lines to the predicted 

ranks, Rd:

Spearman correlation r( , )
( )( )

(

* , ,
* *

,

R R

R R R R

R

d d

d t d d t dt

n

d

=
− −=∑ 1

tt d d t dt

n

t

n
R R R− −== ∑∑ ) ( )

,

,
* *2 2

11  

where Rd
*  and R

d
 are the mean gold standard ranks and predicted rank,  

respectively.

Robustness analysis. To ensure team rankings are robust to perturbations in 

the gold-standard data set, a subsampling analysis was performed. A set of  

t = 10,000 evaluation data sets, E G G Gt= ′ ′ ′( , ),1 2…  was generated where 10% of 

the gold-standard data set, G, was randomly masked to create G′. All predic-

tions in E were scored to create an empirical null distribution of wpc-index 

http://www.the-dream-project.org/
http://dtp.nci.nih.gov/branches/btb/ivclsp.html
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scores. Individual teams were rescored using G′ and compared to the null 

distributions using a single-sample, two-sided, Student’s t-test. FDRs were 

calculated using the Benjamini-Hochberg correction. In addition to the wpc-

index, on each iteration, submissions were re-ranked to create a distribution of 

team ranks, which were compared using the Wilcoxon signed-rank test.

Data view analysis. Besides the six profiling data sets supplied in the chal-

lenge, additional views were constructed by challenge organizers (discretized 

RNA-seq) and by the top-performing team (discretized exome sequencing, 

gene set summaries for individual data types and genewise combination of 

two or more data sets). The analysis of individual and grouped data views was 

done using the Bayesian multitask MKL method from the top-performing  

team and an elastic net linear regression implemented in the R package, 

glmnet35. A total of 50 simulations of the challenge were run by randomly 

selecting 35 training and 18 test cell lines, keeping the subtypes of cell  

lines balanced.

At each iteration of the challenge simulations, the Bayesian multitask MKL 

method was applied using a single view or a group of views as input data. 

The elastic net was learned using the same training and test cell lines as the 

Bayesian multitask MKL method and modeling each drug separately. For 

each selection of input views and each drug, an elastic net regression model  

was learned, where regularization parameters were selected by fivefold cross-

validation on the training data, using α values from 0 to 1 in increments 

of 0.1 and the default λ sequence. The final prediction model was trained 

on all training cell lines, using the parameters with minimal cross-validation 

error. Elastic net models were first trained using all features in a data set, 

but performance was poor due to the high dimensionality compared to low  

sample size. Thus, for data sets with more than 5,000 features, only the top 10% 

most-variable features were used. For the analysis of multiple grouped views, a 

simple data concatenation approach was first tried, but resulted in decreased 

performance due to an increase in the number of input features. Therefore, a 

fraction of 1
K

 top-varying features was kept for each view when integrating K 

views. Statistical significance was calculated using the Wilcoxon signed-rank 

test and FDR corrected.

Data deposition. The NCI-DREAM data set is a subset of the data reported in 

Daemen et al.23 Genome copy number data has been deposited at the European 

Genome-Phenome Archive (http://www.ebi.ac.uk/ega/), hosted at the EBI 

(accession numbers EGAS00000000059 and EGAS00001000585). Gene expres-

sion data for the cell lines were derived from Affymetrix GeneChip Human 

Genome U133A and Affymetrix GeneChip Human Exon 1.0 ST arrays. Raw 

data are available in ArrayExpress (http://www.ebi.ac.uk/arrayexpress), hosted 

at the EBI (accession number E-TABM-157 and E-MTAB-181). RNA-seq and 

exome-sequencing data can be accessed at the Gene Expression Omnibus 

(GEO) (http://www.ncbi.nlm.nih.gov/geo/), accession number GSE48216. 

Genome-wide methylation data for the cell lines are also available through 

GEO, accession number GSE42944. Scripts to perform the wpc-index and 

resampled Spearman scoring can be found on the DREAM website (http://

www.the-dream-project.org/). Source code for the Bayesian multitask MKL 

method can be found as Supplementary Software.
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