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Abstract. LetV be a vector space of dimensidrover a fieldK and letA be a central
arrangement of hyperplanes Yh To answer a question posed by K. Aomoto, P. Orlik
and H. Terao construct a commutati¥ealgebralU(.A) in terms of the equations for the
hyperplanes ofd. In the course of their work the following question naturally occurred:

o IsU(A) determined by the intersection lattit€.A) of the hyperplanes ofl?

We give a negative answer to this question. The theory of oriented matroids gives rise to a
combinatorial analogue of the algebra of Orlik—Terao, which is the main tool of our proofs.

1. Introduction

Let M = M([n)) (resp.M = M([n])) denote a matroid (resp. oriented matroid) of
rankr with ground setifi] := {1, 2, ..., n}. LetV be a vector space of dimensidrover
some fieldK. A (central) arrangement (of hyperplanesMn Ax = {Hs, ..., Hp}, is

a finite listed set of codimension one vector subspaces. Given an arrangdmerd
suppose always chooses a family of linear fofthg € V*: H; € Ak, Ker(6y,) = Hi},
whereV* denotes the dual space Wt The productQ(A) = [] .4 6n is called the
defining polynomiabf A. There is a matroidM (Ax) on the ground set] determined by
Ax: asubseD c [n] is adependent seif M (Ag) iff there are scalarg € K, i € D,
not all nulls, such thad;_ 6, = 0. A circuit is a minimal dependent set with
respect to inclusion. We denote lhy( Ax) the intersection lattice of Ak): i.e., the
set of intersections of hyperplanes.#tx, partially ordered by reverse inclusion. Set
M(Ax) = V\ Upea, H-
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Aomoto suggested the study of the (grad&dyector space AQAk), generated by
the basigQ(53;) 1}, wherel is an independent set 8# (Ax), B := {Hi € Ax: i € |}
and Q(B)) = [, on denotes the corresponding defining polynomial. In [1] it is
conjectured that

dim(AO(Ag)) = number of chambers a)t(Ag).

To prove Aomoto’s conjecture, Orlik and Terao have constructed in [8] a commutative
K-algebraU(Axk), isomorphic to AQ.4x) as a graded-vector space in terms of the
equations{fy: H € Ag}. The authors note that it is not clear whetfi&idk) itself
depends only on the intersection latticeAx).

To every oriented matroidM we associate a commutativealgebra, denoted by
A(M). This algebra is the “combinatorial analogue” of the algebra of Orlik—Terao and
it is the main tool to give a negative answer to the question of Orlik—Terao.

We use [9] and [10] as a general reference in matroid theory. We refer to [2] and [7]
for good sources of the theory of oriented matroids and arrangements of hyperplanes,
respectively.

2. Two Commutative Algebras

Let INDy(M) C ([2]) be the family of the independent sets of cardifiaf the matroid

M and set INDM) = (J,o IND¢(M). We denote by = ¢(M) the set of circuits

of M. When the smallest elemeatof a circuitC, |C| > 1, is deleted, the remaining
set,C\a, is said to be droken circuit (Note that our definition is slightly different to
the standard one. In the standard definit@w can be empty.) To shorten the notation
the singleton setx} is denoted byx. A no broken circuitset of a matroidM is an
independent subset afwhich does not contain any broken circuit. Let NB@1) C

([Q]) be the set of the no broken circuit sets of cardifalf M. Set NBQM) =
Upeny NBC(M). We denote byl (M) the lattice of flats ofM. (We remark that the
lattice mapg: L(Ax) — L(M(Ak)), determined by the one-to-one correspondence
¢ Hi < {i},i =1,...,n, is alattice isomorphism.) Consider now an independent
set X. Let clp(X) be (or shortly aiX)) the closure ofX in M. Pick an element

x € cl(X)\X. Let C(X, x) denote the unique circuit of1 contained inX U x. For
everyX € IND(M), set

EA(X) = {x € cl(X)\ X: x is the minimum ofC (X, x) andC(X, x) # {x}}.

(The elements of EAX) are usually called thexternally activeelements o#X.) So, for
every independent set of M, X € NBC(M) iff EA (X) = @. fEA(X) # @, leta(X)
denote the smallest element of ER).

Here, every maX: [n] — {+1,—-1,0} C Z is called asigned sebn [n]. Set
Xt ={ec[n]: X(¥) =+1}, X~ ={€ € [n]: X&) = —1}. We say thaX ;= X+ U X~
is the supportof X, or X is a signed sesupportingX. A signed seX conforms toa
signed set if X* c YT andX~ c Y. For everyx € [n] and signed seX let X\x
be the signed set om]\x, conforming toX and supporting€\x. We say that a signed
setX is theunion of the signed setX, ..., Xy if X = X; U--- U X, and everyX;
conforms taX. Thereorientation on the subset & [n] of the signed seX is the signed
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set, denoted sX, determined by the equalities
CX)T = {XN\SU{SNX"} and (LX) = {X\SU{SNX*}.

Theoppositeof a signed seX, denoted-X, is the signed set X = _j;X. An oriented
matroid, denotedM, is a matroid on the ground set][ denotedM., with an additional
structure:

o To every circuitC € €(M) is attached two opposite signed sedigified circuity
C and—C supportingC.

o The set of signed circuits o¢, denoted® = €(M), verifies a convenient set of
axioms, see page 103 of [2].

The set of all the union of signed circuits ## is called the set of theectorsof the
oriented matroid. IfK is an ordered field the arrangeme#it determines an oriented
matroid M (Ag) on the ground set]. Indeed leC = {i,...,im}, i1 <--- <im, bea
circuit of M(Ag). From the definitions we know that there are well determined scalars
g, € K*, &, = 1, such thatZJm:l &i,0n, = 0. SetC: [n] — {0, 1, ~1} C Z the signed
set

+1 if ¢eC and A, >0,

C)y=1{-1 if £eC and A, <0,

0 if ¢¢C.
By definition C is one of the two opposite signed circuits 8 (Ax) supportingC.
Note thatM (Ax) = M (Ak). Thereorientationon the subse® ¢ [n], of the oriented
matroid M, is the oriented matroid, denoted. M, such tha¥®(_sM) :={_sC: C e
c(M)}. We say also that'(_sM) is thereorientationon the subse$ of €(M). (The
concept of “reorientation” is the combinatorial analogue of the notion of “nonsingular
projective permissible transformation”.)

Fix a setkE := {ey, ..., &} and let K be a commutative ring with unity lLet K[E]
denote the commutative free K-algebra given by the generd&ars{1}. For every

X c[n], setex :=[]i.xa, 6 =1

Definition 2.1 [8, Definition 2.2 and Proposition 2.3]. Consider the map

9: C¢(M(Ak)) — K[E], Cr ) diec,

m

j=1

whereC = {i1,...,im}, i1 < -+« < im, andZJT“:lgijeHi =0, &, = 1 U(Ag) is the
]

(commutative)X-algebra given by the generatorsy, . . ., €,, and the relations:

oeg =g6,vi,j=1...,n,
o q-2=O,Vi =1...,n,
o 9(C) =0,VYC € ¢(M(Ak)).

We callU(Ax) the Orlik—Terao algebra ofdk.

Now, we introduce the “combinatorial analogue” of the Orlik—Terao algebra.
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Definition 2.2. Consider the map
~ m
9: €M) - Z[E].  Cr> Y Clipecy.
j=1

whereC = {i1,...,im}, 11 < -+ <im, andC € €(M) is the signed circuit supporting
C, such thaC(i1) = 1. A(M) is the (commutative)-algebra given by the generators
l,e,..., €,, and the relations:

eeg =¢ge6,vi,j=1...,n,
e€=0Vi=1...,n,

g =0, if i isaloop ofM,
9(C)=0,vC e ¢(M), |C|> 1.

We call A(M) thealgebraof the oriented matroioM.

O O O O

For everyX c [n], we denote by X] (resp. X]u), or shortly by [X] or evenex
when no confusion will result, the residue clas#\igM) (resp.U(Axk)) determined by
the elemeney. Note thatA (M) = A(M\X) if x is aloop orx is parallel to some other
element ofM. So in what follows we suppose that is a simple matroid. For every
circuit C € €¢(M), we have C], = 0. To see this, pick an elemerte C if [C| > 1.
Then 0= e, - d(ec) = +ec. We conclude that if K], # 0, thenX is an independent
set of M.

The “abstract algebral (M) has a canonical grading.

Proposition 2.3. SetA, = A,(M) be the submodule of(M) generated by the
elementq[X]4: X € IND;(M)}. The gradingA (M) = P, A¢(M) is canonica)
i.e, it is independent of the knowledge of the oriented matfeid

Proof. We knowthat\,(M) = (0), forall£ > r.If A(M) = Ay =Z(i.e.,r = 0)the
result is clear. Suppose thatM) # Z. Note thatA; = {x € A(M): x-y=0, Vy e
A(M)\Z}. If we know the modulesgy,, ..., A andAHD = A @ DA #
AM), (i.e.,r —i > 1)themodulé\, _j_1,i =0, ...,r —2, can be defined recursively
by

Arisy = {x € AM): x -y € Al vy e AW)\Z}/ATHY. O

Proposition 2.4. For every x € [n] there is a unique epimorphism @-modules
px: A(M) - A(M/X), such thatfor every | € IND(M), we have

€1 \x if xel eND(M),
px(el) =

2.1
0 otherwise 1)

Proof. Itis enough to prove that

px(ex-3(C)) =0, VX cC[n], VYCeeM). (2.2)
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We can suppose thatN C = @ andx € XUC. LetY be a signed set om] supporting
Y = {iy, ..., im}. FOr convenience of notation set

(YY) ==Y Y(ijey € Z[E].
j=1

Let C be one of the opposite signed circuits supporthdRemember that the signed set
C\x on [n]\x is a vector (union of signed circuits) ®¥1/x. So we have

tey - ox(C\X) =0 if xeC,

ex - 9(C)) = ~
OO =1 g Te©) =0 if xe X

Corollary 2.5. For every subset X% {i1, ..., im} C [n], the following two conditions
are equivalents

o X is an independent set g1,
o [X]a=e,8, -6, #0.

Proof. It remains to prove that iK is an independent set 1, then [X], # 0. We
prove by induction om. We know that §f], = 1. Suppose that the implication is true
for all the matroids with at most — 1 elements. LeX, | X| > 0, be an independent set
of M and pick an element € X. Suppose for a contradiction thaXJ, = 0. X\x is
an independent set 081/x. From Proposition 2.4 we conclude thatDp,([X]4) =
[X\X]A(M/x), a contradiction with the induction hypothesis. O

Proposition 2.6. For every xe [n] there is a unique morphism @modulesiy: A
(M\X) — A(M), such thatfor every | € IND(M\X), we havey(e) = €.

Proof. The map is well determined. Indeed from Corollary 2.5 we know that

ix(e -3(C) =€ -3(C)=0, VI eINDIM\X), VCee&WM\x). O

Setnbc, = {[I]a: | € NBCy(M)} andnbc := | J,_onbc,. SetM’ = M\x,
M’ = M/X, A i= AM), A = AWM andA” := A(M”). Consider an in-
dependent seX € IND;(M), suppose thaX ¢ NBC,(M), and sete = a(X).
Making use of the definition af(C(X, «)) we can express the elemen][, as a linear
combination of the elemen{§Xx]a: Xx = X\X U a, X € C(X, )\a}. We claim that
EA(Xx) € EA(X)\«. Indeed, suppose thgte EA(Xy). If o € C(Xx, B) = C(X, B),
then we have8 € EA(X)\a. If « € C(Xy, B) we have8 < « and from the elimination
axiom for circuits there is a circut’ such thaig € C’' C (C(Xyx, B) UC(X, a))\a. So
C’ = C(X, B), Bisthe smallest elemef(X, 8) and the claim follows. By the iteration
of this process we conclude tha{], can be expressed linearly in term of elements of
nbc, = {[1]4 € IND,(M): EA(l) = @}. Sonbg, is a generating set of tH&-module
Ay(M). Now we are able to prove the main results of this section.
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Theorem 2.7. For every element x aM, there is a split short exact sequence of
modules

0= AM\X) 5 AM) P55 AM/x) — 0. 2.3)

We postpone the proof of the theorem. The following corollary is an important di-
rect consequence of the above theorem. Corollary 2.8 is similar to a well-known result
concerning the algebras of Orlik—Solomon, Theorem 3.55 of [7].

Corollary 2.8. Suppose that the sequen@?3) is exact for all the matroids with at
most n elementdhennbc(M) is a basis of the modul&(M).

Proof. We prove by induction om. If n = 0 we know thatA(M (#)) = Z and
nbc(M(¥)) = {1}. Suppose that > 0 and that the result is true for all the matroids
with at mosin — 1 elements. By a reordering of the elements of the matheidve can
suppose that = n. It is clear that

NBC(M) = {X: X C [n— 1] andX € NBC(M)}.

From the induction hypothesis we know thaic(M') = {[X]x: X € NBC(M)}
andnbc(M”) = {[X]a: X € NBC(M")} are bases oh’ andA”, respectively. The
minimal broken circuits ofM /n are the minimal setX such that eitheX or X U {n}
is a broken circuit ofM (see Proposition 3.2.e of [4]). Then

NBC(M') = {X: X c [n—1]andX U {n} e NBC(M)} and  (2.4)

NBC(M) = NBC(M )W {l Un: | € NBC(M")}. (2.5)
We know thatnbc(M) = {[X]a: X € NBC(M)} is a generating set af. So Corol-
lary 2.8 follows from the exactness of sequence (2.3). O

Theorem 2.7 is a consequence of Lemmas 2.10-2.12 below.

Lemma 2.9. Suppose that sequen¢23) is exact for all the matroids with at most
n — 1 elementsThen for every xe [n], there is an exact sequence Bfmodules

RN Ny NN}

Proof. From the definitions we know thpj oiy, is the nullmap so Irtiy) C Ker(py). It
remains to prove the inclusion K@) C Im(ix). By a reordering of the elements of][
we can suppose that= n.SupposethaEm=l illila € Ker(pn), [1i]a € nbc(M), i €
Z, and set

Yoallila=) cllila+ ) cllida, V17 €{l...,m).
i=1 lir#n I

73N

So,

P (Z ;i[m) = clli\n]ar =0. (2.6)
i=1

|i119n
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From (2.4) we conclude thatj[\n],» € nbc(A”). From Corollary 2.8 we know that
nbc(A”) isabasisof\”. So, (2.6) impliesthat» = 0foreveryi”. Hencezi”‘=1 Gillila =
2ipan Srllida = (2 i[li]a) € Im(in). O

Lemma 2.10. Suppose that sequen¢23) is exact for all the matroids with at most
n — 1 elementsLeta be an element of the modwg M) =Z A1 & --- ® A;. Then
a e 7Ziff py(a) = 0, for every xe [n].

Proof. From (2.1) we seethatif = ¢[0]s € Ao (= Z),thenpy(a) = O, forall x € [n].
We prove thatpx(@) = 0, VX € [n]) = a € Z. Suppose thatx(a) = 0, Vx € [n].
From Lemma 2.9 we know that

ae () Ker(po) = () Im(i) = Z. O

xe[n] xe[n]

Lemma 2.11. Suppose that sequen¢23) is exact for all the matroids with at most
n — 1 elementsThen the sequen@e— A’ —* Ais exact

Proof. The casen = 1 is trivial. Suppose that > 1. It is well known thatM\x/y =
M/y\X, for every pair of elements, y € [n], X # y. Consider the epimorphism
pys AMA\X) — AM\X/Y).

Consider also the monomorphisfn A(M\x/y) — A(M/y). Itis easy to check that
the following diagram of modules is commutative:

AMX) —s  AM)

lp’y lpy

AMX/Y) —— AM/Y).

We prove the implicationy (a) = ix(b) = a = b, for every paira, b € A(M\X).
We know that

ix(@ =ix(b) = (pyoix(@) = pyoix(b), Yy € [n]\X),
py o ix(@ =1y o p/y(a) and pyoiyx(b) =1 o p/y(b), vy € [n]\X,

opy@ =i opy(b) <<= pi@=pib), Vye[n\x.
From Lemma 2.10 we know that| (a) = p{(b), Vy € [n]\X) & a—b =1¢ € Z. Then
we have 0= iy(a) — ix(b) = ix(¢) = ¢ and sca = b. O

Lemma 2.12. Suppose that sequen(3) is exact for all the matroids with at most n
elementsThen sequenc@.3) for the matroidM([n)]) splits i.e., there is a morphism
of moduleg,*: A” — A such thatpy o p; ! is the identity map and

AM) = ix(AM\X)) ® pt(AM/X)).
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Proof. We can suppose that = n. From Corollary 2.8, we know thatbc(M")
andnbc(M”) are bases o’ and A", respectively. There is a morphism of modules
prl: A” — A well determined by the conditions,*([1]4) = [l Un], forall | €
NBC(M”"). Itis clear thap, o p, is the identity map. From (2.5) we conclude that the
exact sequence (2.3) splits. O

Remark 2.13. With some adjustments, our techniques also give proofs of Proposi-
tion 2.3, Corollary 2.5, Theorem 2.7 and Corollary 2.8 for the algebra of Orlik—Terao.

3. Applications

Proposition 3.1. LetV be a vector space of dimension d over an orderedKelaind
let A be a central arrangement of hyperplanes inGbnsider the algebra¥ = U(Ak)
and A = A(M(Ak)) and letnbc(U) and nbc(M) be the corresponding no broken
circuit basesFor a given Xc [n], suppose that

(1) [Xlv = X1 §[li]u. [li]u € nbe(U), & € K and
@) [Xla = X1 &llila, [li]a € nbe(M), € € (1,0} C Z.
Thensign(g) = é“,u =1...,n

We make use of the following lemma:

Lemma 3.2[5]. LetG= (V, E) be the direct graph defined as follows

o \L()G) = IND (M (Ak)).
o Il" € E(G) is a directed edge of G iff there is a pivotable péir, x) such that
I”=1\xUa, wherew = a(l) and xe C(l, o)\a.

For every pair of vertices XX’ of the graph G there is at most one directed path from
Xto X.

Proof. We attach toG two edge-labelling graphs determined respectively by the al-
gebrasA (M (Ak)) andU(Ak). These labelled graphs are denotgéd and Gy, re-

—
spectively. Letll/ be an edge oG wherea = a(l) = I/\I, C = C(l,a) =
{o, Xq, ..., Xiyoons Xm} and 1l = 1\x U «. Let C € €(M(Ax)) be the signed cir-
cuit supportingC and such tha€(«) = 1.

(1) Suppose that(C) = ec\ + 20 Gigos e 1o = Yoiny —4i[1{]u. We label
the edgd I/ of Gy with the scalar-¢;.
(2) Suppose thafl(C)_=> ec\o + Y iny CX)ecyx i-e., [11a = Y ity —COO[1]a.
We label the edgél, of G4 with the scalar—C(x;).
From the definitions we know that sign) = C(X;), for everyi = 1,..., m. Let

PBi, ..., Ps be the list of the maximal length directed pathsGfbeginning with the
vertex|. Let T, denote the last vertex of the path, V¢ = 1,...,s. T, is a sink ofG,
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S0 [T¢]a € nbc(M) (resp. [Tlu € nbe(U)). As K is an ordered field, the proposition
follows. O

Definition 3.3. LetB = {by, ..., by} be an arbitrary basis @f; (resp.A1) such thatthe
setINDIM') := {{j1, ..., js} C [n]: bj,by, - - - by, # O} is the family of the independent
sets of a matroidM’([n]). We say thall fixesM (Ax) (resp.A fixesM) if the following
condition holds:

o There is a permutation € G, and invertible scalarg such thaty = ¢e ,i =
1,...,n. (Note thato: M’ = M(Ak) (resp.o: M’ = M).)

Proposition 3.4. In general we cannot reconstrugt from the “abstract algebra”
A(M). In the case when the algebfa( M) fixesM we can reconstruct the signed set
of circuits €(M), up to a reorientation and a permutation of the ground[sgt

Proof. (The following example is similar to one of [6].) Consider the two direct graphs
&, = (Vy1, Ex) and®, = (Vs, E») (see Figs. 1 and 2):

V]_ = {vl,...,v5},
E1 = {a1 = 0102, 8 = V203, 8 = U3V1, & = UaV1, 85 = U1Us, 86 = UsUa).
V2 = {U1,...,U5},
Ep := {by = 0102, bp = U203, by = Ugv3, by = v3v1, bs = U105, bs = Vsv3).

o O O O

Let Mg, (resp.Mg,) be the oriented matroid on the ground gkt. . ., 6} deter-
mined by the grapl®; (resp.®,). More precisely:

o Mg, has two pairs of opposite signed circuits, —C, and C,, —C, where
Ci=1{1,23},Cf ={4,56}andC; =C, =0.

o Mg, has three pairs of opposite signed circilits —D1, D2, —D, andDs,
—D3 whereDf = {1,2,4},D = {4,5,6},D; = D, = ¢, D = {1,2,} and
D3 = {5, 6}.

Consider the algebras = A(Mg,) andB = A(Mg,). From Definition 2.2 we know
thatA is the commutative-algebra generated by the seven elemenés,1. ., e and

Fig. 1. Graph®s. Fig. 2. Graph®s,.
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the relations

6g =66, eptestes=0  estestes=0 &€=0 (31

foralli =1,...,6. Similarly, B is the commutativ&-algebra generated by the seven
elements 1€/, ..., € and the relations

g€ = ¢gd, €+ €y+€,=0, €5+ €46+ €56 = 0, g =0 (32

foralli =1,...,6. (The relation—€,; — €5+ €55+ €55 = 0 is redundant. Indeed,
from the relations (3.2), we deduce tha€|,; = €45+ s —€l25 = €lus + Eus
€56 = —€146 — €145 ANAEo55 = —€)y5 — €345

Let ®: A — B be the morphism of-algebras determined by the valubgl) = 1,
D) =¢€,+e+€,=12 d(e3) =—€andd(e) =€, £ = 4,5,6. The mapd
is well defined. Indeed

P(er2+ €3+ €3) = (€] + € +€)(€ + € +€) — &€ + &+ 265 + 2€))

€1p + €4 + €4=0,

and
D (€45 + €46 + €56) = €5+ €45+ €55 = 0.
Consider now the morphism @falgebra®®: B — A determined by the valugd(1) =
LOE)=e+e—e, =12 0(6) = —esandO(e)) =&, { =4,5,6. The map
® is well defined. Indeed
OEL,+€,+6,) = (e1+ & —e)(e+ 3 —€) +es(er + & + e + 263 — 2ey)
e+ ez3+e3=0,

and
O(E)5+ €45+ €5g) = €15+ €16+ 656 = 0.

As® o ® =1, and® o ® = 1, we conclude that thé is an isomorphism.

Suppose now that = A(M) fixesM and letey, . . ., e, be a family of generators of
A; in one-to-one correspondenge<> i with the elements of the ground sef pf M.
Let C be the signed circuit aM supportingC = {i1, ..., ik}, k > 1, i1 < --- < iy,
and such thaC(i;) = 1. By a reordering of the elements afij[we may suppose
thatiy = 1,...,ij = j. Let nbc(M) be the no broken circuit basis of the algetira
relative to this new ordering ofy]. Itis clear that [1. - - j - - - K], € nbc(M), for every
j =2,...,k, butC\1 = {2,...,k} is a broken circuit. We know that [2-k], =

— ZLZ c(pr--- T --k]4. So, we can recover the signed circGitWe conclude that
the base, . .., e, of A; determinest (M) up to a reorientation and a permutation of
the ground setr]. O

Theorem 3.5. In general we cannot reconstruct the intersection lattigedh. from the
“abstract algebra” U(A).
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Proof. Letey, ..., g be the canonical basis of the vector spR€eConsider the graph
®, = (V1, Ep), introduced in Proposition 3.4. To every edgje= W, € E1, we attach
the vectov, = & — g. Set

Ar = {H, € R®*: Hy = {x € R®*: (x,v,) =0}, £=1,...,6}.

From the definitions, we see thAt(Ar) = Mg,. For every one of the four signed
circuitsC € €(M(Ar)) We haveZ?=1 C)v, = 0. S0,U(AR) = AM(AR)) ®z R.
Similarly, we construct an arrangement of hyperplaigsn (R6)*, determined by the
graph®, = (V,, E>), andwe also havB(Bg) = A(M (Bg))®zR. SoU(Ar) = U(Bg)
andL (Ar) Z# L(Bg). O

We finish with an open question. Orlik and Terao ask in [8]:

o Is U(A¢) the model for any topological invariant of the manifd@(Ac) =
CN\ Unea, H?

A partial solution to this problem can be obtained from Proposition 3.4 above and a
celebrated theorem of Bjjiier and Ziegler [3]:

Proposition 3.6. Suppose tha#i¢ is the complexification of a real arrangemenk
and the algebrdl(Ac) fixes the matroid\ (Ac¢). Then the abstract algebra(Ac)
determines the smooth manifall(A¢) up to homeomorphism

Proof. We know thatU(A¢) = U(Ag) ®& C and M (Ac) = M(Ag). From Propo-
sition 3.4 we conclude that the algebidAc) determines (up to reorientation and a
permutation of the ground set]) the oriented matroidM (Ag). So the smooth mani-
fold M(Ac) is well determined up to homeomorphism, see [3]. O

A combinatorial analogue of the question of Orlik—Terao is:

o Which features of the oriented matraMt are reflected in the algebfa( M)?
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