24 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION THEORY VOL.1, NO.1 MAY 2005

A Compact 32-bit Architecture
for an AES System

Somsak Choomchuay!, Member,
Surapong Pongyupinpanich?, and Somsanouk Pathumvanh?®, Non-members

ABSTRACT

This paper describes a compact 32-bit architecture
developed for the Rijndael ciphering/decyphering
system. The implementation is complied with NIST
Advanced Encryption Standard (AES). The design
processes any 128-bit block data with 128-bit key. For
the compact hardware, the field inversion circuit and
the key scheduling circuits are shared by both the
encryption and decryption process. The on-the-fly
KeyScheduling implementation offers fast processing
speed but with core size trade-off. According to the
evaluation made on the targeted FPGA, the design
can offer the throughput of 768 mbps at 264 MHz
clock speed.

1. INTRODUCTION

Since the announcement of FIP-197 by NIST [1],
the Advanced Encryption Standard (AES) has be-
come more and more involvement in data security is-
sues such as IPSec [2], IEEE802.11i (RSN) [3]. Most
current implementations of AES are done in software.
This approach seems to be too slow for fast appli-
cations such as routers, gateways and some wireless
communication systems. It is also vulnerable to at-
tacks. For some applications, this approach can be
costly according to its overhead hardware and soft-
ware. In contrast, in the pure hardware implemen-
tation, the higher data rate (Gbits/second) could be
obtained by parallelization and pipelining [4]. The
implementations are physically secure since temper-
ing by an outside attacker is difficult. It’s also a
cost-effective solution for many application specific
systems. The AES IP cores are also available com-
mercially in the ASIC and FPGAs [5-7]. Such high
data rates of about 1.16 Gbit/sec. (for 32-bit data
path, 400 MHz, ASIC, [5]) are made available and
claimed.

04PSI19: Manuscript received on January 4, 2005 ; revised
on August 20, 2005.

IThe author is with Department of Electronics, Faculty of
Engineering, and Research Center for Communications and In-
formation Technology (ReCCIT) King Mongkut’s Institute of
Technology Ladkrabang (KMITL), Bangkok 10520, Thailand.
E-mail: kchsomsa@ kmitl.ac.th

2The author is with the Faculty of Computer Engi-
neering, Ramkhamhaeng University, Thailand. E-mail:
p-surapong2000@ yahoo.com

3The author is with the Faculty of Engineering, National Uni-
versity of Laos, P.O. Box 3166, Vientiane, Lao P.D.R. Email:
somsanouk@nuol.edu.la

In our implementation we are aiming at the AES
hardware with cipher & decipher capability, compre-
hensive (key expansion is included), supporting vari-
ous cipher modes (such as CBC, CFB and OFB), and
with moderate throughput. Our paper is organized
as follows. The basic structure of AES is firstly given
in section 2. The concept of a 32-bit architecture is
then given in section 3. The system comprises of sev-
eral transformations, used concurrently in sequence
called “round”. “BytesSub” transformation or S-box
computation, the operation that both area and power
consume one, is elaborated in section 3.1. Sections
3.2, 3.3, and 3.4 are dedicated to the implementations
of “ShiftRow” transform, “MixColumn” transform,
and “AddRoundkey” processes, respectively. Section
4, describes the FPGA implementation and its per-
formance evaluations, while section 5 concludes the
work.

Terminology: In our paper, text or character repre-
sented data are treated either in hex (byte format)
as {mm} or in the matrix form, or in the polyno-
mial repre-sentation i.e., A = {mn} = [C] = C(x) =
crx’ +ce2® + ...+ c17 + co, here ¢; € {0,1}.

2. THE BASIC STRUCTURE OF THE AES

A full description of the AES is described in the
Rijndael proposal [8] and FIPS 197 [1]. It is a block
cipher developed in effort to address threatened key
size of Data Encryption Standard (DES). It allows the
data length of 128 bits while supporting three differ-
ent key lengths, 128, 192, and 256 bits. As such, a
mathematical description of the AES is given in the
Galois Field GF(28). The whole operation is divided
into four basic blocks where data are treated at either
byte or bit level. The array of bytes organized as a
4 x 4 matrix is also called “state” and those four basic
steps (or basic blocks); BytesSub, ShiftRow, MixCol-
umn, and AddRoundKey are also known as layers.

The four layer steps mentioned above describe one
round of the AES. Number of rounds is made vary
according to the key size. The AES with 128-bit key
size operates iteratively on those four basic steps for
ten rounds. However, the first and the final rounds
are arranged in a slightly different manner compared
to others. All four layers have their corresponding
inverse operations. The deciphering is, therefore, the
reverse order of the ciphering process. Operation
steps are similar and at the comparable complexity.

A Compact 32-bit Architecture for an AES System

Moreover, both processes can share same set of de-
signed hardware. In particular, the S-box computa-
tion that occupies the major chip area since it is re-
quired in BytesSub transform and in KeyScheduling
processes.

This paper details the design of the AES system
based on an iterative loop architecture. The archi-
tecture is made versatile by offering both ciphering
and dechiphering functions. It has been focused on
the design compactivity, good speed, and reasonable
gate counts. The 32-bit architecture is aimed. Al-
though the encrypter and the decrypter utilize the
similar sub-processes, those sub-processes have their
own specification. However, a multiplicative inver-
sion and AddRoundKey operation can be perfectly
shared by both. Additional multiplexers were em-
ployed in order to save some data holding registers.
The encrypter and the decrypter can perfectly utilize
the same set of hardware. The block diagram of the
system operation is shown in Fig. 1 below.

Encrytion Decrytion
PlainText *
| BytesSub | Inv. MixedColumn
| ShiftRow |

v Y

MixedColumn Inv. ShiftRow
LRD

NPX | Inv. BytesSub |

Enc/Dec

+ CipherText

Fig.1: Block Diagram of the AES system (arrowed-
dash lines denote the deciphering data flow)

3. A 32 BITS ARCHITECTURE

The four rows or four columns data matrix can
naturally define the data path of 32 bits. Together
with the compact hardware criteria, the architecture
can be easily optimized. The AES core can process
the data at one column (or one row) at a time. How-
ever, the ShiftRow operation requires the availability
of all 128 bits data before it can start. In this case, a
longer register (128 bits) is needed. The same hard-

25

ware is used for all round (10 rounds). The through-
put can be increased (about 10 times) by un-rolling
those round operations. Pipeline registers can be in-
serted. However, what one has to pay for is the hard-
ware size and cost.

3.1 BytesSub Transformation

The BytesSub transformation operates independ-
ently on each byte of the state. The operation com-
prises of 2 sub-steps:

1. Inversion: Multiplicative inverse of each byte is
taken in GF(2%), and {00} is mapped to itself.

2. Affine Transformation: This sub-step is per-
formed in GF(2).

To implement the BytesSub transformation, many
techniques have been reported. Those are, for in-
stances; (1) The table lookup technique where step
2 is usually combined into a single table known as
S-box. For the current technology and design, the
table size of 256 x 8 bit is not considerably big. This
technique has been adopted in many realizations. (2)
Synthesis and optimized logic function of S-box using
CAD tools, and (3) Compute the inversion of element
in GF(2%) and optimize the logic functions. The ef-
ficiency of the third technique is much depended on
the mathematical theory of field element inversion.
This approach is highly considered when the table
lookup is not applicable or when the compact design
is a case. It also provides desirable features for the
highly-paralleled computation.

In our implementation we have chosen the option
(3) since the field inversion hardware can be easily
shared by both the encryption process and decryp-
tion process. The BytesSub (and similarly, the in-
verse BytesSub) transform of a byte is defined math-
ematically as:

D(x) = 0A™H () moa(zs +1) ® C(2) (1)

where C(z) = 2°+2°+2+1 = {63} and § = {1F} =
xz* + 23 + 22 + x + 1 for the encryption process. The
constant C(z) has been added in order that the S-
box has no fixed point (@ map to a), and no opposite
fixed point (@ map to a). Besides the field inversion,
the implementation of such a transformation is fairly
simple as the circuit can be built up form an array of
XOR gates.

The use of composite field in the S-box computa-
tion, in particular to simplify the field inversion, has
been reported in literatures [9-11]. Rudra et al. [10]
mapped all the operation (except ShiftRow) into the
composite field of GF(2%)2. Multiplication, squar-
ing and inversion are borrowed form those detailed
in [11]. Morioka and Satoh [12] also have exploited
the used of composite field in the design of a low
power S-box transform. With the composite field
technique, field elements of GF(2*) are mapped to
those of GF(2™)™ and try to optimize the multipli-
cation and inversion in the lowest field. Our approach

26 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION THEORY VOL.1, NO.1 MAY 2005

has drawn many useful ideas reported in [9] and [11].
However to reduce the unnecessary overhead, field
transformation is applied to the S-box computation
only. It is also not necessary to further breakdown
the composite field to the lowest ground field, i.e.
GF(2%)% as proposed in [12].

AES has adopted m(x) = 28+ 24 + 23 +2+1 as its
field polynomial. Although such a polynomial is an
irreducible but it is not a primitive one. Fortunately,
with the field isomorphism property, we can map ele-
ments in GF(2%) to the composite field GF((2%)?)
based on the polynomial w(zr) = 22 + x + B,
where 3' denotes the element in GF(2*) of which
I(z) = x* + 2 + 1 is the primitive irreducible polyno-
mial. Let D be an element in GF(2%) and A be an
element in GF(24)%, then A = [T]D and D = [T]71A
where

101110 11
01010000
01 001010
01100011
T='00001110 (2)
01001011
00110101
000000 1 0 1|
and
10 001 01 0]
00001101
01001110
2 |01 001101
=10 1011010 (3)
00100101
01 110111
(00100 10 0|

Here [T] and [T'] 7! are the field transformation ma-
trices. The upper-left element in the above matrices
denotes the least significant bit. In the composite
field, let a byte-format data be expressed as

A={pg}t =pr+q (4)
The inversion of A, say
B=A"1!=sz+t (5)

For the composite field polynomial w(z) = 2% + z +
(B4, one can have

s=pA~! and (6)

and
t=poga, (7)

where A = pq @ ¢% @ p?314.

To perform an inversion in the composite field
noted in (5), three general purpose multipliers, two
squaring circuits, a fixed-coefficient multiplier and an

inversion (in GF(16)) are required. An obvious ad-
vantage of mapping elements in GF(2%) to those of
GF((2%)?) is the simpler multiplicative inverse com-
putation since inversion is performed in GF(2%). For
such a small field size inversion, we used truth-table
directly.

The S-box computation can be divided into 4 sub-
blocks namely; field mapping, multiplicative inver-
sion, inverse mapping and affine transform. Affine
and inverse-affine transformation circuits are actu-
ally combination logics that can be implemented eas-
ily. A multiplexer is required whether this block is
used as an S-box or S~!-box for the forward or in-
verse transformation respectively. As shown in Fig.
2, for one column computation (32-bit width) there
requires 4 circuit sets. The same S-box is also re-
quired in KeyScheduling computation. The detailed
circuitry of the S-box computation with composite
field inversion can be found in [13] and [14].

Field Transformation

Inversion in Composite Field

N N Unit 1 Unit 2 Unit 3
Field Inverse Transformation
Affine Trfm Inv_Affine
Logic Trfm Logic
Multiplexer F Enc/Dec /vi/ % %
8 8 8
8
Fig.2: S — box and S — box~' Computation in
GF((2')?)

3.2 ShiftRow Transformation

This process operates on an individual row with in-
dividual offset byte. In the state arrangement, data
are fed into a square matrix in row order. As such,
to operate the ShiftRow transformation we need reg-
isters to store the whole data before byte swapping.
This can result in the unsmooth data flow. However,
implementation is easy. We used the matrix switches
for byte swapping (see Fig. 3 below) such that data
are arranged in order and ready for the following op-
eration; MixColumn (or Inverse MixColumn) trans-
form. The transform throughput is 32 bits per clock
cycle and can be made pipelined for col-umn order.
For a wider data path (128-bit) or the higher through-
put such as 128 bits per clock cycle, the switches
o, 1, €3, c4 and multiplexers are not necessary.

3.3 MixColumn Transformation

The MixColumn transform of an AES can be ex-
pressed as

C(2) = C(@)al)modat+1)- (8)

A Compact 32-bit Architecture for an AES System

| Col_0 | Col_1 | Col_2 | Col 3 ‘68b'
[o]1]2]3s|4[5]6]7 8]0 [10]11]12]1s]1a]1s]| S80S

0 J_. Register
| ; .,
] i) J 08
1 c
| . 5
C. [s}
EEEADEENEED I 8
& c
: 1
g |
S l7—Enc/De'-(: [— ﬁ—Enc/Dec

C C [I 4 x 8 bits
| 0c I 1c | 2,c | 3c | registers

Fig.3: ShiftRow and Inverse ShiftRow (dash line)
Switches with MizColumn-Transform Ready

Each column is considered as a polynomial with
coefficients C; . defines in GF(2®). The multiplica-
tion is modulo z* + 1 and a(z) is given by

a(r) = ap + arx + axx® + azz?, (9)
where a9 = {02}, a1 = a2 = {01} and a3 = {03}
respectively.

The inverse MixColumn matrix can be written
similarly: b(z) = bg + b1z + baw? + b3z is defined as
the inverse transform polynomial (i.e. a(z)™') where
bo = {OE},bl = {09},b2 = {OD} and b3 = {OB}
respectively.

C; ¢ is computed in one clock cycle (or one col-
umn or 32 bits per one clock cycle) with four parallel
fixed-coefficient multipliers, followed by a summing
operation as shown in Fig 4. A fix-coefficient multi-
plier is simple and compact.

4x8 bits
Register

Enc/Dec

| @ |

Unit 0

4 x 8 bits

registers

[c1] [c2] [c3 |

Fig.4: MizColumn and Inverse MizColumn Trans-
form

3.4 AddRoundkey and KeyScheduling Trans-
formation

Excluding the first and the last round, the AES
with 128 bit round key proceeds for nine itera-
tions. First round of the encryption performs EX-
ORing with the original key and the last round
skips MixColumn transform. Round keys are gen-
erated by a procedure called “RoundKey Expan-

27

sion” or “KeyScheduling”. Those subkeys are de-
rived from the original key by EXORing of two pre-
vious columns. For columns that are in multiples of
four, the process involves shift operations (RotWord,
ROT), byte substitution (S-box) and round constants
(Reon) addition. In the decrypter mode the opera-
tion is reverted.

Decryption

/ A A N A\

128

RoundConst. Register

Fig.5: KeyScheduling Arrangement

The circuit for implementing the round key expan-
sion operation (and its inverse) is shown in Fig.5. We
need two 128-bit registers to store Roundkeys. The
Sub-Byte transformation or S-Box can be computed
as that detailed in section 3. ROTword register is
a circular word-shift register whilst Rcon is feedback
word-shift register.

4. FPGA IMPLEMENTATION

The throughput of the design based on the loop
architecture given in Fig. 1 is quite proportional to
the data path and processing sub-module used. For
instance, to compute the BytesSub transformation,
an 8-bit module (8-bit data path width) must be used
for 16 times. Similarly, 16 hardware units can process
the BytesSub in a single clock cycle. This estimation
could also be applied to the system with the data
path of 16, 32, 64 and 128 bits. However, only slight
change can be made to Key-Schudling and ShiftRow
circuits.

4.1 A 32-bit Architecture

The entity of the 32 bit FPGA implementation is
shown in Fig. 6.

The interface as well as many internal communi-
cation data paths are 32-bits width. However, some
internal registers, such as those in the shift row opera-
tion and key scheduling are 128 bits. The preliminary
investigation of an iterative loop architecture (Fig.1
with 10 rounds) resulted that three data blocks of 128
bits each could be achieved in 132 clock cycles with
128 clock cycles latency.

28 ECTI TRANSACTIONS ON COMPUTER AND INFORMATION THEORY VOL.1, NO.1 MAY 2005

[===—=—===7==7==7=7=7777~ |
Key Data —>| I
r Key Key |
Key Load I Reader Scheduling |
AES Clk _>| I Data Ready
- [—
AES Start
| AES CTRL |
Enc/Dec —| |
| |
Load Ready -—
Y | Data Input AES ODu?;it | Data Out
Data In —J] Buffer Core Buia :_>
|

Fig.6: AES’s Chip Entity
Description:
AES CIk; Input: AES System Clock
Load Ready; Output: Input Data Request Signal
Data Ready; Output: Output Data (Block) Ready
and Valid
AES Start; Input: Require to start the operation
Enc/Dec; Input: Require to select the operation
Key Load; Input: Require to Load Key Data
Key Data [31:0]; Input: Encryption/Decryption Key
Data In [31:0]; Input: Input Plain Text Data
Data out [31:0]; Output: Output Cipher Text Data

4.2 Performance Evaluation

Resource required and data rate resulted from the
synthesis for targeted Xilinx FPGAs are shown in ta-
ble 1, below. The throughput (TP) varies form 180 to
500 megabit per second (mpbs) depends on targeted
device. As shown in table 2, it should be noted that
[6-7] do provide AES cores and Key expansion unit
separately. In contrast, the design detailed in this
paper didn’t utilize the block RAM (BRAM), but in-
cluded the on-the-fly KeyScheduling unit. With the
same path width (32-bit), our design has more CLB
slices when compared to [5]. Although we can obtain
higher throughput, our obtained bit per clock cycle is
similar to that of [5] (about 2.9 bits per clock cycle).
The 128-bit data path was estimated upon the 32-bit
one. The obtained throughput is higher compared
to others. However, an obvious drawback is its high
LUT counts. Using BRAM Blocks can lower LUT
counts but at the cost of lowering the throughput.

Table 1: Result for 128-bit key, 32-bit data path,
and with Key Expansion Unit (ECB mode)

Xilinx CLB | 10s fmax TP
Devices Slice (MHz) | (mbps)
Spartan II 866 228 94.5 275
(25200fg456)
Vertex 866 | 228 115 335
(V200fg456)
Vertex 11 866 228 264 768
(XC2V1000)

Table 2: Result of comparison to others (ECB
mode)
Xilinx Width 10s CLB fmax TP
Devices (bits) | /BRAM | Slice | (MHz) | (mbps)
Core Only [5] 32 105/2 115 149 432
(XC2V80-6)
Core Only [5] 128 393/2 416 122 1,415
(XC2V1000-6)
Core Only [7] | 128 NA/2 | 181 114 331
Vertex I1-5
Key-Exp. [7] 128 NA/2 181 149 432
Vertex II-5
This paper* 32 228/no 866 264 768
(XC2V1000)
This paper ** 128 NA/no 1,724 264 2,413
(XC2V1000)

*, ** AES Core + Key Expansion, ** Based on estimation

5. CONCLUSION

A 32-bit architecture implementation of the AES
system is addressed in this paper. With one col-
umn (or one row) processing approach, the design
is fairly compact and with throughput trade-off. The
inversion, a part of S-box computation, is computed
in the composite field. This operation is required
in both BytesSub transformation and KeySchedul-
ing process (as well as their inverses). One draw-
back is the overhead field mapping since Rijndael is
not built up with a primitive irreducible polynomial.
Hard-wire ShiftRow (and Inverse ShiftRow) opera-
tion and Fixed-coefficient multiplications employed in
the MixColumn (and Inverse MixColumn) transform
lead to both good speed and area saving. The archi-
tecture proposed in this paper is thus very suitable
for full-custom realization. If the higher throughput
is a case, several sub-architectures proposed in this
paper can be modified easily to suit the need. Many
transforms must be paralleled and subpipelined. The
128-bit (data path) architecture can then be achieved
with much higher speed, but not so much cost of
hardware. For a very fast speed one, the pipelined
loop-unrolled architecture is desirable, however with
the increasing of hardware cost. However, one should
note that the pipeline structure is suitable for ECB
(Electronic Code Book) mode of operation, but not
very useful for other three modes (BCB, CFB, and
OFB mode) where feedbacks are employed. Alter-
natively, processing speed could be made higher by
employing gate array or standard cell technology.

References

[1] NIST, Advanced Encryption Standard
(AES), (FIP PUB 197), November 26, 2001,
http://csrc.nist.gov/publications/

[2] TP Security Protocol (IPSec) Charter- Latest

A Compact 32-bit Architecture for an AES System

RFCs and Internet Drafts for IPSec, Available at
http://ietf.org/html.charters/ipsec-charter.html

[3] Cox, Philip. “Robust Security Network: The fu-
ture of wire-less security”. System Experts Cor-
poration. http://www.systemexperts.com/win2k
/SecureWorldExpo-RSN.ppt

[4] I. M. Verbauwhede, P.R. Schaumont, and H.
Kuo, “Design and Performance Testing of a 2.29
Gb/s Rijndael Processor,” IEEE J. of Solid State-
Clircuit, Vol. 38, No. 3, March 2003, pp. 569 - 572.

[5) CAST, Advanced Encryption Standard
Core, available at; http://www.cast-
inc.com/cores/aes/index.shtml.

[6) TP Cores, Ultra-Compact, Advanced En-
cryption Standard Core, available at;
http://www.ipcores.com/AES1.pdf.

[7] Ocean-Logic, OL-AES Core Family, Available at
http://www.ocean-logic.com/pub/OL_AES.pdf.

[8] J. Daemen and V. Rijmen, AES Proposal:
Rijndael (Ver. 2). NIST AES Website;
http://csre.nist.gov/CryptoToolkit /aes/rijndael/
Rijndael-ammended.pdf.

[9] C. Paar, “Fast Arithmetic Architecture for
Public-Key Algorithms over Galois Fields
GF((2")™),” Proc. EUROCRYPT’97, LNCS Vol.
1233, Springer-verlag, pp. 363-378, 1997.

[10] A. Rudra et al., “Efficient Implementation of Ri-
jndael Encryption with Composite Field Arith-
metic,” Proc. CHES 2001, LNCS Vol. 2162, pp.
175-188, 2001.

[11] E. D. Mastrovito, “VLSI Architecture for Com-
putations in Galois Fields,” Ph.D. Thesis, Dept of
EE, Linkoping Univ., Lingkoping, Sweden 1991.

[12] S. Morioka and A. Satoh, “An Optimized S-box
Circuit Architecture for Low Power AES Design,”
Proc. CHES 2002, LNCS Vol. 2523, pp. 172-186,
2003.

[13] S. Chantarawong, P. Noo-intara, and S. Choom-
chuay, “An Architecture for S-Box Computation
in the AES,” Proc of Information and Computer
Engineering Workshop 2004 (ICEP2004), Prince
of Songkla University (Phuket Campus), January
2004, pp.157-162.

[14] S. Chantarawong and S. Choomchuay, “An Ar-
chitecture for a Compact AES System,” Proc.
of Electrical Eng./Electronics, Communications,
Computer and Information Technology Confer-
ence 2004 (ECTI-CON. 2004), ECTT Association,
Thailand, May 2004, pp. 121-124.

29

Somsak Choomchuay was born in
1959, Thailand. He received B.Eng, and
M.Eng. in electronic engineering in 1983
and 1986 respectively. He also has ob-
tained Ph.D. and DIC. from Imperial
College, University of London in 1994,
the same year that he joined the de-
partment of Electronic, Faculty of En-
gineering, KMITL. He has been the as-
A /| sociate professor in electronic engineer-
Vi “% ing since 2000. His research interest in-
cludes VLSI system and digital signal processing. Dr.Somsak
is an active member of many societies and international con-
ferences.

Surapong Pongyupinpanich was born
in 1976, Thailand. He has obtained

B.Eng. (Industrial Engineering) and
M.Eng. (Electronic Engineering) from
KMITL in 1998 and 2003 respec-
tively. He is currently a lecturer of

the faculty of computer engineering,
Ramkhamhaeng University. His inter-
est concerns crypto system, digital sig-
nal processing, and FPGA realization.

Somsanouk Pathumvanh was born
' in 1978, at Luangprabang, Lao P.D.R.
Has possessed bachelor’s degree in Elec-
tronic Engineering from King Monkut’s
Institute of Technology Ladkrabang,
Bangkok Thailand in 2001, he is now a
member of the Faculty of Engineering,
National University of Laos (NUOL).
| During the period of his worked at

NUOL, he has gained strong knowledge

and experience in Internetworking and
network security systems. His research interested was cov-
ered Internetworking and related field such as: Sensor network,
Routing Techniques, QoS, and Network Security.

