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The mobile sensor network can sense and collect the data information of the monitored object in real time in the monitoring area.
However, the collected information is meaningful only if the location of the node is known. This paper mainly optimizes the
Monte Carlo Localization (MCL) in mobile sensor positioning technology. In recent years, the rapid development of heuristic
algorithms has provided solutions to many complex problems. This paper combines the compact strategy into the adaptive
particle swarm algorithm and proposes a compact adaptive particle swarm algorithm (cAPSO). The compact strategy replaces
the specific position of each particle by the distribution probability of the particle swarm, which greatly reduces the memory
usage. The performance of cAPSO is tested on 28 test functions of CEC2013, and compared with some existing heuristic
algorithms, it proves that cAPSO has a better performance. At the same time, cAPSO is applied to MCL technology to
improve the accuracy of node localization, and compared with other heuristic algorithms in the accuracy of MCL, the results
show that cAPSO has a better performance.

1. Introduction

Metaheuristic algorithms are algorithms inspired by the life
habits of various creatures in nature. Metaheuristic algo-
rithms can effectively solve many problems in life [1] and
are widely used in finance, transportation, physics, chemis-
try, military, and other fields [2–8]. The No Free Lunch
Theorem [9, 10] proves that any optimization algorithm
cannot suit all situations. Therefore, various metaheuristic
algorithms and their improved algorithms are constantly
being proposed to solve more complicated problems [11–13].

The particle swarm optimization (PSO) is one of the
most important metaheuristic algorithms proposed by
Kennedy and Eberhart [14, 15]. They observed and analyzed
the foraging behavior of birds and then proposed this algo-
rithm. There is a global optimal position and an individual
optimal position in the particle swarm optimization algo-
rithm. These two positions are updated according to the
fitness value in each iteration, so that the algorithm is closer
to the optimal solution of the problem. The characteristics of
PSO, such as few parameters, simple structure, and fast

search speed, make it applied to many fields. There are also
many improved PSO algorithms, such as constricted particle
swarm optimization (CPSO) [16], fully informed particle
swarm optimization (FIPSO) [17], comprehensive learning
particle swarm optimization (CLPSO) [18], intelligence
single particle optimization (ISPO) [19], and adaptive particle
swarm optimization (APSO) [20]. The PSO can solve many
problems, such as optimizing neural networks [21], solving
vehicle routing problems [22, 23], scheduling workflow sched-
uling [24], and locating wireless sensor nodes [25]. Based on
the original PSO algorithm, the APSO algorithm introduces
evolutionary state evaluation strategies, elite learning strate-
gies, and system adaptive parameter strategies to improve
the original PSO algorithm. The APSO solves the problem of
slow convergence speed and easy to fall into the local optimum
of the original PSO algorithm. This paper mainly tries to com-
bine the compact strategy with APSO to improve the accuracy
of mobile sensor localization.

The application of a mobile sensor network is to provide
services to people when the location information of the node
is known [26]. The data measured by the node without
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location information is meaningless in many situations [27],
such as forest fire detection [28]. Therefore, to make full use
of the monitored data, it is necessary to know the location
information of the node [29, 30]. Installing GPS for each
node is the best way to solve this problem, but this way is
expensive and energy-consuming. Therefore, a small num-
ber of nodes should be randomly selected to install GPS,
and then, the positions of other nodes should be obtained
by using positioning technology through the location of
the GPS nodes [31]. The most significant difference between
a mobile sensor and a fixed wireless sensor is its mobility
[32, 33]. The mobility enables the sensor to collect effective
information in the specified area better and solves the
problem that the information in a certain area cannot be
collected due to the damage of a specific location node.
The deployment of mobile sensors is more convenient and
does not require detailed design like fixed wireless sensor
deployment nodes [34].

The compact idea is to use the behavior probability of
the particle swarm to replace the position and velocity of
each individual to express the particle swarm. The compact
algorithm can effectively save memory space [20] and has
applications in small robots [35], remote office [36], and
space shuttle control [37]. Algorithms using compact ideas
have also been continuously proposed, such as compact arti-
ficial bee colony (cABC) [38], compact sine cosine algorithm
(cSCA) [39], compact bat algorithm (cBA) [40], and com-
pact particle swarm optimization (cPSO) [41]. However,
the combination of compact algorithm and APSO has not
been mentioned. This paper hopes to combine the idea of
compact with APSO and propose a cAPSO algorithm that
uses small memory and fast convergence and applies it to
mobile sensor localization.

The rest of the paper is organized as follows. The second
section introduces the basis of related work and briefly
introduces APSO algorithm and mobile sensor localization
technology. The third section presents the improvement
methods and steps of the algorithm. The fourth section tests
the performance of the algorithm and compares it with
similar algorithms. The fifth section applies the improved
algorithm to mobile sensor localization. The sixth section
gives the conclusion of this paper.

2. Related Work

This section will briefly introduce APSO and mobile sensor
localization technology MCL.

2.1. Particle Swarm Optimization. The PSO imitates the for-
aging behavior of birds. The food location is unknown, and
each bird is affected by the surrounding birds and keeps
approaching the bird with the best position during the forag-
ing process [14, 15]. Depending on the solution of the prob-
lem, the position of the optimal individual is constantly
updated iteratively. Suppose the problem dimension is D, the
current position of the i-th individual is Xi = ðXi1, Xi2,⋯,
XiDÞ, and the current speed of the i-th individual is
V i = ðV i1,V i2,⋯, V iDÞ. In each iteration, the particle swarm
retains the global optimal position and the current optimal

position, and each particle is affected by these two optimal par-
ticles and approaches these two particles. The iterative formu-
las for updating the position and velocity of the next
generation of particles are shown in Equations (1) and (2).
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where c1 and c2 are two learning factors, w is the inertia
weight, and rand ðÞ is a random number between (0,1). The
iterative update of pBesti and gBest are performed through
the fitness value comparison. The pseudo-code of the PSO is
shown in Algorithm 1.

2.2. Adaptive Particle Swarm Optimization. The APSO is
based on the original PSO by introducing state estimation
strategy, elite learning strategy, and parameter adaptation
strategy to improve it [20]. The improved algorithm can find
the solution faster and more stable. The three strategies will
be briefly introduced below.

2.2.1. State Estimation Strategy. The APSO divides the entire
search process into four states, namely, exploration, exploi-
tation, convergence, and jump-out, which are represented
by S1, S2, S3, and S4. The division basis is the value of the
evolution factor f . To calculate the evolution factor f , we
must first calculate the Euclidean distance di of each particle.
The calculation formula of di is shown in Equation (3).
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where di represents the Euclidean distance of the i-th parti-
cle, N represents the total number of particle swarms, and D
represents the dimension of the problem.

After obtaining the Euclidean distance of each particle,
we find the minimum value dmin, maximum value dmax,
and optimal value dgbest. Then, calculate the evolution factor

f by Equation (4).

f =
dgbest − dmin

dmax − dmin

: ð4Þ

According to the value of the evolution factor f , the state
is divided according to Figure 1. In addition, the state
division is also related to the state of the previous iteration.
For example, the value of the evolution factor f of this
iteration is 0.55. It is assumed that the influence of the state
of the previous iteration is not considered. In that case,
the current state will be set as S1, but considering that the
state of the previous iteration will have an impact on this
state, so if the state of the previous iteration is S1 or S4, the
current state will be set to S1. If the state of the previous
iteration is S2 or S3, the current state will be set to S2.
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2.2.2. Parameter Adaptation Strategy. Three dynamic param-
eters are involved in APSO: inertial weight w, the individual
learning factor c1, and the global learning factor c2. The weight
of inertia changes with the evolutionary state. Its relationship
with evolution factor f is shown in Equation (5).

w =
1

1 + 1:5e−2:6f
: ð5Þ

APSO initializes w to 0.9. In the exploration state and the
jump-out state, f is more extensive, which leads to a more
oversized w, which is conducive to the global optimal search.
In the convergence state and the exploitation state, f is more
minor, which leads to a smaller w, which is conducive to the
local convergence.

The c1 and the c2 are initialized to 2.0, and the two learn-
ing factors are adjusted according to the different evolution-
ary state. In the exploration state, increase c1 and decrease c2.
This ensures that the individual learning factors play a
leading role in helping the particles explore their own best
individuals and avoid falling into the local optimum. In the
exploitation state, slightly increase c1 and slightly decrease
c2. Particles in the exploration phase gradually approach

the local optimum. Increasing c1 can more effectively enable
the particles to explore around the individual optimum.
Since the local optimum found may not be the global opti-
mum, c2 should be slightly reduced to prevent premature
convergence because this will easily lead to the problem of
the population falling into the local optimum. In the conver-
gence stage, slightly increase c1 and c2. Increasing c2 means
that the particle swarm has found the global optimum at this
stage, and the particle swarm can converge to this global
optimum. A slight increase of c1 is to prevent the learning
factor from reaching the upper limit prematurely. If the
upper bound is reached prematurely, the particles will treat
the local optimum as the global optimum and quickly con-
verge. In the jump-out state, reduce c1 and increase c2. It is
helpful for the global optimum particle to jump out of the
convergence zone and find a better position; other particles
will follow the global optimal particle and converge to a bet-
ter position. Table 1 shows the dynamic changes of the two
learning factors in different states.

2.2.3. Elite Learning Strategy. The elite learning strategy
makes the optimal global particles jump out of the conver-
gence zone and finds a more superior position in the state

while i < particles do
Initialize the position Xi and velocity Vi of each particle
Calculate the fitness value of each particle fitness(i)
i = i +1

end
Initialize the pBesti = Xi

Initialize the gBest = min(pBesti)
for g =1 to iterMax do

for i =1 to particles do.
Update the Vi and Xi of the particles by Equations (1) and (2)
Calculate the fitness value of the new particle fitness(i)
if fitness(i) < fitness(pBesti) then
pBesti = Xi

end
if fitness(i) < fitness(gBest) then
gBest= Xi

end
end

end

Algorithm 1: The pseudo-code of the PSO.
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Figure 1: The division diagram of four states.
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of convergence. The elite learning strategy is determined by
the elite learning rate σ. The calculation formula of σ is
shown in Equation (6).

σ = σmax − σmax − σminð Þ × g

iterMax
, ð6Þ

where g is the current number of iterations, σmax and σmin

are the maximum and minimum values of the elite learning
rate σ, taking 1.0 and 0.1, respectively, and iterMax is the
maximum number of iterations. After obtaining the elite
learning rate, we randomly select a dimension for Gaussian
perturbations to get the global optimal particle out of the
convergence region. The formula is shown in Equation (7).

Td = Td + Xd
max − Xd

min

� �

× Gaussian μ, σ2
� �

: ð7Þ

2.2.4. The Pseudo-Code of APSO. The APSO introduces the
above three strategies on the basis of PSO to optimize, and
the optimized APSO can find the optimal solution to the
problem better and faster when solving the problem.

The pseudo-code of APSO that combines the three strat-
egies is shown in Algorithm 2.

2.3. Mobile Sensor Localization. This section mainly intro-
duces the MCL mobile node location method [42, 43]. The
mobile nodes in the mobile sensor network move with ran-
dom speed and random direction. The biggest advantage of
mobile nodes over fixed nodes lies in their mobility. The
mobile node solves the problem that the information in a
certain area cannot be collected due to the damage of the
node at a specific location. The MCL method is mainly
divided into three stages: the initialization stage, the predic-
tion stage, and the filtering stage [44]. In the initialization
stage, the moving area and the maximum moving speed
are specified for each node. In the prediction stage, a prelim-
inary estimate of the location of the mobile node is made.
The speed and direction of node movement are uncertain.
The position after the movement is within a circle. The cen-
ter of this circle is the position of the last node, and the
radius is the product of the speed and the positioning inter-
val time, as shown in Figure 2.

The filtration stage is the most critical stage of MCL.
Firstly, according to the distance between the anchor node
and the unknown node, MCL determines which anchor
nodes are the one-hop beacon nodes of the unknown node
and which anchor nodes are the two-hop beacon nodes of
the unknown node. Then, MCL obtains the one-hop beacon
node set B1 and the two-hop beacon node set B2. Secondly,
randomly select points in possible areas, and filter the non-

conforming points according to whether the selected points
are within the range of one-hop and two-hop beacon nodes.
The filter condition is shown in Equation (8).

filer nodeð Þ = ∀b1 ∈ B1, distance node, b1ð Þð
≤ RÞ ∪ ∀b2 ∈ B2, distance node, b2ð Þð
≤ 2RÞ:

ð8Þ

The gray areas in Figure 3 are the sets of points that meet
the filter conditions. The MCL locates the position of the
unknown node in a small space according to the number
of hops from the unknown node to the anchor node. Equa-
tion (8) filters out the points that fall in this small space. In
order to prevent contingency, the coordinates of all points in
this small space are averaged as the position of the unknown
node initially predicted by MCL. Finally, the qualified points
after filtering are estimated by Equation (9) to estimate the
position of the unknown node.

Position bð Þ =
∑N

i=1nodei

� �

N
, ð9Þ

where N represents the total number of points that meet the
filter conditions, and node represents the position of node
that meet the filter conditions.

3. Compact Adaptive Particle
Swarm Optimization

This section mainly introduces the idea of compact strategy
and how to apply compact strategy to adaptive particle
swarm optimization algorithm.

3.1. Compact Strategy. The primary purpose of the compact
strategy is to reduce memory usage without changing the
performance of the original algorithm or even improving
the performance of the original algorithm. The running
speed will naturally be improved if the memory usage is
reduced. The compact strategy uses PV perturbation vectors
to represent the overall motion state of the population
instead of simply using the position and velocity of each
individual to represent the population state. The disturbance
vector PV is defined as PVg = ðμg, σgÞ, where μ represents
the average value of the disturbance vector, σ represents
the standard deviation of the disturbance vector, and g rep-
resents the current iteration update times.

The compact strategy ultimately returns a value between
(0,1). The PV vector is composed of μ and σ, and the prob-
ability distribution function (PDF) can be calculated through
μ and σ. Then, the cumulative distribution function (CDF)
can be calculated by PDF. The calculation formulas of PDF
and CDF are in Equations (10) and (11).

PDF =
e− x−μð Þ2/2σ2×

ffiffiffiffiffi

2/π
p

σ × erf μ + 1/
ffiffiffiffiffiffi

2σ
p� �

− erf μ − 1/
ffiffiffiffiffiffi

2σ
p� �� � , ð10Þ

Table 1: Parameter adaptive strategy factor factors.

State c1 c2

Exploration Increase Decrease

Exploitation Increase slightly Decrease slightly

Convergence Increase slightly Increase slightly

Jump-out Decrease Increase
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CDF =
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The CDF value range of the cumulative distribution

function is (0,1), which is also the value range returned by
the compact strategy. Taking the standard normal distribu-
tion as an example, PDF and CDF of the standard normal
distribution are shown in Figure 4.

Another important content of the compact strategy is
the iterative update of the PV disturbance vector. The com-
pact strategy is based on comparison, and the winner and
loser are obtained through a competitive game mechanism.
Then, update it through the update iteration strategy. The
update formulas are shown in Equations (12) and (13).

μ
g+1 = μ

g +
1

Np

winner − loserð Þ, ð12Þ

σ
g+1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σgð Þ2 + μgð Þ2 + 2

Np

winner2 − loser2
� �

s

, ð13Þ

where g represents the current iteration times and Np

represents the number of virtual populations. The mean
value μ in the PV disturbance vector is generally set to 0,
and the standard deviation σ in the PV disturbance vector
is generally set to 10 to avoid the contingency of the local
optimum during initialization. After a large number of
experiments, it has been proven that the effect achieved

while i < particles do
Initialize the position Xi and velocity Vi of each particle
Calculate the fitness value of each particle fitness(i)
i = i +1

end
Initialize the pBesti = Xi

Initialize the gBest = min(pBesti)
for g =1 to iterMax do

for i =1 to particles do
Update the Vi and Xi of the particles by Equations (1) and (2)
Calculate the fitness value of the new particle fitness(i)
if fitness(i) < fitness(pBesti) then
pBesti= Xi

end.
if fitness(i) < fitness(gBest) then
gBest= Xi

end
end
Calculate the di by Equation (3)
Calculate the f by Equation (4)
Determine the evolutionary state S by Figure 1
w is adjusted according to Equation (5)
c1 and c2 are adjusted according to Table 1
if evolutionary state S == convergence state S3 then

σ = σmax − ðσmax − σminÞ × g/iterMax

Td = Td + ðXd
max − Xd

minÞ × Gaussianðμ, σ2Þ
if fitness(T) < fitness(gBest) then

gBest= T
end

end
end

Algorithm 2: The pseudo-code of APSO.

Vmax Δt

Figure 2: Rang of node movement.
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when the number of virtual populations Np is set to 300 is

the best. So Np is generally set to 300.

3.2. Implementation of the Compact Strategy in APSO. The
compact strategy is based on comparison. In other words,
there must be a game mechanism of size two so that the win-
ner and loser can be generated, and then, μ and σ in the PV
disturbance vector can be updated. APSO can meet this con-
dition through the comparison of fitness values, so APSO
meets the primary conditions of the compact strategy, and
the compact strategy can be combined with APSO to achieve
the goal of reducing memory and improving operating
speed. For example, if there are 30 particles in the particle
swarm and the dimension to solve the problem is also 30
dimensions, then APSO needs 900 storage units to store
the position information of each particle in each dimension.
However, cAPSO only needs 60 storage units to store the
particle swarm in each dimension using PV perturbation

vectors, which significantly saves storage space. The saving
of storage space reduces the number of reads and writes to
the memory, and the speed of the algorithm will also be
improved accordingly.

The cAPSO expresses the position of the particle swarm
through the overall probability distribution, and the value
range of the compact strategy is between (0,1), assuming that
y is the return value of the compact strategy. Then, the
return value of the compact strategy should be corresponded
to the actual position range by Equation (14).

X =
1

2
× Xmax − Xminð Þ × y +

1

2
× Xmax − Xminð Þ: ð14Þ

The evolution factor f in the original APSO is calcu-
lated by Equations (3) and (4). However, the distribution
probability is used to represent the position of the
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Figure 3: One-hop and two-hop beacon node locations.

0.5

0.4

0.3

0.2

0.1

0

–3 3–2 2–1 10

(a) Standard normal distribution PDF

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

–3 3–2 2–1 10

(b) Standard normal distribution CDF

Figure 4: PDF and CDF of standard normal distribution.
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particle swarm in cAPSO, so the calculation of the evo-
lution factor f is replaced by Equation (15).

f =
μmean − μmin

μmax − μmin

: ð15Þ

The cAPSO compares the fitness value of the position of
this iteration generated by the PV disturbance vector with the
fitness value of the optimal position of the present individual
and generates winner and loser. The generated winner and
loser use the Equations (12) and (13) to update the distur-
bance vector PV and then generate the position probability
distribution of the particle swarm in the next iteration.

The pseudo-code of cAPSO is shown in Algorithm 3.

4. The Performance Test of cAPSO

In this section, the cAPSO algorithm is mainly tested in 28 test
functions of CEC2013 [45]. This paper compares the cAPSO
with common heuristic algorithms and common compact
algorithms. The 28 test functions in CEC2013 include 8 mixed
functions, 15 multimodal functions, and 5 unimodal func-
tions. These 28 functions are very representative. The 28 func-
tions are represented by f1 to f28. Every experiment keeps the
common parameters consistent during the comparison pro-
cess to ensure the fairness of the comparison.

4.1. Performance Comparison of cAPSO and Common
Heuristic Algorithms. In this section, the cAPSO is compared
with genetic algorithm (GA) [46], differential evolution algo-
rithm (DE) [47], whale optimization algorithm (WOA) [48],
bat algorithm (BA) [49], and sine cosine algorithm (SCA)
[50] on 28 test functions of CEC2013. At the same time,
the overall performance of each algorithm compared with

the cAPSO algorithm was measured at a significant level
α = 0:05 under the Wilcoxon signed rank test. Twenty tests
are carried out on each test function, and then, the
average value is taken to avoid the occurrence of chance. To
ensure the fairness of the algorithm during testing, the
dimension of the problem is set to 50, the number of popula-
tions is set to 60, and the number of iterations is set to 3000,
and the search range requirement in CEC2013 is [-100,100].
Table 2 shows the performance comparison of cAPSO and
common heuristic algorithms. In addition, Table 2 also
shows that each algorithm is measured under the Wilcoxon
signed rank test, with a significance level of α = 0:05. The
symbol “>” represents that the performance of the cAPSO
is better than the other heuristic algorithm, the symbol “=”
represents that the performance of the cAPSO is the same
as the other heuristic algorithm, and the symbol “<” repre-
sents that the performance of the cAPSO is worse than the
other heuristic algorithm. The last row of Table 2 summa-
rizes the comparison results of all test functions.

Table 2 shows that compared with DE, the test perfor-
mance of cAPSO is better than DE in 20 functions, the same
as DE in 2 functions, and worse than DE in 6 functions.
Compared with BA, the test performance of cAPSO is better
than BA in 21 functions, the same as BA in 1 function, and
worse than BA in 6 functions. Compared with GA, WOA,
and SCA, cAPSO has the same performance as these three
algorithms in function f8, but it is better than others in other
functions. It can be seen that the performance of the cAPSO
algorithm combined with the compact strategy is greatly
improved compared with the common heuristic algorithm.

In order to further describe the effect of the algorithm,
this paper uses the convergence curve for evaluation. Since
the convergence of many algorithms is very similar, the per-
formance is not obvious in the convergence curve, so this

Initialize the PV(μ, σ) disturbance vector parameter
Initialize a particle swarm position X = Xmin + ðXmax − XminÞ × rand ðÞ
Initialize a particle swarm velocity V =Vmin + ðVmax −VminÞ × rand ðÞ
Initialize pBest = X
Initialize gBest = X
for g =1 to iterMax do

pBest = 1/2 × ðXmax − XminÞ × compactðμ, σÞ + 1/2 × ðXmax − XminÞ
Update the V and X of the particles by Equations (1) and (2)
Calculate the fitness value of the new particle fitness(X)
(winner, loser) = compare(fitness(pBest), fitness(X))
Update the PV disturbance vector by Equations (12) and (13)
Calculate the f by Equation (15)
Determine the evolutionary state S by Figure 1
w is adjusted according to Equation (5)
c1 and c2 are adjusted according to Table 1
if evolutionary state S == convergence state S3 then
σ = σmax − ðσmax − σminÞ × g/iterMax

Td = Td + ðXd
max − Xd

minÞ × Gaussianðμ, σ2Þ
(winner, loser) = compare(fitness(gBest), fitness(X))
gBest= winner

end
end

Algorithm 3: The pseudo-code of cAPSO.
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paper selects several scattered representative curves for
display. Figure 5 shows the convergence process of the algo-
rithm on some test functions. The horizontal axis represents
iteration times, and the vertical axis represents the fitness
value of different algorithms. The smaller the fitness value,
the better the performance on this test function. It can be
seen from Figure 5 that the performance of the proposed
cAPSO algorithm is better than other heuristic algorithms
on f4, f9, f11, f17, and f27. But the performance of the test
function on f13 and f22 is worse than DE, and the perfor-
mance on f17 is not as good as BA.

4.2. Performance Comparison of cAPSO and Common
Compact Algorithms. In this section, the cAPSO is compared
with cPSO [41], cABC [38], cSCA [39], and cBA [40] on 28
test functions of CEC2013. At the same time, the overall per-
formance of each algorithm compared with the cAPSO algo-
rithm was measured at a significant level α = 0:05 under the
Wilcoxon signed rank test. Twenty tests are carried out on

each test function, and then, the average value is taken to
avoid the occurrence of chance. To ensure the fairness of
the algorithm during testing, the dimension of the problem
is set to 50, the number of populations is set to 60, the num-
ber of iterations is set to 3000, the virtual number of popula-
tions is set to 300, and the search range requirement in
CEC2013 is [-100,100]. Table 3 shows the performance com-
parison of cAPSO and common compact algorithms. In addi-
tion, Table 3 also shows that each algorithm is measured
under the Wilcoxon signed rank test, with a significance level
of α = 0:05. The symbols “>,” “=,” and “<” have the same
meaning as in Section 4.1. The last row of Table 3 summarizes
the comparison results of all test functions.

Table 3 shows that compared with cPSO, the test perfor-
mance of cAPSO is better than cPSO in 24 functions, the
same as cPSO in 2 functions, and worse than cPSO in 2
functions. Compared with cBA, the test performance of
cAPSO is better than cBA in 20 functions, the same as
cBA in 3 functions, and worse than cBA in 5 functions.

Table 2: The performance comparison between cAPSO and common heuristic algorithms and the Wilcoxon signed rank test of each
algorithm at the significance level α = 0:05.

Function GA DE BA WOA SCA cAPSO

f1 1.61E-05 (>) -1.40E-03 (=) -1.39E-03 (>) -1.36E-03 (>) 2.70E-04 (>) -1.40E-03

f2 5.34E-09 (>) 2.39E-08 (>) 5.19E-06 (<) 8.10E-07 (>) 5.07E-08 (>) 7.33E-06

f3 7.38E-19 (>) 1.87E-10 (>) 5.10E-08 (<) 4.11E-10 (>) 1.09E-11 (>) 3.69E-09

f4 6.55E-05 (>) 1.10E-05 (>) 1.98E-04 (>) 6.18E-04 (>) 6.37E-04 (>) 7.64E-03

f5 8.99E-04 (>) -9.86E-02 (>) -9.96E-02 (>) -8.07E-02 (>) 2.44E-03 (>) -1.00E-03

f6 2.88E-04 (>) -8.54E-02 (<) -8.40E-02 (>) -6.66E-02 (>) 1.21E-03 (>) -8.20E-02

f7 6.09E-06 (>) -6.67E-02 (>) 9.86E-02 (>) -3.18E-02 (>) -6.06E-02 (>) -6.71E-02

f8 -6.79E-02 (=) -6.79E-02 (=) -6.79E-02 (=) -6.79E-02 (=) -6.79E-02 (=) -6.79E-02

f9 -5.19E-02 (>) -5.31E-02 (>) -5.33E-02 (>) -5.29E-02 (>) -5.26E-02 (>) -5.42E-02

f10 2.18E-04 (>) -4.31E-02 (>) -4.96E-02 (>) -2.17E-02 (>) 3.42E-03 (>) -4.98E-02

f11 2.11E-03 (>) -2.79E-02 (>) 7.61E-02 (>) 4.02E-02 (>) 3.09E-02 (>) -3.95E-02

f12 1.96E-03 (>) 1.22E-02 (>) 8.98E-02 (>) 6.50E-02 (>) 4.56E-02 (>) 7.37E-01

f13 2.03E-03 (>) 2.29E-02 (<) 1.16E-03 (>) 8.43E-02 (>) 5.53E-02 (>) 2.79E-02

f14 1.64E-04 (>) 2.13E-03 (>) 8.93E-03 (>) 8.92E-03 (>) 1.36E-04 (>) 1.98E-03

f15 1.61E-04 (>) 1.45E-04 (>) 8.81E-03 (<) 1.15E-04 (>) 1.44E-04 (>) 1.01E-04

f16 2.05E-02 (>) 2.04E-02 (>) 2.02E-02 (<) 2.03E-02 (>) 2.03E-02 (>) 2.02E-02

f17 5.26E-03 (>) 5.14E-02 (>) 2.65E-03 (>) 1.47E-03 (>) 1.31E-03 (>) 3.51E-02

f18 5.29E-03 (>) 8.74E-02 (>) 2.94E-03 (>) 1.51E-03 (>) 1.40E-03 (>) 8.54E-02

f19 2.59E-07 (>) 5.21E-02 (>) 5.68E-02 (>) 6.74E-02 (>) 4.29E-04 (>) 5.02E-02

f20 6.25E-02 (>) 6.23E-02 (<) 6.25E-02 (>) 6.25E-02 (>) 6.24E-02 (>) 6.25E-02

f21 1.26E-04 (>) 1.23E-03 (<) 1.53E-03 (>) 1.86E-03 (>) 4.67E-03 (>) 1.60E-03

f22 1.86E-04 (>) 3.63E-03 (<) 1.27E-04 (>) 1.28E-04 (>) 1.54E-04 (>) 4.59E-03

f23 1.81E-04 (>) 1.55E-04 (>) 1.22E+04 (<) 1.39E-04 (>) 1.61E-04 (>) 1.26E-04

f24 2.08E-03 (>) 1.37E-03 (>) 1.45E-03 (>) 1.41E-03 (>) 1.43E-03 (>) 1.36E-03

f25 1.76E-03 (>) 1.48E-03 (>) 1.47E-03 (<) 1.53E-03 (>) 1.55E-03 (>) 1.51E-03

f26 1.79E-03 (>) 1.52E-03 (<) 1.69E-03 (>) 1.65E-03 (>) 1.59E-03 (>) 1.64E-03

f27 4.68E-03 (>) 3.29E-03 (>) 3.50E-03 (>) 3.54E-03 (>) 3.66E-03 (>) 3.18E-03

f28 1.72E-04 (>) 2.77E-03 (>) 1.08E-04 (>) 8.79E-03 (>) 6.84E-03 (>) 2.73E-03

>/=/< 27/1/0 20/2/6 21/1/6 27/1/0 27/1/0
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Figure 5: Continued.
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Compared with cABC and cSCA, cAPSO has the same
performance as these two algorithms in function f8, but it
is better than these two algorithms in other functions. It
can be seen that cAPSO has strong competitiveness in
compact algorithms and has advantages over other compact
algorithms in performance.

As in Section 4.1, Figure 6 shows representative
convergence curves of the proposed cAPSO and other
compact algorithms. It can be seen from Figure 6 that
the performance of the proposed cAPSO algorithm is
better than other compact algorithms on f12, f15, f20,
and f25. But the performance of the test function on f16
is not as good as cBA, and the performance on f23 is
worse than cPSO.

5. Application of cAPSO in Mobile
Sensor Localization

This section mainly applies cAPSO to the mobile sensor
localization technology MCL and compares it with the orig-
inal MCL, WOA-based MCL, and BA-based MCL under dif-
ferent anchor node numbers and different communication
radius. It takes a lot of time and computing power to directly
find a position with a small error through the MCL technol-
ogy. A position with a large error is initially obtained
through MCL technology, and then, cAPSO is applied
around the obtained position for further optimization. The
cAPSO broadcasts nodes around it, and the broadcast nodes
move according to the idea of the cAPSO. The position after
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move is compared with the historical optimal position to
update the optimal position. After a certain number of iter-
ations, an optimal position is obtained as the final position
of the MCL positioning technology. Mobile sensor position-
ing technology is a technology that uses the information of
anchor nodes to estimate the location of unknown nodes,
so the position error becomes the key to the technology.
The smaller the position error, the more conducive to the
accuracy of the information. Applying heuristic algorithms
to MCL technology can better locate unknown nodes and
reduce localization errors. The more accurate position coor-
dinates are iteratively updated by the error function. The
error function is defined as Equation (16).

error =

∑M
j=1 ∑N

i=1,i≠j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi − x j
� �2

+ yi − y j

� �2
r

−Dij

� �

M
,

ð16Þ

where ðxi, yiÞ represents the estimated location of the
unknown node i, ðx j, y jÞ represents the location of the

anchor node j, M represents the total number of unknown
nodes, and N represents the total number of anchor nodes.
Dij represents the distance between each unknown node i

and each anchor node j. This paper assumes that the anchor
node j can obtain the distance between the anchor node j
and the unknown node i by the strength of the signal
received from the unknown node i. The smaller the error
value, the higher the accuracy of localization.

5.1. Influence Analysis of Different Anchor Nodes. In the sim-
ulation experiment, 200 nodes are randomly scattered
within a range of 200m × 200m. The number of anchor
nodes is 5, 10, 15, 20, 25, 30, 35, and 40, so the number of
unknown nodes is 195, 190, 185, 180, 175, 170, 165, and
160. The communication radius is set to 50m, and the sim-
ulation experiments with the same parameters were tested
20 times, and the average value was calculated as the error

Table 3: The performance comparison between cAPSO and common compact algorithms and the Wilcoxon signed rank test of each
algorithm at the significance level α = 0:05.

Function cPSO cABC cSCA cBA cAPSO

f1 -1.40E+03 (=) 2.50E+04 (>) 5.20E+04 (>) -1.40E+03 (=) -1.40E+03

f2 2.54E+07 (>) 7.05E+08 (>) 1.02E+09 (>) 3.31E+06 (<) 8.07E+06

f3 7.45E+09 (>) 2.07E+11 (>) 2.52E+15 (>) 5.34E+09 (>) 3.78E+09

f4 3.76E+03 (<) 1.44E+05 (>) 1.84E+05 (>) 2.87E+05 (>) 8.68E+03

f5 -9.88E+02 (>) 5.94E+03 (>) 1.44E+04 (>) -1.00E+03 (=) -1.00E+03

f6 -8.05E+02 (>) 1.28E+03 (>) 3.13E+03 (>) -8.49E+02 (<) -8.30E+02

f7 -5.68E+02 (>) -4.55E+02 (>) 8.72E+03 (>) 3.26E+12 (>) -6.75E+02

f8 -6.79E+02 (=) -6.79E+02 (=) -6.79E+02 (=) -6.79E+02 (=) -6.79E+02

f9 -5.37E+02 (>) -5.24E+02 (>) -5.26E+02 (>) -5.11E+02 (>) -5.41E+02

f10 -4.76E+02 (>) 4.31E+03 (>) 7.25E+03 (>) -4.99E+02 (<) -4.98E+02

f11 3.33E+02 (>) 4.32E+02 (>) 4.35E+02 (>) 2.84E+03 (>) -3.96E+02

f12 5.47E+02 (>) 6.96E+02 (>) 9.21E+02 (>) 7.20E+03 (>) 1.52E+02

f13 4.48E+02 (>) 8.20E+02 (>) 1.14E+03 (>) 8.65E+03 (>) 2.65E+02

f14 9.05E+03 (>) 1.45E+04 (>) 1.60E+04 (>) 8.59E+03 (>) 2.11E+03

f15 1.01E+04 (>) 1.50E+04 (>) 1.52E+04 (>) 1.06E+04 (>) 9.48E+03

f16 2.03E+02 (>) 2.04E+02 (>) 2.04E+02 (>) 2.01E+02 (<) 2.02E+02

f17 1.06E+03 (>) 1.91E+03 (>) 1.45E+03 (>) 1.50E+04 (>) 3.51E+02

f18 1.07E+03 (>) 2.28E+03 (>) 1.59E+03 (>) 1.65E+04 (>) 9.16E+02

f19 5.47E+02 (>) 6.82E+04 (>) 1.86E+04 (>) 8.46E+02 (>) 5.02E+02

f20 6.25E+02 (>) 6.25E+02 (>) 6.25E+02 (>) 6.25E+02 (>) 6.24E+02

f21 1.61E+03 (>) 5.58E+03 (>) 5.10E+03 (>) 1.62E+03 (>) 1.58E+03

f22 1.26E+04 (>) 1.66E+04 (>) 1.81E+04 (>) 1.10E+04 (>) 4.31E+03

f23 1.29E+04 (<) 1.72E+04 (>) 1.68E+04 (>) 1.40E+04 (>) 1.32E+04

f24 1.42E+03 (>) 1.42E+03 (>) 1.52E+03 (>) 1.69E+03 (>) 1.37E+03

f25 1.57E+03 (>) 1.60E+03 (>) 1.57E+03 (>) 1.65E+03 (>) 1.50E+03

f26 1.61E+03 (>) 1.64E+03 (>) 1.71E+03 (>) 1.40E+03 (<) 1.59E+03

f27 3.54E+03 (>) 3.65E+03 (>) 3.81E+03 (>) 5.28E+03 (>) 3.18E+03

f28 4.16E+03 (>) 7.40E+03 (>) 8.71E+03 (>) 9.08E+04 (>) 2.18E+03

>/=/< 24/2/2 27/1/0 27/1/0 20/3/5
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Figure 6: Continued.
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result. Apply cAPSO, WOA, and BA algorithms to the sim-
ulation experiment, respectively. The experimental results
are shown in Table 4.

Table 4 shows that when the total number of nodes is
200 and the communication radius is 50m, the larger the
number of anchor nodes, the more accurate the location of
unknown nodes and the smaller the error value. Table 4
clearly shows that the positioning error after optimization
by the heuristic algorithm is much smaller than the original
MCL. In the combined different heuristic algorithms, it can
be clearly seen that although the cAPSO algorithm is not

better than other algorithms in standard deviation every
time, and it has better results than other heuristic algorithms
in error mean.

5.2. Influence Analysis of Different Communication Radius.
The simulation experiment randomly scatter 200 nodes in
the range of 200m × 200m, the number of anchor nodes is
set to 30, and the communication radius is set to 10m,
20m, 30m, 40m, and 50m. The simulation experiments
with the same parameters were tested 20 times, and the aver-
age value was calculated as the error result. Apply cAPSO,
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Figure 6: Performance comparison between cAPSO and common compact algorithms.

Table 4: Experimental results of the localization error of different anchor nodes.

Anchor
MCL cAPSO MCL WOA MCL BA MCL

Mean Std Mean Std Mean Std Mean Std

5 22.0428 2.4357 12.5510 2.4495 12.6486 2.4621 12.5604 2.4466

10 15.5169 1.2365 6.8567 1.0768 6.9593 1.0758 6.8692 1.0787

15 11.4610 0.8525 3.4532 0.7155 3.5635 0.7134 3.4695 0.7231

20 3.4568 0.7152 2.0050 0.4179 2.1148 0.4147 2.0199 0.4179

25 7.6420 0.5372 1.1901 0.3881 1.3114 0.3877 1.2074 0.3878

30 1.2074 0.3878 0.6402 0.1856 0.7603 0.1832 0.6591 0.1852

Table 5: Experimental results of the localization error of different communication radius.

Radius
MCL cAPSO MCL WOA MCL BA MCL

Mean Std Mean Std Mean Std Mean Std

10 17.7767 3.7450 8.4470 3.2895 8.5827 3.2828 8.4567 3.2881

20 13.2522 0.7495 4.9535 0.5931 5.0626 0.5932 4.9637 0.5932

30 9.5178 0.5585 2.7765 0.4599 2.8918 0.4639 2.7952 0.4622

40 7.8710 0.4849 1.8598 0.3892 1.9788 0.3893 1.8773 0.3889

50 1.8773 0.3889 1.1117 0.3746 1.2293 0.3744 1.1303 0.3743
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WOA, and BA algorithms to the simulation experiment,
respectively. The experimental results are shown in Table 5.

Table 5 shows that when the total number of nodes is 200
and the number of anchor nodes is 30, the greater the commu-
nication radius, the more accurate the location of unknown
nodes, and the smaller the error value. Table 5 clearly shows
that the positioning error after optimization by the heuristic
algorithm is much smaller than that of the original MCL. In
the combined different heuristic algorithms, it can also be
clearly seen that the cAPSO algorithm is better than other heu-
ristic algorithms in the comparison of the error mean.

6. Conclusion

In this paper, an improved APSO algorithm combined with
compact strategy is proposed and applied to mobile sensor
localization. The compact strategy no longer stores the posi-
tion of each particle in each dimension but describes the distri-
bution characteristics of the particles in each dimension
through the operation of probability model. The compact
strategy can reduce the use of memory very well. This paper
tests the performance of cAPSO on 28 test functions of
CEC2013 and compares it with the common heuristic algo-
rithms GA, DE, BA, WOA, and SCA and the common com-
pact strategy heuristic algorithms cPSO, cABC, cSCA, and
cBA. The comparison results show that cAPSO has better test
performance. Finally, cAPSO is applied tomobile sensor local-
ization technology MCL, and it is also compared with WOA-
based MCL and BA-based MCL. The results show that MCL
based on cAPSO is more effective in solving this problem.
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