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Abstract—A reliable reduced-order model (ROM) for fast 
frequency sweep in time-harmonic Maxwell's equations by means 
of the reduced-basis method is detailed. Taking frequency as a 
parameter, the electromagnetic field in microwave circuits does 
not arbitrarily vary as frequency changes, but evolves on a very 
low-dimensional manifold. Approximating this low-dimensional 
manifold by a low dimension subspace, namely, reduced-basis 
space, gives rise to an ROM for fast frequency sweep in 
microwave circuits. This avoids carrying out time-consuming 
finite-element analysis for each frequency in the band of interest. 
The behavior of the solutions to Maxwell's equations as a function 
of the frequency parameter is studied and highlighted. As a result, 
a compact reduced-basis space for efficient model-order reduction 
is proposed. In this paper, the reduced-basis space is composed of 
two parts: 1) eigenmodes hit in the frequency band of interest, 
which form an orthogonal, fundamental set that describes the 
natural oscillating dynamics of the electromagnetic field and 
2) whatever else electromagnetic fields, sampled in the frequency 
band of interest, that are needed to achieve convergence in the 
reduced-basis approximation. The reduced-basis method aims 
not only to find out a reduced-basis space in an efficient way, 
but also to certify the reliability of the approximation carried 
out. Emphasis is placed on a fast evaluation of the ROM error 
measure and on providing a reliable convergence criterion. This 
approach is applied to both narrowband resonating structures 
and wideband nonresonanting devices in order to show the 
capabilities of the method in real-life applications. 

Index Terms—Computer-aided engineering, design automa-
tion, error analysis, finite-element methods, Galerkin method, 
microwave circuits, reduced basis methods, reduced-order 
systems. 

I. INTRODUCTION 

INCREASING deployment of telecommunication services 
is urging microwave industry to speed up product devel-

opment time, where not only prototyping and final tuning 
steps in the production line have to be reduced, but also the 

simulation time to get an actual electrical design by means 
of computer-aided design (CAD). A significant cost reduction 
can be achieved in prototyping and tuning steps if electrical 
designs are optimized to do so, in addition to satisfying 
electrical specifications. Performing robust electrical designs 
has thus become of paramount importance, and powerful 
numerical techniques capable of predicting electromagnetic 
behavior are at the heart of this robust design. 

When developing an electrical design, several geometrical 
parameters, say a few tens, need to be optimized via CAD. 
The change in the geometry can be large from the starting 
point in the optimization until the final design is obtained. 
A large amount of different geometry simulations may be 
required. However, to speed up each geometry simulation, 
model-order reduction techniques can be of help. Model-order 
reduction consists of replacing a rather complex mathematical 
model by a much simpler approximated one that still maintains 
certain aspects of the original model [1]. Instead of perform-
ing time-consuming analysis, such as finite-element (FEM) 
or boundary-element (BEM) analysis, for each frequency in 
the band of interest, a fast frequency sweep can be carried 
out by means of a reduced-order model (ROM). In order for 
this ROM to be of actual interest for CAD rather than for 
academic interest, several issues need to be addressed. First, 
both the model-order reduction generation process and the 
evaluation of the ROM itself has to be considered, since each 
new geometry simulation implies a new model-order reduction 
starting from scratch. Second, model-order reduction should be 
a completely automatic process, where no human interaction 
can be afforded, as this fast frequency sweep is held within a 
CAD optimization loop. Finally, ROM has to be reliable and its 
accuracy has to be certified to guarantee that the optimization 
routine is not misled by inaccurate ROMs. We focus on all 
this in this paper. 

There is an intensive research activity on model-order reduc-
tion. In this sense, there are two different approaches, namely, 
moment-matching techniques and singular-value decomposi-
tion (SVD) strategies. The former is based on expanding the 
complex mathematical model into a Taylor series and getting 
an ROM by matching the moments or Taylor coefficients to a 
Padé approximant. The latter requires a large amount of field 
solutions at different frequencies, and then, SVD is applied to 
extract the fundamental dynamics in the original system by 
means of the dominant singular vectors. An ROM is obtained 
by applying Galerkin projection to the original system onto 
the subspace spanned by the dominant singular vectors. 



However, each of these approaches can be further combined 
into the other, namely, not only Taylor series in multiple 
expansion points can be considered to improve convergence 
in the moment-matching framework, but also derivatives in 
field solutions can uplift the field solution data for analysis in 
SVD-based model-order reduction. The following papers deal 
with these strategies [2]-[10]. 

Model-order reduction techniques have been widely used 
in computational electromagnetics. Reference [11] minimizes 
the computational complexity of scattering problems in Elec-
tromagnetics applying an ROM to the electric-field volume 
integral equation method. Eigenmode expansion is considered 
in [12] for model-order reduction, since the excited fields 
can be approximately described by a judicious selection of 
a few dominant eigenmodes. A full set of eigenmodes is 
proposed as projection space in [13] and [14] to extract 
the dominant behavior in the device transfer function. Fast 
frequency sweep in domain decomposition approaches has 
been proposed in [15] and [16]. A fast frequency sweep for 
infinite array antennas based on SVD-Krylov model-order 
reduction is proposed in [17]. Reference [18] addresses an 
ROM for fast frequency sweep in microwave devices where 
frequency-dependent modal field patterns are considered on 
the excitation ports. Remarkably, the problem in [18] is for-
mulated in such a way that eigenresonances are not picked 
in the basis construction. A physical-based convergence cri-
terion for fast frequency sweep in FEM analysis is proposed 
in [19], where energy conservation constraints are imposed to 
the ROM. 

Considering frequency as a parameter, the FEM formu-
lation for time-harmonic Maxwell's equations we aim to 
solve turns into a frequency-dependent variational problem. 
If we do not consider the similarities in the field solutions 
along the frequency band of interest, we can solve for this 
frequency-dependent variational problem in a completely inde-
pendent way, where each field solution is obtained from 
scratch for each frequency point of analysis. As a result, 
the frequency-dependent variational problem is solved for each 
frequency of interest as a standard FEM problem, which yields 
to a rather time-consuming approach. However, if we put all 
these field solutions together and determined how linearly 
independent they are, we would realize that all these field solu-
tions stay within a manifold of low dimension, induced by the 
parameter dependence. Finding a linear space of small dimen-
sion, namely, reduced-basis space, approximating this mani-
fold is the idea behind the reduced-basis method [20]-[24]. 
This reduced-basis space, with a small dimension, will be 
the space where the solution to the frequency-dependent 
variational problem is sought for, giving rise to a small-size 
variational problem. As a result, the frequency-dependent vari-
ational problem can be solved in a fast frequency sweep 
model-order reduction setting. 

Contrary to what has been previously done in the 
reduced-basis method context, in this paper, we take a closer 
look at the electromagnetic-field behavior as a function of the 
frequency parameter and identify what is the characteristic 
of the best approximation basis to span the reduced-basis 
space. As a result, we propose a new compact reduced-basis 

space that is composed of two parts: 1) eigenmodes hit in 
the frequency band of interest, which form an orthogonal, 
fundamental set that describes the natural oscillating dynamics 
of the electromagnetic field and 2) samples of the electromag-
netic field, evaluated at certain points in the frequency band 
of interest, that span whatever else that is needed to achieve 
convergence in the reduced-basis approximation. 

In the context of FEM computations, it should be pointed 
out that it is unrealistic to compute hundreds or thousands 
of eigenmodes from FEM analysis, especially in large FEM 
systems. However, in the technique we are proposing, just a 
few eigenmodes have to be computed, namely, the ones that 
are hit in the frequency band of interest. 

By the same token, the ROM needs to be certified and 
an a posteriori error analysis is developed. Different error 
estimators have been proposed [17], [22], [23], [25], [26] and 
some of them are based on the inf-sup constant in 
the frequency-dependent variational problem [27]. However, 
whenever a resonance is hit in the frequency band of interest, 
which is normally the case in microwave circuits, since most 
devices involve discontinuities that often result in resonances, 
these inf-sup constant-based error estimators are no longer 
valid. We consider this problem and propose an alternative 
to certify the accuracy in the ROM. This is the second new 
contribution of this paper that we would like to highlight. 
In addition to the eigenmodes hit in the frequency band of 
analysis, a special emphasis is placed in identifying the most 
linearly independent in-band electromagnetic-field solutions 
that can be collected to span the reduced-basis space. 

As far as comparison purposes are concerned, we provide 
a comparison of the proposed approach with the optimal 
model-order reduction technique, namely, proper orthogonal 
decomposition (POD) [20], [21]. It is well-known that POD 
provides the optimal reduction results, as it measures the 
linear independence found within the parameter-dependent 
field solutions, and therefore states the maximum compression 
reduction. However, POD is only of academic interest in 
practice, since it requires a postprocessing of all field solutions 
in the parameter space, thus requiring a very fine frequency 
sampling in the band of interest by means of FEM analyses, 
which cannot be afforded in practical industrial applications. 
Nevertheless, this is a fair comparison, since it actually states 
where the proposed setting stays with respect to this Utopian 
optimal ROM. 

Prior to going through all the details, we would like to 
claim that the reduced-basis method we are proposing makes 
it possible to solve for the electromagnetic behavior of a 
circuit by solving a small system of equations when a fast 
frequency sweep is carried out. However, this reduction does 
not come for free. This is due to the fact that the reduced-basis 
method needs to build a reduced-basis space up first in order 
to compute the ROM. This computation is carried out offline 
and does require FEM analyses. However, the number of FEM 
analyses needed to build up the ROM is just a few analyses 
such as the order of the ROM. 

This paper is organized as follows. In Section II, we review 
the time-harmonic Maxwell's equations in variational form 
and solve for the electromagnetic field in order to show its 



frequency behavior. Section III deals with the reduced-basis 
method, where the ingredients to carry out a reliable 
model-order reduction for fast frequency sweep in electromag-
netics are detailed. Section IV shows numerical examples and 
illustrates the capabilities of the proposed approach as well 
as its accuracy. Finally, in Section V, we comment on the 
conclusions. 

II. PROBLEM STATEMENT 

Maxwell's equations govern the electromagnetic behavior 
in a given structure. Applying the Fourier transform to these, 
one can find the fields in the transform domain ico. They are 

V x E = —icofiH in Q (la) 

V x H = icoeE in Q (lb) 

n x E = 0 on TPEC (lc) 

n x H = 0 on TPMC (Id) 

n x H = J on T (le) 

where Q c R3 is a source-free sufficiently smooth bounded 
domain and n is the unit outward normal vector on the bound-
ary 5Q of Q; the boundary 5Q of Q is divided into perfect 
electric conductor (PEC), perfect magnetic conductor (PMC), 
and ports, i.e., 5Q = TPEC U TPMC U I\ E and H are the 

electric and magnetic vector fields, e and /u are, respectively, 
the permittivity and permeability of the medium, which is 
assumed to be lossless, and the tangential vector field J is 
the excitation current at the ports. Time-harmonic Maxwell's 
equations can be written in a classical weak formulation over 
an appropriate admissible function space TL, Viz., 

Find E e TL such that 

a(E,v) = f(v) Vu eU. (2) 

The bilinear form being 

a(E,v)= (-V x E-V xv-co2eE-v\dx (3) 

and the linear form 

f(v) = ico Í J -v ds = ico í J -v ds. (4) 
JdQ Jr 

Here, the admissible space n stays in the Hilbert space 
//(curl, Q) defined by 

//(curl, Q) = {ue L2(Q,C3)|V x u e L2(Q,C3)}. (5) 

n should consider the boundary condition (lc), namely, 

n = [u e //(curl, Q)|« x u = 0 on TPEC}- (6) 

Let us refer to the trace spaces, namely, 

//-1 / 2(Div, SQ) = {n x u on SQ|u e //(curl, Q)} 

//"1/2(curl, SQ) = {n x u x n on SQ|u e //(curl, Q)} 

(7) 

and point out that they are dual to each other with the 
following duality pairing: 

{u,u) = u • v ds (8) 
JdQ 

where u e / / " ^ ( D i v , SQ) and v e //"1/2(curl, SQ). 
In this sense, we can now point out that / belongs to 
//-1 /2(Div,aQ). We refer to [28] and [29] for a thorough 
explanation of all these spaces. 

The purpose of this section is to show the frequency 
behavior of the electromagnetic field, as well as state some 
results that will be further discussed in this paper. In order 
to do so, we solve for Maxwell's equations from a func-
tional analysis point of view. The Riesz representation the-
orem and the Fredholm alternative will be applied. We refer 
to [30]-[32] for a detailed explanation of these fundamental 
results. Spectral theory for self-adjoint compact operators will 
be used. To this end, a compact operator needs to be identified 
within Maxwell's equations, and this is done by introducing a 
Helmholtz decomposition in the solution space n. 

Let us proceed with the derivation to identify the frequency 
behavior of the electromagnetic field, based on the Fred-
holm alternative and spectral theory of self-adjoint compact 
operators. In order to show some structure in the solution 
to the variational problem (2), we introduce the Helmholtz 
decomposition [33] 

n = 7í(curl0, Q) 0 V (9) 

where 

H(curlO, O) = [u e H\V X Í I = 0 ¡ (10a) 

V = {ue n\(eu, v)L2(íl) = 0 V o e 7í(curl0, Q)}. 

(10b) 

(•,-)L2(£2) is m e inner product in L2(Q,C3) . 7í(curl0, Q) 
denotes the null space of the curl operator, whereas V stands 
for its orthogonal complement within the solution space n in 
the following inner product: 

(u,v)M>e = ( - V x u, V x v) +(eu,v)L2(a). (11) 
\M /ma) 

It should be noted that both 7í(curl0, Q) and V spaces satisfy 
the PEC boundary condition on TPEC-

This splitting (9) suggests the following decomposition in 
the trace space //~1//2(Div, SQ), namely: 

/ / - 1 / 2 ( D i v , a Q ) = W 0 W (12) 

where 

W = [j e / / - 1 / 2 (Div ,aQ) | 

(j,nxvxn)=0 Vu e 7í(curl0, Q)} (13a) 

U = / /-1 / 2(Div, SQ) \ W U {0} (13b) 

and D stands for complex conjugate of v. 
Now, we solve for the variational problem (2) using the 

decompositions (9) and (12), namely, the following splittings 
are then used E = EQ + e, EQ e 7í(curl0, Q), e e V, and 
J = Jo + j , Jo eU, j e W. Replacing these splittings in (2) 
yields 

/ ( —V x e • V x v - co2e(Eo + e) -v) dx 
JQ \ /" / 

= ico / (Jo + j) -v ds (14) 



for all v e H, where we have deliberately changed v by its 
complex conjugate v to bring inner products in place. First, 
we test (14) in 7í(curl0, Q), which results in 

" ; SEQ•v dx 
la 

Jo • v ds V o e 7í(curl0, Q). 

(15) 

The Riesz representation theorem [30] guarantees unique 
solution to (15). Let us denote Fo e 7í(curl0, Q) as the Riesz 
representative in this problem (15) for ÍWEQ. Then 

1 
EQ = —F0. 

iu> 

Considering that (15) is solvable, (14) simplifies to 

(16) 

Ja \ /" 
v\dx = ioj V x r V x u - co ee -v J dx = ico f j • v ds (17) 

for all D e TL. Second, we test (17), and implicitly (14), in V, 
resulting in the following variational problem in V that remains 
to be solved: 

Find e e V such that 
/ ( -
Ja \/" 

V x r V x i ) - co ee • v I dx 
' ) • 

ico i j • vds Vu e V. (18) 

In order to show solvability in (18), we introduce an 
equivalent inner product to (11) in V [33], namely, 

{u,v). ( —V x u, V x v ) (19) 
^ /L2(£2) 

Now, the variational problem (18) can be rewritten as 

(e,u)* - co2(ee, v)L2^ = ico{j, n x v x n) Vo e V. (20) 

Next, we use the Riesz representation theorem. For fixed 
e e L 2 (Q, C 3 ) , the mapping v \-^ (v, ee)L2^ for all v e V 
is a linear and bounded functional on V, and by the Riesz 
representation theorem, there exists a unique ge e V with 
(v,ee)L2(ty = (v,ge)* for all v e V. Then, we can define 
the operator K : L 2 ( Q , C 3 ) -> V that maps e to its Riesz 
representative ge, namely, e i-̂ - Ke = ge. This operator is 
bounded and linear [33]. By the same token, as a result of 
the Helmholtz decomposition (9), V is compactly embedded 
in L 2 (Q, C3) [33]. If we denote by M : V -+ L 2 (Q, C3) 
the compact embedding operator, we can then show that K = 
¿ o M i s a compact operator. This first result is of paramount 
importance in our reasoning, because it allows us to use the 
Fredholm alternative, which is applicable to compact operators 
and cannot be used for Maxwell's equations in their original 
form. 

Once again, we use the Riesz representation theorem in a 
similar way. For fixed j e W, the mapping v \-> j j . n x o x n ) 
for all D e V is a linear and bounded functional on V, and 
then by the Riesz representation theorem, there exists a unique 
gj e V with (j,n x v x n) = (v,gj)* for all v e V. We can 
define the operator L : W ->- V that maps j to its Riesz 
representative gj, namely, j h->- Lj = gj. 

As a result, (20) can be written as 

(<?, u)* - co2(Ke, u)* = i(o(Lj, u)* Vu e V. (21) 

Since this holds for all v e V, this equation is equivalent to 

e — co Ke = icoLj in V. (22) 

At this point, we have arrived at an operator form of Maxwell's 
equations with operator K having the properties needed in 
order to use the Fredholm theorem and the spectral theory. 
The operator K is not only compact, but also self-adjoint 
with respect to the bilinear form ( = (M,D)* in V. 
Indeed, {Ku,v).t. = (Ku,v)t. = (eu,v)L2(ay and since this 
is symmetric in u and v, we get {Ku,v).t. = (u,Kv).t.. The 
Fredholm theorem [31], [32] states that (22) is solvable for 
those j e W, such that Lj is orthogonal to the null space of 
I — co2K with respect to (•, •}*. Then, the Fredholm alternative 
further applies, namely, either 

n=\ 

An 
e„ if CO ^ con (23) 

where 

An = {Lj, en)* = (Lj, e„)* = (;', n x e„ x n) (24) 

or 

ŷ 1, anen + im "y 
aí^^aP-

—^ren if co2 

where 

{Lj, en}t. = {j, n x e„ x n) = 0 for co2 

(25) 

(26) 

where an are arbitrary constants, since the solution is not 
unique whenever co2 = co2

n, and A„ are defined as in (24). 
Solutions to the homogeneous problem in (22), namely, 

Find (e„, co2) e V x R + such that 

/ ( -
Ja \/" 

V x en • V x 2 "i 
v — coneen • v I 

dx = 0 V o e V (27) 

are considered as the representation basis in the solution 
for the nonhomogeneous problem (22). Eigenvalues co2

n have 
finite multiplicity; they are infinitely many and accumulate at 
infinity. If en solves (27), then its complex conjugate also does. 
As a result, the eigenfunctions en are real-valued functions 
and, in particular, en can be replaced by e„ in (24) and (26). 
In addition, the set of eigenfunctions [e„\n e N} forms a 
complete orthonormal system in V [33] with respect to the 
inner product (19). This is the reason why they are used as 
the representation basis in the solutions (23) and (25). 

Putting everything together, after applying Helmholtz 
decomposition, we get the result we want to highlight 

if CO' 
1 °° A 

£ co E = E0 + e = —Fo + ico > Te„ 
ico ¿-1 i _ <sL 

„ — 1 ^ T 
« = 1 0)1 

9 0 

if co = con, E = EQ + e 
An 

•en (28) = —Fo + ia> "V anen + ia> "V 
ico t—1 t—1 1 

0)\ = ( B 2 (B2 7¿ÍB2 (B2 

where the frequency dependence in the solution to Maxwell's 
equations is made explicit [34]. 



III. REDUCED-BASIS METHOD 

In microwave engineering, we are interested in the fre-
quency behavior in electromagnetic phenomena, where the 
solution to Maxwell's equations in a specific frequency band 
is needed. Variational formulation to Maxwell's equations (2) 
turns into a frequency-parameter variational problem, viz., 

Find E(co) e TL such that 

a(E(oj),v; m) = f(u; m) Vu e TL; Veo e B (29) 

where B = [ft>mm, «max] is the frequency band of interest, and 
frequency-parameter bilinear and linear forms a(-,-;co) and 
/(•; t«) are already defined in (3) and (4), respectively. This 
time, all frequency dependence is highlighted. Note that TL is 
still the infinite dimension admissible function space detailed 
in (6). This problem can be solved as many times as frequency 
points are needed by means of the FEM, which results in a 
rather time-consuming task. However, a better strategy can be 
proposed and this is where the reduced-basis method comes 
in place [20], [21]. 

The key feature upon which the reduced-basis method 
stands is based on the following assumption. The electromag-
netic field does not arbitrarily vary as a function of frequency; 
in other words, it is not an arbitrary element in TL. Instead, 
it evolves in a simple manifold induced by the frequency 
parameter Mm = [E(CÜ),CÜ e B}. The assumption here is the 
claim that Mm is a manifold of low dimension, i.e., it can be 
approximated by a Hilbert space of low dimension TLN, which 
we refer to as reduced-basis space. If it were so, we could 
convert problem (29) into a more efficient one to solve the 
variational problem, namely, 

Find E(co) e TLN such that 

a(E(m), v; m) = f(v; m) Vu e TLN', Va> e B (30) 

since the dimension of the reduced-basis space TLN is a small 
number. The key point here is to provide the reduced-basis 
space TLN approximating the manifold Mm, instead of pro-
viding an approximation for an arbitrary member in TL, such 
as what FEM proposes, since the field solution E(co) in the 
frequency band of interest does not cover the entire space TL. 

A. Reduced-Basis Space 

Considering the frequency behavior in the electromagnetic 
field (28), a compact basis to solve Maxwell's equations in 
a frequency band of interest B can be addressed, resulting in 
an appropriate reduced-basis space. In this section, we focus 
on the electromagnetic field E(co) in the band B and study its 
behavior in order to propose a suitable reduced-basis solution 
to Maxwell's equations. 

First of all, as shown in Section II, let us point out that the 
solution to Maxwell's equations in the whole electromagnetic 
spectrum requires indeed the knowledge of an infinite number 
of orthogonal field solutions, {Fo,e„\n e N}, which result 
in a complete solution basis [see (28)]. Recall that Fo is the 
solution to problem (15) and [e„\n e N} are the eigenfunc-
tions in the eigenproblem (27). As discussed in Section II, 
all these solutions are orthogonal with respect to the inner 

product (-,•)//,£• Now, our interest is focused on a specific 
frequency band B and we can proceed as follows. 

1) Either solve for this frequency band B by using the same 
complete solution basis for the whole electromagnetic 
spectrum. This may give rise to rather slowly convergent 
series, shown in (28). 

2) Or find a more compact solution basis for this frequency 
band B. This can be done by rearranging the field 
solutions in the basis that are contributing the most to 
the electromagnetic behavior in B. In contrast to the 
previous scenario, this will result in a fast convergent 
electromagnetic-field series expansion. 

The second scenario is preferred. For compact representa-
tion, we need to identify a solution basis where each vector 
in the basis is adding the maximum energy to the system 
among all field solutions E(co) in B. In linear algebra terms, 
we need to add vectors to the solution basis that are the most 
linearly independent from the previous vectors in the basis, 
and this should be done among all the field solutions E(co) 
in B, i.e., in the solution manifold Mm. At first glance, this 
may seem difficult to do, but let us rearrange (28) in two parts: 
a regular part in frequency in B, F(co), and a singular part in 
frequency in B, ejsico), namely, 

E(co) = F(co) + es(m), co e B = [comin, cümax] 

F(co) = —Fo + ico > Te„ 
im é—1 l _ % 

if ft) T¿ ft)„, eg(ft)) = ¿ft) y , ~en 

m2
nGB2 m\ 

if a) = &)„, es (ft)) 

a„e„ + ia> 2_, ¡Je«- (31) 

B2 stands for [ft>min, ft>max]. This rearrangement is also depicted 
in Fig. 1. It should be noted that the eigenfunctions hit in 
the frequency band of interest {en\m

2
n e B2} are a good 

choice to be included in the compact solution basis, not only 
because they are indeed in the manifold Mm, i.e., they are 
present in the electromagnetic field E(co) in B, but also since 
they form an orthogonal system. As a result, they provide 
most electromagnetic energy in B. Thus far, the singular part 
in (31), eg(ft>), is accurately represented in the solution basis. 
An additional effort needs to be done to describe the regular 
part in frequency, F(co), in (31). 

It should be pointed out that F(co) can be represented by the 
eigenmodes outside the band B and the curl-free solution Fo 
as described in (31), but this may result in a rather slowly 
convergent series and an alternative representation basis is 
sought. However, since the remaining missing part in the solu-
tion basis, namely, F(co), is a smooth function in frequency, 
we expect good convergence properties in the reduced-basis 
method, provided the basis is uplifted with suitable additional 
vectors. We complete the solution basis by adding field 
solutions E(co) in B that are the most linearly independent 
from the previous vectors in the basis. Proceeding in this way 
ensures that the solution manifold Mm is approximated by 



F0 ei e2 e3 e5 e6 e7 e8 e9 . . . E(u) 
I 1 1 1—I 1 1 1—I > 
0 UJi (JÜ2 U)3 (JJ5 LÜQ U7 UgUJg .. . UJ 

UJ4 

B 

^min 

FQ ei e7 e8 eg ... F(u) 
I 1 1 1—I > 
0 W\ UJ7 UJg UJg . . . UJ 

e2 e3 e5 e6 eB{u) 
I 1 1—I 1 • 
0 uj2 o;3 u5 UQ U 

UÜ4 

Fig. 1. Electromagnetic field E(co) is twofold in the frequency band B: 
a regular part in frequency, F(a>), and a singular part in frequency, eg(co). 

Fig. 2. Dual-mode circular-waveguide filter geometry. Cavity length: 
43.87 mm. Radius: 14 mm. Iris thicknesses: 1.5 mm. Slot lengths: 10.05 mm. 
Slot widths: 3 mm. Arm widths: 2 mm. Horizontal arm length: 7.65 mm. 
Vertical arm length: 8.75 mm. Tuning screw depth: 3.59 mm. Coupling screw 
depth: 3.31 mm. 

a reduced-basis space with the best solution basis of finite 
dimension made up of field solution samples. 

Let us provide a real-life example where these ideas are con-
sidered. Fig. 2 shows a dual-mode circular waveguide filter as 
well as its geometry dimensions. Two cylindrical cavities are 
connected through identical slots to the corresponding input 
and output WR75 rectangular waveguides. In turn, a cross-
shaped iris connects both cylindrical cavities. A horizontal 
tuning screw and a tilt coupling screw are included in each 
cavity. Although two physical cavities are considered, two 
degenerated modes are excited in each cavity. This gives rise to 
four electrical cavities reducing the filter size and the weight. 
As a result, four eigenmodes are expected in the filter operation 
frequency band B from 11.5 to 12 GHz. 

FEM analysis is carried out to study the electromagnetic 
behavior in this filter. Solving for the eigenmodes in the 
frequency band B, we find the following eigenresonances: 
/ i = 11.763 GHz, f2 = 11.808 GHz, f3 = 11.888 GHz, 
and /4 = 11.891 GHz, cot = 2nft, and its corresponding 

eigenmodes e\, ei, <?3, and e\. These eigenmodes are an 
orthogonal system with respect to the inner product (•, •)//,£ 
and stand for the singular part in frequency in the electro-
magnetic field E(co) in B, i.e., ejs(co). As a result, {e\, ei, 
¡?3, <?4J is the best basis to describe e^{co). However, this basis 
still needs to be uplifted to accurately describe the solution 
manifold Mm, since the regular part behavior in E(co) in B, 
F(co), is not considered in this eigenmode basis. 

The eigenmode basis {e\, ei, e3, e\) is completed by 
adding the most linearly independent field solution E(co) in B, 
with respect to the vectors in the basis, one at a time. This 
maximizes the contribution to the actual electromagnetics in B, 
i.e., the electromagnetic energy, that is added to the repre-
sentation basis for each new vector. Once again, let us point 
out that, since the missing electromagnetic contribution to the 
eigenmode basis, F(co), is a smooth function in frequency 
in B, it is expected that, most of the electromagnetic energy 
in the solution manifold Ma, be represented by a small number 
of additional vectors. This supports the application of the 
reduced-basis method to solve Maxwell's equations, where an 
appropriate reduced-basis space can be identified. 

In order to measure the linear independence of vector E 
with respect to the basis Bn = {e\,...,en}, Algorithm 1 is 
proposed. 

Algorithm 1 Linear Independence Measure 

1) Normalize E. 

G = E/\\E\\ 

2) Orthonormalize Bn = {e\,..., en] by Gram-Schmidt. 

Dn = {gl,...,gn} 

3) Project G onto the orthonormal basis Dn. 
n 

g = X ( G ' 8k)gk 
k=\ 

4) Represent G in terms of its projection onto Dn, g, and 
its orthogonal complement, gj_. 

G = g + g± 

5) Compute the norm of g±. 

l*Bn = llgj.ll = l | G - g | | 

In Algorithm 1, the figure of merit ¡iBn is a measure of 
how linearly independent E is with respect to the basis Bn. 
Indeed, ¡iBn takes values in the interval [0,1], where ¡iBn = ^ 
indicates that E is linearly dependent on Bn, and progressively 
increases up to ¡iBn = 1, which shows that E is the most 
linearly independent from Bn, i.e., orthogonal to the basis Bn. 

Let us apply this linear independence measure to the field 
solutions E{co), computed by FEM, in the 11.5-12-GHz band 
in the dual-mode filter example in Fig. 2. The inner product 
(•, - ^ e is considered in Algorithm 1. We start from the 
eigenbasis B<\ = {e\, ei, e3, e<\\ described earlier. Fig. 3(a) 
details how linearly independent the field solution E(co) is 

http://llgj.ll


m 

a. 

10l 

10" 

Linear Independence 

10 

k^ 
\ ^ , ^ ^^~ 
\ 

J B~l 
*l 

\ f \ / 
1 X] 

•10 

11.5 11.6 11.7 11.8 11.9 12 
Frequency (GHz) 

(a) 

Linear Independence 

11.7 11.8 
Frequency (GHz) 

(b) 
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Fig. 4. Linear independence results in the field solutions E(m) for the 
dual-mode circular-waveguide filter, (a) Independence with respect to the 
eigenmodes in the basis B\, B2, B3, and B4. (b) Independence with respect 
to the eigenmodes e\, ex, and «3 in the basis B3. 

with respect to the eigenbasis B4. It should be noted that 
E(co) is linearly dependent on this eigenbasis B4 exactly at the 
eigenresonances, i.e., f\ = 11.763 GHz, {2 = 11-808 GHz, 
f3 = 11.888 GHz, and f4 = 11.891 GHz. It is also shown 
in Fig. 3(a) that certain linear dependence is kept in some 
neighborhood at the eigenresonances, since the field pattern 
around eigenresonance co„ is dominated by the corresponding 
eigenmode e„. This can also be seen in (28). The further away 
from eigenresonances we are, the more linearly independent 
the electromagnetic field E(co) becomes, and eventually, it will 
become orthogonal (fisn = 1) when we hit the next out-of-
band eigenresonance, outside B. 

Fig. 3(b) details the linear independence of the electromag-
netic field E(co) with respect to the enriched solution basis 
B5, B(y, and B-j, when each of these solution bases is uplifted 
with the most linearly independent field solution in B, one at 
a time, namely, 

ton+i = argmax juBn(E(oj)) 
COGB 

B„+I = Bn U {E(wn+i)}. (32) 

It should be pointed out that w notation is used now instead 
of m in order to indicate that these field solutions E(wn+{) 
are no longer eigenmodes, and as a result, these frequen-
cies wn+\ are not eigenresonances any longer. These results 
suggest that, following this selection criterion, most of the 
electromagnetic behavior in the frequency band of interest 
B can be appropriately represented by a solution basis of 

finite dimension. In other words, the solution manifold Mm 

can indeed be conveniently approximated by a Hilbert space 
of finite dimension HN, namely, a reduced-basis space. 

In order to show further insight, the linear independence of 
the electromagnetic field E(co) with respect to the eigenmodes 
used in the eigenbasis B4 = {e\, ei, e3, 64} is addressed 
in Fig. 4. It is noted that E(co) is linearly dependent on the 
eigenresonances in Bn (/usn = 0) and becomes orthogonal 
(fiBn = 1) at the eigenresonances not included in the basis Bn. 
No matter how close these eigenresonances are, the transition 
for an electromagnetic field E(co) to be included in the repre-
sentation basis Bn, i.e., fisn = 0, or to become completely 
orthogonal, fisn = 1, can be very fast. This is detailed 
in Fig. 4(b) and it is due to the fact that eigenresonances 
f3 = 11.888 GHz and f4 = 11.891 GHz are very close 
to each other. This is showing how important is to include 
all eigenmodes hit in the frequency band of analysis in the 
reduced-basis space. 

Finally, Table I details the field solutions added to the 
reduced-basis following selection criterion (32), as well as its 
linear independence with respect to the previously built basis 
and the frequency samples chosen. 

B. Reduced-Basis Approximation 

It has been detailed that the reduced-basis method can be 
applied to solve Maxwell's equations in a frequency band of 
interest B by means of the identification of a reduced-basis 



TABLE I 
FIELD SOLUTIONS FOUND BY CRITERION (32) FOR REDUCED-BASIS 

APPROXIMATION IN THE DUAL-MODE CIRCULAR- WAVEGUIDE FILTER 

Frequency (GHz) 

11.763 

11.808 

11.888 

11.891 

11.500 

12.000 

11.660 

11.570 

11.960 

Field 

ei 

e2 

e3 
e4 

fis 
E6 

Er 

E8 

Eg 

Basis 

-
Bi 

B2 

B3 

Bi 

B5 

B6 

B7 

BS 

fiBn{
En+l) 

-
1. 

1. 

1. 

0.676 

9.376 • 10~ 3 

1.160 • 1 0 " s 

1.619 • 1 0 - 8 

4.571 • 1 0 " 1 0 

space. This reduced-basis space is set up by the eigenmodes hit 
in the frequency band of analysis {e\,... ,en} and completed 
by electromagnetic fields E(co) properly selected in the fre-
quency band of analysis B. It should be noted that the selection 
criterion (32) to complete the eigenbasis is hard to follow in 
practice, but an alternative, easy to compute selection criterion 
can be addressed. We will comment on this in further detail 
in Section III-C. 

Assuming that the following reduced-basis space HN of 
dimension N is considered: 

HN = span{{ei, ...,e„}U {E(wn+Í),..., E(wN)}} (33) 

where frequencies to«+i,. . . , U>N are properly chosen within 
the frequency band B, let us carry out the reduced-basis 
approximation to the frequency-parameter weak formulation 
for Maxwell's equations (29), viz., 

Find É(co) e HN such that 

a(E(co), u; co) = f(u; co) Vu e HN; Veo e B. (34) 

It should be noted that E(co) is an approximation to the 
actual electromagnetic field E(co) in B; the better job we do 
in completing the reduced-basis space to span the solution 
manifold Mm, the better the reduced-basis approximation 
will be, that is 

n N 

E(m) ~ E(co) = ^ak(co)ek + ^ fik(co)E(wk) (35) 
k=\ k=n+\ 

where ak(co) and fík(co) can straightforwardly be found 
for any frequency by solving the reduced-order variational 
problem (34). In addition, the frequency-parameter bilinear 
and linear forms a(-,-;co) and /(•;<«) exhibit an affine 
frequency-parameter dependence, namely, 

a(u,v; co) ( —V X H j V x i ) 
\M ) 

f(u; co) = ico(J, n x v x n). 
L2(£2) 

CO (EU,ü)L2(íl) 

(36) 

The frequency-independent products among all the elements 
in the reduced-basis space (33) can be computed once and 
stored in memory. This improves the assembly process, where 
all time-consuming operations are carried out only once offline 

and stored in memory, and every time a new frequency solution 
E(co) is needed online, this solution can be found involving 
very few operations. This is known as the offline-online 
decomposition and it is used to speed up the reduced-basis 
approximation, providing a very fast parameter sweep in the 
solution to the problem [20]-[22]. 

C. Reliability in the Reduced-Basis Approximation 

Not only is a fast frequency sweep field solution desired, 
but also a reliable one. In order to certify the reliability of 
the reduced-basis approximation, special attention should be 
placed in completing the reduced-basis space. As has already 
been mentioned, the selection criterion (32) to complete the 
eigenbasis is not of practical use, since it requires the actual 
computation of the field solutions in the frequency band of 
analysis, which is actually what we are aimed for within 
the reduced-basis method. However, an alternative strategy 
can be proposed to complete the reduced-basis space in a 
straightforward way. This is based on the fast evaluation of 
the residual error in the original problem with respect to the 
actual field solution E(co) for the reduced-basis approxima-
tion solution E(co), taking advantage of the affine parameter 
dependence and the field solution structure in frequency. The 
residual error is given as follows: 

r(E(co), v; co) = a(E(co) — E(co), v; co) 

= f(v;co) — a(E(co),v;co) VveH. (37) 

It should be pointed out that the residual error r(E(co),-, co) is 
a linear functional in H, and therefore an element in its dual 
space H'. We quantify this residual by its norm 

\\r(E(co),-;co)\\u = sup 
\r(E(co),v; co)\ 

(38) 

We can apply the Riesz representation theorem in order to find 
an isometric representative, namely, Riesz representative e(co), 
to the residual r(E(co), •, co), that is 

(^(ta),!))^^ = r(E(co),v; co) VueH 

\\~e(co)\\H = \\r(É(co),-;co)\\H,. (39) 

Since the residual error (37) exhibits an affine 
frequency-parameter dependence, we can carry out an 
offline-online decomposition in order to quantify this residual 
error in the whole frequency band of analysis B in an efficient 
way [22]. 

Let us define the following efficient alternative criterion 
to (32) to complete the eigenbasis in the reduced-basis space, 
namely: 

w„+i = argmax vBn(E(co)) 

B„+i = Bn U {E(wn+i)} (40) 

where VBn(E(co)) is the normalized residual error norm of the 
reduced-basis approximation E(co) in Bn, that is, 

vBn(E(co)) 
\r(E(co),-;co)\\H< 

\\f(-,co)\\H, 
(41) 



Again, w notation is used instead of co in order to indicate 
that these field solutions E(wn+\) are no longer eigenmodes 
and, as a result, these frequencies wn+\ are not eigenreso-
nances. Following the selection criterion (40), the reduced-
basis space is enhanced by field solutions E(wn+\) that are 
contributing the most to the residual error, one at a time. 
This is known as greedy algorithm. It should be noted that 
this residual can be computed very fast in the frequency 
band of interest [22], which makes this selection criterion 
of practical use. On the other hand, the residual error norm 
itself is not the best indicator to monitor when the solution 
manifold Mm is properly described by the reduced-basis space 
and when the greedy algorithm to increase the reduced-basis 
space should stop. It is the electric field itself the quantity that 
should be monitored in this regard. In this sense, the measure 
of the linear independence fiBn(E(wn+i)) at this properly 
selected new frequency wn+\ is preferred as the stopping 
criterion, since this quantity actually certifies how much new 
information is added to the reduced-basis space in order to 
accurately approximate the solution manifold Mm. A complete 
algorithm to carry out a reliable reduced-basis approximation 
resulting in a fully automatic model-order reduction will be 
described at the end of this section. 

There is still an issue that deserves further discussion. 
The residual error due to an eigenmode approximation in 
Maxwell's equations has a specific frequency behavior in 
the whole electromagnetic spectrum, which will be further 
detailed. This residual error frequency behavior should be 
considered in the greedy algorithm (40). Due to this fact, 
it cannot be used at the initial stage of the algorithm. 
To explain it, let us go through the details. Let us solve for the 
reduced-basis approximation E(m) within the reduced-basis 
space Tin spanned by the eigenmodes {e\,...,en} with 
the corresponding eigenresonances {a>i,...,co„}, i.e., Tin = 
span{ei,..., e„}, namely, 

Find É(m) e Tin such that 

a(E(co),v; co) = f(u; co) Vu e TLn, Veo e B (42) 

resulting in 
n 

E(co) = Yjak(co)ek (43) 
¡t=i 

where ak(oS) are obtained by solving the reduced-order varia-
tional problem (42) frequency by frequency. In this framework, 
the frequency behavior in the reduced-basis approximation 
E(m) is known a priori. Indeed, variational problem (42) 
reduces to 

Find É(m) e TLn such that 

[ — V x E(co), V x v ) —CO(BÉ(CO),V)T2(C,) 

\M J ma) ( ] 

= ico{j, n x v x n) VB e TLn; Veo e B. (44) 
It should be pointed out that the linear functional f(v;co) = 
ico(J, B X O X H ) reduces to f(v; m) = ico (j, n x i ) x / i ) , V » e 
Tin, where the splitting (12) has been considered, i.e., J = 
Jo + j , Jo e U, j e W. This is the case due to the 
orthogonality (Jo, n x v x n) = 0, Vu e TLn, as it will become 

clear in the following. Recall that the basis in TLn is made 
up of real-valued eigenmodes, and in particular, ~ek can be 
replaced by ek. This orthogonality holds true not only for the 
eigenmodes in TLn, but also for all the eigenmodes in V, as it 
will be detailed next. Recall that the Helmholtz decomposition 
(9) is used, i.e., E = Eo+e, Eo e 7í(curl0, Q), e e V. In order 
to show this orthogonality result, let us proceed by testing (14) 
in V introducing the solution for e (18). This yields 

—co (EEQ, »)L2(Í2) = im(Jo, n x D x n) VB e V (45) 

where e is a real-valued function, since our medium is assumed 
to be lossless, and then, (eEo,v)L2^ = (ev, -EO)L2(£2)- AS a 
result of the definition in the Helmholtz decomposition (10b), 
(ev, Eo)L2(a) = 0 , V o e V giving rise to 

(Jo, n x v x n) = 0 VB e V. (46) 

Now, we continue with the solution of the reduced-basis 
problem (44). Following an analogous reasoning as in 
Section II, the frequency behavior of the reduced basis approx-
imation E(m) reads, either: 

n , 

E(co) = ico V k-^ek if co2 ± ml (47) 

where 

Ak = {j, nxekxn) (48) 

or 

E(co) = ico y , akek + ico / , ~ek if m = °\ 
o^=<o2 a^eeB2\{m2} m2. 

(49) 

where 

(j, n x e/c x n) = 0, for co\ = co1. (50) 

Here, ak are arbitrary constants, since the solution is not 
unique whenever co1 = co\, and Ak are defined as in (48). 
Recall that B^ stands for [co^in, «max]-

The fact we would like to point out is that this reduced-basis 
approximation (47) and (49) gives rise to the following resid-
ual error: 

r{E{co), D; CO) = f(v; co) — a{E{co), v; co) 

= ico{J, n xv x n) — ico{J, n x n^ (v) x n) 

= ico{J, n x ng(v) x n) Vu e Tí (51) 

where the orthogonal decomposition Tí = Q © Tin is 
considered and np(-) stands for the projection operator 
on IF. It should be noted that a(É(m),v;m) = ico 
(j,nx Tijin (v)xn) for all v eH, but since (Jo,nx n^n (v) x 
n) = 0 for all v e Tí [see (46)], we can add Jo recovering 
the original current excitation J = Jo + j . The result obtained 
in (51) brings to light that all frequency field solutions E(m) 
spanned by the eigenbasis in the reduced-basis approximation, 
no matter the frequency co, are contributing in the same amount 
to the residual error, apart from a ico factor. This residual 
error, when normalized by the norm of the linear functional 
/(•; co) which also exhibits the same ico factor, results in a 
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Fig. 5. Normalized residual error in the reduced-basis approximation when 
only the eigenbasis B4 spans the reduced-basis space in the dual-mode filter 
example. A constant behavior in frequency is observed. 

constant value regardless of the frequency. This is depicted 
in Fig. 5 for the dual-mode filter example in Fig. 2. This 
particular frequency behavior in the residual error revealed 
by (51) indicates that the selection criterion (40), based on 
the normalized residual error, is not of much help at the 
very first step in completing the reduced-basis space starting 
from the eigenbasis Bn, since we get that any frequency field 
solution in the reduced-basis approximation is contributing in 
the same amount to the residual. Therefore, once we have 
included the n eigenmodes in the band, we cannot identify 
which frequency field solution E(wn+\) will be contributing 
the most to enhance the reduced-basis space based on the 
residual at this initial step (see Fig. 5). A different selection 
criterion for this special situation when we want to uplift the 
eigenbasis is needed and, again, we go back to the linear 
independence reasoning considering the frequency structure 
in the electromagnetic field (28). Based on this frequency 
behavior, the further away we are from the eigenresonances 
[coi,..., «„} in the frequency band of interest B, the more 
linearly independent information we find in the electromag-
netic field E(oS), and eventually, we will find the most linear 
independence, i.e., an orthogonal field, when we hit the next 
eigenresonance out of the band of interest. This is shown 
in Fig. 4 for the dual-mode filter example in Fig. 2. As a 
result, a good field solution E(wn+\) to uplift the eigenbasis 
will be at the end points in the frequency band of interest 
B = [comin, «maxl- Choosing the best end point requires the 
knowledge of the next out-of-band eigenresonance. However, 
picking the end point, either íümm or comax, that is further 
away from the in-band eigenresonances {a>\,...,«„} is a good 
choice, although sometimes it is not the optimum. 

Putting everything together, we are able to sum up and 
carry out an automatic and reliable model-order reduction for 
fast frequency sweep in microwave devices. Algorithm 2 to 
build up a compact and reliable reduced-basis approximation 
is proposed. 

It has to be highlighted that the reduced basis that we 
propose and practical procedure for its identification are 
remarkably different to the one traditionally used in the 
reduced-basis method [20], [21]. In particular, we deliberately 
include eigenmodes in the reduced-basis, which are typically 
avoided in the reduced-basis method. In addition, the stopping 

Algorithm 2 Reliable Reduced-Basis Approximation 
1) Solve for the eigenmodes {e\,...,en} and eigenreso-

nances {tai,. ..,co„} in the frequency band of interest 
£> = L^min, 'WmaxJ' 

2) Set up the eigenbasis Bn = {e\,..., e„}. 
3) Find wn+\ as the end point in frequency band B that 

is further away from the eigenresonances {a>\,..., co„}, 
that is 

ton+i = arg max d(m, {w\,... ,mn}) 
<B€{<Bmin,'»max} 

where 

d(co, {w\,. . . ,«„}) = min{|co - co\\, ...,\co- co„\}. 

4) Solve for the electromagnetic field at to«+i, E(wn+\), 
and uplift the eigenbasis Bn, namely, 

B„+i = Bn U {E(wn+i)}. 

5) Compute the linear independence in E(wn+\) with 
respect to the eigenbasis Bn, i.e., fiBn(E(wn+i)). If this 
is below a prescribed threshold, the reduced-basis space 
is completed HN = span(Z?Ar), a reliable reduced-basis 
approximation can be carried out and we stop the 
procedure. 

6) If necessary, find an additional frequency point wn+\ 
where the normalized residual error norm in the 
reduced-basis approximation onto the reduced-basis 
space span(Z?„), VBn(E(oS)), is maximum, that is 

w„+i = argmaxv^(£(ta)). 
(B€£> 

7) Solve for the electromagnetic field at to«+i, E(wn+\), 
and uplift the basis Bn, namely, 

B„+i = Bn U {E(wn+i)}. 

8) Compute the linear independence in E(wn+\) with 
respect to the basis Bn, i.e., fiBn(E(wn+i)). If this is 
below a prescribed threshold, the reduced-basis space 
is completed HN = span(Z?Ar), a reliable reduced-basis 
approximation can be carried out and we stop the 
procedure. 

9) Repeat steps 6) to 8) until the procedure stops. 

criterion used in this paper is based on linear independence 
results and differs from the ones suggested in [22]-[25]. 

IV. NUMERICAL RESULTS 

In this section, we apply the proposed reduced-basis 
method to different challenging structures, namely, a dual-
mode circular waveguide filter, a rectangular waveguide filter, 
a waveguide diplexer, and a Bethe hole waveguide coupler. 
The capabilities and reliability of the proposed procedure 
will be apparent throughout these examples. All computations 
were carried out on a workstation with 3.00-GHz Intel Xeon 
ES-2687W v4 processor and 64-GB RAM. FEM simulations 
were carried out with the code described in [35]. 



A. Dual-Mode Circular-Waveguide Filter 

This dual-mode filter has already been described in Fig. 2 
and its features have been studied to detail the possibilities in 
the proposed approach. In this section, we carry out the fast 
frequency sweep in the 11.5-12-GHz band through the reliable 
reduced-basis approximation described in Algorithm 2, and 
show the numerical results obtained in comparison with FEM 
analysis. As it was already detailed in Section III-A for this 
example, solving the eigenmodes by means of FEM analysis in 
the 11.5-12-GHz band, we find the following eigenresonances: 
/ i = 11.763 GHz, f2 = 11.808 GHz, f3 = 11.888 GHz, and 
f4 = 11.891 GHz. So far, the eigenbasis made up of these 
eigenmodes B4 = {e\,..., en) is found. Now, we proceed as 
detailed in Algorithm 2 finding the end frequency in the band 
of analysis B that is further away from the eigenresonances 
found in B. This is done in an attempt to find the most linearly 
independent field solution with respect to eigenmodes in the 
eigenbasis B4 = {e\,...,en\. We solve for the electromag-
netic field at this frequency fs = 11.5 GHz, namely, £5, via 
FEM analysis. Next, we measure how linearly independent 
this field solution £5 is with respect to the previous basis 
B4 computing /UB4(E¡) detailed in Algorithm 1. If this value 
^B^(ES) is low enough, the enhanced basis B¡ = B4 U {E¡} 
should be considered as a good basis to span the field solution 
in the frequency band B and can be used with confidence for 
reduced-basis approximation. On the contrary, if this value 
/UB4(E¡) is not small enough, we cannot be certain about 
the reliability of the reduced-basis approximation carried out 
within the reduced-basis space spanned by this new basis B¡ 
in the whole frequency band B, and as a result, it is a good 
practice to increase the size of the basis by additional field 
solutions in the band B. Following Algorithm 2, we look for 
a new field solution E(, in the frequency band of interest to 
be added to the basis B¡ by finding the frequency fc that 
maximizes the normalized residual error in the reduced-basis 
approximation within the reduced-basis space spanned by this 
basis Bs, namely, vs5(E(f)), which is depicted in Fig. 6(a). 
This is done in an attempt to find out the most linearly inde-
pendent field solution, this time guided by the residual error, 
which can straightforwardly be computed in the whole fre-
quency band B. Then, we carry out an FEM analysis to solve 
for the electromagnetic field at this frequency fc, namely, E&. 
It should be noted that fc = 12 GHz, as detailed in Fig. 6(a). 
We measure how linearly independent this new field solution 
Es is with respect to the previous basis B¡, i.e., we compute 
^B5(Ee) as described in Algorithm 1. If this value /UB5(ES) 

is low enough, we should be confident that the uplifted basis 
B6 = BsU{Es} spans a good reduced-basis space to carry out a 
reliable reduced-basis approximation in the whole frequency 
band B. On the contrary, if this value is not small enough, 
we had better increase the size of the actual basis B(, in order 
to certify that the reduced-basis approximation carried out is 
accurate enough. As detailed in Algorithm 2, we repeat these 
last steps, solving for the residual error in the reduced-basis 
approximation until we are certain that the reduced-basis 
space built up is accurate enough to describe the solution 
manifold Mm. 
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Fig. 6. Normalized residual error frequency behavior in the reduced-basis 
approximation as the reduced-basis space is uplifted following the approach 
detailed in Algorithm 2 in the dual-mode filter example, (a) Normalized 
residual error in the reduced-basis space spanned by the eigenbasis B4 and 
bases B5 and B¿. A large drop is observed as soon as the eigenbasis B4 
is complemented, (b) Normalized residual error in the reduced-basis space 
spanned by bases Bj, Bg, and Bg. 

TABLE II 
LINEAR INDEPENDENCE IN THE FIELD SOLUTIONS IN 

THE DUAL-MODE CIRCULAR-WAVEGUIDE FILTER 

Frequency (GHz) 

11.763 

11.808 

11.888 

11.891 

11.500 

12.000 

11.749 

11.898 

11.985 

11.571 

Field 

ei 

e2 

e3 

e4 

E5 

E6 

E7 

Es 

Eg 

Eio 

Basis 

-
S i 
B2 

B3 

BA 

B5 

Be 

B7 

B8 

Bg 

HBn(E„+l) 

-
1. 

1. 

1. 

0.676 

9.376 • lO"3 

1.913 • 1 0 - 6 

1.530 • 10" 1 0 

5.488 • 1 0 - 1 2 

8.690 • 10" 1 1 

Fig. 6 shows the normalized residual error behav-
ior as we keep on adding field solutions uplifting the 
reduced-basis space to improve the reduced-basis approxima-
tion, as described in Algorithm 2. The linear independence for 
each of these field solutions with respect to the previously built 
basis, as well as the frequency samples selected, is detailed 
in Table II. It should be pointed out that the greedy algorithm 
based on the residual error (40) does not guarantee that we 
are choosing the most linearly independent field solutions to 



?.—G—ñ—e^-
- ISJRBM 
-|S211 RBM 

olSJFEM 

o|S21|FEM 

=!—e—o .o—e-nS—e—e—ey-€ >x-e—e—e-e 

k A - -
*W i 

^N> 

¡0' ' ' ' ' ' 
11.5 11.6 11.7 11.8 11.9 12 

Frequency (GHz) 

Fig. 7. Dual-mode circular-waveguide filter ROM results are compared with 
the full-wave FEM scattering parameter response. 

TABLE III 

POD SINGULAR-VALUE COMPARISON IN THE DUAL-MODE 
CIRCULAR-WAVEGUIDE FILTER 

Field 

ei 

e2 

e3 

e4 

E5 

E6 

E7 

Es 

Eg 

Eio 

»Bn(En+l) 

-
1. 

1. 

1. 

0.676 

9.376 • 10"3 

1.913 • 1 0 - 6 

1.530 • 1 0 - 1 0 

5.488 • 10~ 1 2 

8.690 • 1 0 - 1 1 

Singular vector 

VI 

1>2 

V3 

Vi 

V5 

v& 

V7 

Vs 

V9 

l>10 

Singular value 

1 

0.0116 

3.252 • 1 0 - 3 

7.536 • 10"4 

4.895 • 1 0 - 6 

2.412 • 10~8 

2.415 • 1 0 - 1 1 

9.867 • 1 0 - 1 4 

2.886 • 10~ 1 5 

2.762 • 1 0 - 1 5 

enhance the basis, which would be desirable as pointed out in 
the selection criterion (32). This is shown both in the results 
in Table II and in Fig. 6, where the frequency points selected 
disagree with the ones suggested by the linear independence 
criterion (32) detailed in Table I and in Fig. 3. In particular, 
it is observed that the linear independence measure //#„ for 
solution vectors E-¡, E%, and Eg is higher for the nonpractical 
optimal algorithm in Table I than for Algorithm 2. In the 
same token, it should be noted that /¿B8(¿Í9) < MB9(EW) 

in Table II, which shows once again that the greedy algorithm 
based on the residual error (40) does not ensure to choose the 
most linearly independent field solutions to uplift the basis. 
However, it is a cheap and good enough criterion to guide us 
in the reduced-basis space identification. 

Fig. 7 compares the scattering parameter response obtained 
by this approach with an ROM of order 8, i.e., reduced-basis 
space dimension N = 8, with the one obtained via FEM 
analysis, where the size of the problem is ÁÍ = 36426. Good 
agreement is achieved. Taking 10~6 as linear independence 
threshold is enough to ensure convergence in the reduced-basis 
approximation. It should be pointed out that the ROM response 
is obtained by solving a system matrix of size 7Y = 8, whereas 
the full-wave FEM response is computed by solving for large 
FEM system matrices of size M = 36426. 

Finally, Table III compares the results achieved by the pro-
posed procedure to the model-order reduction results obtained 
by means of POD. It should be pointed out that in order to 

Fig. 8. Geometry of the rectangular waveguide filter designed in [36]. 

carry out the POD analysis, a total of 1001 evenly spaced 
electromagnetic-field solutions are computed by direct FEM 
analysis in the 11.5-12-GHz band. An SVD analysis for 
all these FEM solutions is carried and the corresponding 
normalized singular values are detailed in Table III. It should 
be noted that an ROM of order 6, i.e., ./VPOD = 6, is obtained 
by POD taking 10~6 as singular-value threshold, which again 
is enough to ensure that the POD ROM is accurate. In this 
POD setting, the reduced-order projection space is provided by 
the first ./VPOD = 6 singular vectors. This optimal result should 
be compared with the order N = 8 obtained by the proposed 
methodology. As a result, we can feel confident that we are 
proposing a compact basis for reduced basis approximation. 

B. Rectangular-Waveguide Filter 

Fig. 8 depicts the geometry of a fifth-order WR-90 rectangu-
lar waveguide filter designed in [36] to show the possibility of 
introducing additional transmission zeros in the filter response. 
Detailed geometry dimensions can be found in [36]. Since 
a fifth-order filter is designed, five eigenresonances and the 
corresponding eigenmodes are expected to be found in the 
filter operation frequency band. 

We carry out a model-order reduction in the 9.2-10.8-GHz 
band in order to obtain a fast frequency sweep in the filter 
response. Solving for the eigenmodes in this band, we find 
the following eigenresonances: f\ = 9.766 GHz, fa = 
9.812 GHz, fa = 9.944 GHz, fa = 10.075 GHz, and 
fa = 10.157 GHz. Then, in order to complete this eigenbasis 
#5 = {<?i, • • •, <?5}> we proceed as in Algorithm 2. Fig. 9 
shows the residual error frequency behavior as we uplift 
the eigenbasis, and Table IV details the linearly independent 
information in each of the new field solutions added to the 
previously built basis. 

As a result, an ROM of size N = 10 is enough to accurately 
describe the original system response in the 9.2-10.8-GHz 
band. Again, taking 10~6 as linear independence threshold 
is enough to ensure convergence in the reduced-basis approx-
imation. Scattering parameter results obtained by this ROM 
are compared with FEM analysis in Fig. 10. Good agreement 
is found. It should be noted that the reduced-basis method 



TABLE IV 
LINEAR INDEPENDENCE IN THE FIELD SOLUTIONS IN THE 

RECTANGULAR WAVEGUIDE FILTER 

Frequency (GHz) 

9.766 

9.812 

9.944 

10.075 

10.157 

10.800 

9.200 

10.025 

10.515 

9.675 

Field 

e i 

e 2 

e 3 

e4 

es 

E6 

E7 

E8 

Eg 

Eio 

Basis 

-

Bx 
B2 

B3 

B4 

B& 

B6 

B7 

B8 

B9 

VBn(En+l) 

-
1. 

1. 

1. 

1. 

0.8528 

0.3126 

6.263 • 10" s 

1.710 • 1 0 - 5 

1.519 • 10"7 

TABLE V 
POD SINGULAR-VALUE COMPARISON IN THE 

RECTANGULAR WAVEGUIDE FILTER 

Field 

e i 

e 2 

e 3 

C4 

Z5 

Eg 

ET 

E8 

Eg 

Eio 

f*Bn(En+l) 

-
1. 

1. 

1. 

1. 

0.8528 

0.3126 

6.263 • 10~5 

1.710 • 10"5 

1.519- 1 0 - 7 

Singular vector 

Vl 

V2 

V3 

V4 

V5 

V6 

vr 

V8 

Vg 

« 1 0 

Singular value 

1 

0.01454 

1.280 • 1 0 - 3 

4.351 • 10~ 3 

8.008 • 10"3 

4.873 • 10~5 

2.600 • 10~6 

9.999 • 1 0 - 9 

3.158 • 10" 1 0 

3 .184 - lO - 1 2 
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Fig. 9. Normalized residual error frequency behavior in the reduced-basis 
approximation as the reduced-basis space is uplifted following the approach 
detailed in Algorithm 2 in the rectangular-waveguide filter, (a) Normalized 
residual error in the reduced-basis space spanned by the eigenbasis B5 and 
bases B¿ and B-¡. A large drop in the residual error is observed as soon as the 
eigenbasis B5 is completed, (b) Normalized residual error in the reduced-basis 
space spanned by bases Bg, Bg, and Bio-

response is obtained by solving a system matrix of size 
N = 10, whereas the FEM response is computed by solving 
for large FEM system matrices of size M = 702228. 

Finally, we compare in Table V the results obtained by 
the proposed methodology with those achieved by the opti-
mal model-order reduction processing, namely, POD analy-
sis. In order to do so, we compute a total of 321 evenly 
spaced electromagnetic-field solutions by FEM analysis in 
the 9.2-10.8-GHz band. Then, an SVD analysis for all these 
FEM solutions is carried and the corresponding normalized 
singular values are detailed in Table V. It should be pointed 
that an ROM of order 8, i.e., ATOD = 8, is obtained 
by POD setting 10~6 as singular-value threshold, which is 
enough to ensure that the POD ROM is reliable. In this POD 
analysis, the reduced-order projection space is spanned by 
the first iVpoD = 8 singular vectors. This optimal result is 
compared to the order N = 10 obtained by the proposed 
approach. This shows that we are building up a compact 
basis for reduced-basis approximation without the need to go 
through any time-consuming POD analysis. 

C. Waveguide Diplexer 

An H-plane WR-90 rectangular waveguide diplexer is stud-
ied in this section. This diplexer has been designed in [35] 
and its geometry is depicted in Fig. 11. This diplexer uses 
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Fig. 10. Rectangular-waveguide filter ROM results are compared with the 
full-wave FEM scattering parameter response. 

two eighth-order filter channels connected by means of a 
T-junction. At least 16 eigenresonances are expected to be 
found in the diplexer band. Additional eigenresonances may 
appear in the diplexer band as a consequence of the T-junction. 

The 9-11-GHz frequency band is taken into for fast fre-
quency sweep model-order reduction. Solving for the eigen-
modes in this band, we find 18 eigenresonances. This gives 
rise to an eigenbasis of 18 orthogonal vectors, namely, Bis, = 
[e\,... ,e\$). This eigenbasis is uplifted following the pro-
posed reliable reduced-basis approximation algorithm. The 
linear independence of each electromagnetic field added to 



Fig. 11. H-plane rectangular-waveguide diplexer geometry. 
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Fig. 12. Linear independence in the field solutions in the waveguide diplexer. 
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Fig. 13. H-plane rectangular waveguide diplexer ROM results are compared 
with full-wave FEM scattering parameter response. -: reduced-basis method. 
o: FEM. 

the basis is detailed in Fig. 12 and the model-order reduction 
is stopped whenever 10~6 linear independence threshold is 
achieved, which ensures convergence in the reduced-basis 
approximation. As a result, a reduced-basis space of dimension 
N = 22 is used for fast frequency sweep in this structure. The 
results obtained by the ROM are compared with FEM analysis 
results in Fig. 13. Good agreement between these results is 
achieved. 

D. Bethe Hole Waveguide Coupler 

Finally, we are going to study a circuit that is no longer a 
resonating structure operating in a narrowband but a wideband 
nonresonating circuit, namely, a Bethe hole waveguide coupler. 
A 4-port microwave circuit is considered this time. This 
waveguide coupler is detailed in [37] and a design where four 
holes connecting both WR-90 rectangular waveguide sections 
is considered. The structure layout as well as its geometric 

Fig. 14. Bethe hole waveguide coupler geometry. The holes are centered 
along 1/3.5, the width of WR-90 waveguide. The thickness in the holes is 
0.2 mm. The holes are symmetrically inserted along the longitudinal direction 
in the rectangular waveguides. The radius of the first and the last hole is 
3.838 mm. The radius of the middle holes is 5.253 mm. The distance between 
centers in the first and second holes is 11.807 mm. The distance between 
centers in the second and the third hole is 11.4 mm. 
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Fig. 15. Linear independence in the field solutions in the waveguide coupler. 
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Fig. 16. Bethe hole waveguide coupler ROM results are compared to 
full-wave FEM scattering parameter response. -: reduced-basis method. 
o: FEM. 

dimensions are shown in Fig. 14. A model-order reduction 
process is carried out in the 6.75-11-GHz band. A total 
amount of eight eigenresonances are found in the frequency 
band of interest, yielding an eigenbasis of dimension 8, 
namely, B$, = {e\i...ie%}. This eigenbasis is uplifted by 



the proposed approach until the last field solution added to 
the reduced-basis space overcomes the linear independence 
threshold 10~6. In this circuit, this gives rise to a reduced-basis 
space of dimension N = 14 in order to carry out a reliable 
reduced-basis approximation in the frequency band of interest. 
Linear independence results are shown in Fig. 15. 

Finally, model-order reduction results are compared with 
FEM in Fig. 16. Good agreement is observed. 

V. CONCLUSION 

An ROM for reliable fast frequency sweep in microwave 
circuits has been detailed. A compact basis to carry out a 
reduced-basis approximation has been proposed. Eigenreso-
nances hit in the frequency band of interest have been no 
longer avoided but considered in the reduced-basis method. 
As a result, a reduced-basis space spanned by eigenmodes, 
giving rise to an eigenbasis, and additional adaptively selected 
electromagnetic fields, has been addressed. All these eigen-
modes and electromagnetic fields have been appropriately 
chosen within the frequency band of interest. 

A special emphasis has been considered in certifying the 
accuracy in the model-order reduction as well as providing a 
reliable stopping criterion in the construction of the ROM, 
based on the linear independence in the electromagnetic 
fields adaptively chosen to complete the eigenbasis in the 
reduced-basis space. 

Several numerical results including both narrowband res-
onating structures and wide-band non-resonating devices 
have shown the capabilities and reliability of the proposed 
approach. It should be pointed out that the proposed method-
ology has performed as good as POD in terms of the ROM 
order throughout the examples where POD analysis has been 
considered. 

Radiation problems can also be considered within the 
proposed methodology by introducing radiating ports. In this 
setting, the field at the open boundary is described in terms 
of spherical modes. This approach has already been detailed 
in [22]. 

In addition, the proposed methodology can be further 
applied to lossy microwave devices. It has to be pointed 
out that in the case of lossy media, the eigenresonances are 
complex, but still eigenmodes can be found associated to these 
complex eigenresonances. These give rise to the eigenbasis 
that is further used in the reduced-basis approximation. 

Let us point out that we have aimed at providing a compact 
basis for reduced-basis approximations. In terms of computa-
tional efficiency, the method we have proposed may or may 
not be faster than other practical model-order reduction tech-
niques, such as SVD or moment-matching approaches. This 
depends on the specific computing scenario. For instance, 
if the FEM system matrix is too large to be factorized, other 
reduction techniques will be faster, but in case the FEM system 
matrix is not too large to be factorized and the frequency band 
is not too large as well, we expect our methodology not only 
to provide a compact basis, but also to be faster than other 
model-order reduction approaches. 

We have shown that the reduced-basis method we have 
proposed has allowed to model the electromagnetic behavior of 

a circuit by solving a very small system of equations, of size 
N, the order of the ROM. However, this reduction has not 
come for free, since the reduced-basis method does need to 
build a reduced-basis space up first in order to compute the 
ROM. This computation has been carried out offline and does 
have required a few FEM analyses, namely N, the order of 
the ROM. Specifically, it has involved N - K + 1 sparse 
matrix factorizations, where K is the number of eigenmodes 
hit in the frequency band of interest. Note that one sparse 
matrix factorization is used to solve for the eigenvalues and 
eigenmodes in the frequency band of interest. 
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