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Abstract. In this article, a simple and compact dual band-

notched (DBN) super wideband (SWB) printed monopole 

antenna (PMA) has been proposed. The proposed antenna 

composed of a circular PMA, which is connected through 

a 50-Ω triangular tapered microstrip fed line (TTMFL) and 

a round-cornered finite ground plane (RCFGP). It exhibits 

a very wide frequency band from 1.6–25 GHz (ratio band-

width of 15.63:1) with a voltage standing wave ratio 

(VSWR)  2. By employing a U-shaped parasitic element 

(USPE) near the RCFGP and a T-shaped protruded stub 

(TSPS) inside the radiating patch, a single band-notched 

(SBN) characteristic in the frequency band of 3.2–4.4 GHz 

(WiMAX/C-band) is generated. In order to realize the sec-

ond band-notched function for X-band satellite communi-

cation systems (7.2–8.4 GHz), a U-shaped slot (USS) has 

been inserted in the RCFGP. The overall dimension of the 

proposed antenna is 24  30  0.787 mm3 and occupies 

a relatively small space compared to the existing DBN an-

tennas. Good agreement has been attained between pre-

dicted and measured results. 
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1. Introduction 

Nowadays there is an increasing demand of super 

wideband (SWB) radios in the modern wireless communi-

cation systems, owing to their extremely large bandwidth 

(BW) and very high data transmission rate. Printed mono-

pole antenna (PMA) is an ideal candidate for SWB appli-

cations due to its several fascinating features such as small 

size, low cost, planar structure, operation over extremely 

large impedance BW and ease to accommodate with small 

space provided by hand held gadgets. Existing ultra-wide-

band (UWB) PMA (BW of 3.1 to 10.6 GHz) [1] also have 

features like that of SWB except that its ratio bandwidth 

(RB) falls short of SWB antennas and is just 3.42 : 1. SWB 

antennas should offer RB of more than 10 : 1 and were first 

supposedly developed by Rumsey et al. in the late 1950 

and early 1960 and were called frequency-independent 

antennas [2].  

Recently, few SWB antennas have been investigated 

by many researchers in the published literature [3–7]. 

Unfortunately, it is to be noted that some of the existing 

narrow-band systems such as WiMAX (3.3–3.6 GHz),  

C-band (3.7–4.2 GHz) and X-band satellite communication 

systems operating in 7.25–8.395 GHz (for down link:  

7.25–7.745 GHz and uplink: 7.9–8.395 GHz) may cause 

electromagnetic interference (EMI) to the SWB system. So, 

to mitigate this electromagnetic interference issue, SWB 

antennas with band-notched characteristics is required. 

Several dual band-notched (DBN) UWB antennas have 

been investigated by many researchers across the globe  

[8–13].  

However, the above mentioned antennas have been 

designed to have notch within the UWB BW and occupy 

a relatively large space. But to the author’s knowledge, 

there are no DBN SWB antennas reported in the literature. 

In this communication, a novel and compact DBN SWB 

PMA is presented. The designed antenna offers a wide 

impedance BW from 1.6 to 25 GHz with a VSWR ≤ 2 

except in the DBN of 3.2–4.4 GHz and 7.2–8.4 GHz. The 

proposed antenna offers wide BW with DBN characteris-

tics and is small in size compared to the DBN UWB anten-

nas reported in [8–13]. By tuning the dimensions of  

U-shaped parasitic element (USPE) and U-shaped slot 

(USS), two suitable notches are obtained. Good agreement 

has been obtained between simulation and experimental 

results of the proposed DBN SWB PMA. Simulation re-

sults have been carried out with the finite element method 

(FEM) based commercial software Ansoft high-frequency 

structure simulator (HFSS). 

2. Antenna Configuration 

The configuration of the proposed DBN SWB circular 

ring (CR) PMA is illustrated in Fig. 1. The CR PMA is 

printed on the RT/Duroid 5870 substrate of thickness 

t = 0.787 mm  with  dielectric  constant  r of 2.23, which is 



RADIOENGINEERING, VOL. 26, NO. 1, APRIL 2017 65 

 

 

Fig. 1. Geometry of the proposed DBN SWB PMA. 

excited through a 50-Ω triangular tapered microstrip fed 

line (TTMFL). For the signal transmission, a two-hole Sub 

Miniature version A (SMA)-connector has been utilized. 
We have specifically chosen the above mentioned substrate 

since FR4 substrate becomes highly lossy at higher fre-

quencies. The proposed antenna (the overall dimensions of 

about 24  30  0.787 mm3) consists of a CR radiating 

patch with a T-shaped protruded stub (TSPS) inside CR 

radiating patch. The rear side of the RT/Duroid substrate is 

composed of a round-cornered finite ground plane 

(RCFGP) with embedded USS and USPE, which is placed 

under the CR patch. The TTMFL is used for broadband 

impedance matching and the reflection coefficient (()) 

response of triangular taper has minima for l = 2m 

where m = 1, 2, 3, … and corresponding frequencies. 

A closed form solution of the Riccati equation for 

triangularly tapered feed line is given by [14] 
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where () is the reflection coefficient,  is the phase 

constant and lk = H is the triangular tapered feed line 

length. To get the widths at the two ends of the tapered 

lines, method reported in [15] is followed. 

The optimal dimensions of the proposed antennas are 

as follows: L = 30 mm, W = 24 mm, H = 13 mm, 

A = 1 mm, B = 3 mm, G = 5.5 mm, D = 4.5 mm, 

T = 0.5 mm, R = 8 mm, r = 6 mm, N = 6.2 mm, 

Wp = 14.5 mm, lp = 16.5 mm, M = 0.5 mm, p = 1 mm, 

TS = 0.2 mm, LS = 5.2 mm, Ws = 1.5 mm, Lp = 4.5 mm, 

K = 1.6 mm and R1 = 4.9 mm. Here the optimized electrical 

length of the USPE (U1) and USS (U2) are set to 

approximately 0.5 g and 0.25 g, where 

U1 = Wp + 2lp + 2M, U2 = Ws + 2LS + 2TS. g is the guided 

wavelength corresponding to band notch frequencies at 3.8 

and 7.8 GHz respectively. 

3. Results and Discussions 

Figure 2 presents design evolution of the proposed 

SWB DBN PMA which illustrates the steps for enhancing 

the impedance BW as well as formation of DBN charac-

teristics. The corresponding simulated VSWR characteris-

tics comparison of Antennas 1-5 are shown in Fig. 3. An-

tenna 1 consists of a simple monopole disc connected with 

a rectangular feed line and rectangular finite ground plane 

that provides BW of 2.8–9.9 GHz (refer to Fig. 3). To im-

prove the impedance BW of Antenna 1, the rectangular 

feed line has been replaced by a triangular tapered micro-

strip fed line (TTMFL) in Antenna 2 and it offers wide BW 

of 1.6–23.5 GHz without increasing the dimension as 

depicted in Fig. 3.  

To further increase the BW of Antenna 2, we modi-

fied the rectangular ground plane of Antenna 2 into round-

cornered finite ground plane (RCFGP) in Antenna 3. In 

Antenna 3, the ground plane also participates in radiation 

[16–17], additional resonance is excited at the higher fre-

quencies and hence the impedance matching characteristics 

tend to improve over the entire band, resulting in an ex-

tremely large BW of 1.6–25 GHz or above. It is capable of 

supporting SWB radios without increasing the antenna 

dimensions. Now to generate the first band-stop (BS) char-

acteristics for X-band satellite communication systems 

(7.2–8.4 GHz), a U-shaped slot (USS) is inserted in the 

RCFGP (Antenna 4). By employing a U-shaped parasitic 

element (USPE) on the rear side of the substrate and an 

inverted T-shaped protruded stub (TSPS) within the circu-

lar ring (CR) shaped radiation patch we generate the sec-

ond BS characteristics for WiMAX/C-band (3.2–4.4 GHz) 

application (Antenna 5).  

 

Fig. 2. Design evolution of the proposed DBN SWB PMA. 

 

Fig. 3.  Simulated VSWR of antennas 1-5. 
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Fig. 4. Simulated VSWR versus frequency graph for the 

proposed compact DBN SWB PMA with and without 

inverted TSPS. 

The effect of inverted TSPS on the WiMAX/ C-band 

(3.2–4.4 GHz) and X-band satellite communication sys-

tems (7.2–8.4 GHz) is shown in Fig. 4. It is found that 

without inverted TSPS, the upper edge frequency of 

WiMAX/C band increases from 4.4 GHz to 4.9 GHz, while 

upper edge frequency of the X-band satellite communica-

tion systems decreases from 8.4 to 8.1 GHz, which does 

not cover the uplink frequency (7.9–8.395 GHz) of X-band 

satellite communication systems. The widened frequency 

BW of WiMAX/C band notched characteristics  

(3.2–4.9 GHz) unnecessarily blocks useful frequencies 

from 4.4 to 4.9 GHz.  

To know more details about dual band-notched 

functionality of the proposed SWB antenna, parametric 

study has been carried out. Dual band-notched 

characteristics of the SWB antenna can be controlled 

mainly by the following parameters such as R, Wp and LS 

for the radiating ring patch, U-shaped parasitic element and 

U-shaped slot respectively. Figure 5 depicts the simulated 

VSWR curves for different values of outer radius R of 

circular ring patch. It can be observed that by increasing 

the value of R from 8 to 9 mm, the first notch band blocks 

deeper (amplitude of VSWR is about 6.5) within 

WiMAX/C-band, however center frequency of the second 

notch band (X-band) is shifted from 7.8 to 7.4 GHz and 

also there is an impedance mismatch at higher frequencies 

(12–13 GHz and 16.5–18 GHz). When the position of 

R = 7 mm, the impedance matching within SWB region is 

excellent, the center frequency of the first (WiMAX/C-

band) and second (X-band) notched band is also appropri-

ate. So the optimum value of R = 7 mm. The simulated 

VSWR for different values of Wp (width of U-shaped para-

sitic element) is plotted in Fig. 6. In this arrangement by 

varying the value of Wp from 13.5 to 15.5 mm, the center 

frequency of the second (X-band) notched band character-

istics is insensitive; however the bandwidth of the first 

notch band (WiMAX/C-band) is decreased significantly. 

Therefore, the optimum value of Wp is decided to take 

14.5 mm. 

Figure 7 shows the effect of the length LS of U-shaped 

slot on the simulated VSWR curves. From Fig. 7 it can be 

found that, when the length LS of U-shaped slot changes 

from 4.7 mm to 5.7 mm, the center frequency of the second 

 

Fig. 5. Simulated VSWR versus frequency graph for the 

proposed compact SWB dual band-notched antenna 

with different value of R. 

 

Fig. 6.  Simulated VSWR versus frequency graph for the 

proposed compact SWB dual band-notched antenna 

with different value of Wp. 

 

Fig. 7.  Simulated VSWR versus frequency graph for the 

proposed compact SWB dual band-notched antenna 

with different value of LS. 

notched band is varied from 9 GHz to 6.5 GHz, however 

there is no variation within the first notched band region. 

Therefore the value of LS has been selected to be 5.2 mm, 

which controls the variable notched band with center fre-

quency of 3.8 GHz.  

Figure 8 (a) and (b) illustrates the simulated surface 

current distribution for the proposed SWB PMA at band-

notch center frequencies of 3.8 and 7.8 GHz. From Fig. 8(a) 
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Fig. 8. Simulated surface current distributions: (a) 3.8 GHz 

(front view), (b) 7.8 GHz (back view), (c) 7 GHz (front 

and back view), (d) 10 GHz (front and back view). 

 
(a) 

 
(b) 

Fig. 9. (a) Image of the fabricated proposed DBN SWB PMA 

(b) simulated and measured VSWR versus frequency 

graph. 

it is clearly seen that high current is gathered on the USPE 

around the 3.8 GHz notched frequency and it is opposite in 

direction (out-of-phase) to the current flowing on the CR 

patch as well as inverted TSPS, which cancel out the 

effective radiation. Similarly, at frequency 7.8 GHz, it can 

be observed that strong current is crowded on USS and 

very small current is concentrated on the ground plane, 

which offers strong attenuation near the notch frequency 

(7.8 GHz). It can be observed that small surface currents 

are flowing on both USPE and USS element at other fre-

quencies such as 7 GHz and 10 GHz as depicted in 

Fig. 8(c) and (d) respectively.  

Image of the fabricated antenna is shown in Fig. 9(a). 

The measurement is carried out with a Rohde and Schwarz 

ZVA24 vector network analyzer. Simulated and measured 

VSWR versus frequency graph for the proposed DBN 

SWB antenna is depicted in Fig. 9(b). Good agreement has 

been obtained up to 19 GHz between simulation and ex-

perimental VSWR results, while small deviation can be 

observed between simulated results and measured one if 

frequency is higher than 19 GHz. This may be owing to the 

maximum suitable frequency for the SMA-connector is up 

to 18 GHz.  

Figure 10 shows the simulated and measured gain ra-

diation pattern of the proposed SWB PMA. It indicates that 

at low frequencies (2.5 and 10 GHz), the antenna has omni-
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Fig. 10. Simulated (red) and measured (black) gain radiation pattern of DBN SWB PMA (solid line is co-polarization and dashed line is cross-

polarization). 

 

 

Fig. 11. Simulated and measured peak gain versus frequency 

graph for the proposed compact DBN SWB PMA. 
 

 

Antenna of 

ref. no. 

Dimensions 

(WLh) mm
3
 

RB Substrate 

 [8] 46.4	 	38.5	 	1 6.25 : 1 Not specified (r = 2.65)

 [9] 26	 	32	 	0.8 3.93 : 1 Rogers4003 (r = 3.38) 

[10] 30	 	30	 	1.6 5.03 : 1 FR4 (r = 4.4) 

[11] 24	 	36	 	1.524 4.00 : 1 Rogers4003 (r = 3.38) 

[12] 12	 	18	 	0.8 4.59 : 1 FR4 (r = 4.4) 

[13] 10	 	16	 	1.6 6.17 : 1 FR4 (r = 4.4) 

Our 

antenna 
24	 	30	 	0.787 15.63 : 1 

RT/Duroid5870 

(r = 2.23) 

Tab. 1.  Comparison of the size and RB of the proposed DBN 

SWB PMA to DBN UWB antennas. 

directional radiation pattern in the H-plane and bidirec-

tional (eight shaped) patterns in the E-plane with negligible 

cross polarization. However, at the higher frequencies 15, 

20 and 25 GHz, the cross-polarization level rises in the E 

and H-planes, which is probably owing to the rising hori-

zontal component of the surface currents on the radiating 

patch at higher frequencies. The simulated efficiency  of 

the antenna varies from 82% – 95% throughout SWB fre-

quency except at the DBN frequency (1st BS 	 65% and 

2nd BS 	 45%). The simulated and measured peak gain 

versus frequency graph for the proposed DBN SWB PMA 

is shown in Fig. 11. From the graph, it can be observed that 

the peak gain of the proposed antenna is 5.8 dBi, while 

gain sharply drops in the vicinity of 3.8 and 7.8 GHz BS. 

Table 1 depicts the dimension and RB of the proposed 

DBN SWB antenna with existing DBN UWB antennas. It 

can be observed that our proposed antenna has significantly 

larger RB than the antennas present in the published liter-

ature [8–13]. It also has smaller size than the DBN UWB 

antennas [8–11] except that of [12] and [13]. Note that 

DBN antennas of [12], [13] are designed on FR4 substrate 

which are meant for low frequency applications up to 

2 GHz [18]. FR4 substrate also has higher relative permit-

tivity of 4.4 and size also depends on relative permittivity.  

4. Time Domain Performance 

The time domain performance is the significant char-

acteristics of UWB antennas in which that is required to 

have least distortion in transmitting and receiving scenar-

ios. To explore the time-domain characteristics of a band-

notched SWB antenna, two identical antennas were em-

ployed as transmitter and receiver. They are estranged from 

each other by a distance of 60 cm and placed in face-to-

face and side-by-side orientations. To act as a transmitter, 

one antenna is excited by a time-domain transient pulse, 

while the other one is a receiver.  

A 5th order derivative Gaussian input pulse waveform 

(generated in Tektronix AWG 7122B arbitrary signal 

generator) in the time domain with a width of 300 ps and 

its power spectral density in frequency domain (dBm/MHz) 

with reference to federal communication commission 

(FCC) spectral mask are displayed in Fig. 12 and Fig. 13. 

The UWB short pulse reported in [19] is used to excite the 

proposed band-notched antennas is a fifth-order derivative 

of the Gaussian pulse and is given by 
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where A is the amplitude parameter, t is the time, and σ is 

the standard deviation, whose value is 51 ps to ensure that 

the shape of the spectrum fit inside the FCC spectral mask. 

The measured results suggest that the chosen fifth deriva-

tive of Gaussian pulse fits into the FCC spectral mask rea-

sonably well, indicating that this UWB pulse complies with 

the FCC spectral mask. 

Figure 14 and 15 plot the received pulse for face-to-

face and side-to-side configurations. It is seen that ringing 

distortion is observed in both the cases face-to-face and 

side-by-side scenarios, owing to the impedance mismatch-

ing at the notched bands. This confirms that the antenna 

does not response at all at the band-notched region. Moreo-

ver, it is also observed that the received signal amplitude is 

 

Fig. 12. Transmitted 5th order derivative Gaussian input signal. 

  

Fig. 13. Power spectral density. 

 

Fig. 14.  Received signal in face-to-face scenario. 

 

Fig. 15.  Received signal in side-by-side scenario. 

higher when two identical antennas are placed face-to-face 

(200 mV) with respect to side-by-side (100 mV) orienta-

tion. Overall ringing distortion is better than the existing 

UWB antennas in the literature [20]. To authenticate the 

similarity between received pulse S2(t) and transmitted or 

excited pulse S1(t) of the proposed antenna, the fidelity 

factor  is calculated which is given as follows 
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where  is a delay which is varied to make numerator in (3) 

a maximum. Using (3), the fidelity factor is calculated to be 

0.8521 when the two identical antennas were placed face-

to-face scenario, and the value becomes 0.8132 when they 

were placed side-by-side scenario. It has been reported that 

the fidelity factor for UWB antenna [8] is 91.2 % for face-

to face-link. 

5. Conclusion 

A compact DBN SWB PMA has been proposed and 

investigated in this article. We have used TTMFL as well 

as RCFGP for broadband matching. The proposed SWB 

monopole antenna can operate from 1.6–25 GHz (RB of 

15.63 : 1), except in the DBN of 3.2–4.4 GHz and 7.2 GHz 

to 8.4 GHz. By employing USS and USPE, DBN charac-

teristics have been obtained. The peak gain of the proposed 

antenna is 6 dBi, except in the DBN of 3.8 GHz and 

7.8 GHz. 
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