Journal of Scientific Computing, Vol. 16, No. 1, March 2001 (© 2001)

A Compact Fourth-Order Finite Difference Scheme
for Unsteady Viscous Incompressible Flows

Ming Li' and Tao Tang>

Received January 23, 2001; accepted (in revised form) April 11, 2001

In this paper, we extend a previous work on a compact scheme for the steady
Navier—Stokes equations [ Li, Tang, and Fornberg (1995), Int. J. Numer. Methods
Fluids, 20, 1137-1151] to the unsteady case. By exploiting the coupling relation
between the streamfunction and vorticity equations, the Navier—Stokes equa-
tions are discretized in space within a 3 x 3 stencil such that a fourth order
accuracy is achieved. The time derivatives are discretized in such a way as to
maintain the compactness of the stencil. We explore several known time-stepping
approaches including second-order BDF method, fourth-order BDF method
and the Crank—Nicolson method. Numerical solutions are obtained for the
driven cavity problem and are compared with solutions available in the litera-
ture. For large values of the Reynolds number, it is found that high-order time
discretizations outperform the low-order ones.

KEY WORDS: Navier-Stokes equations; streamfunction; vorticity; compact
scheme.
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1. INTRODUCTION

In recent years, there has been some interest in designing high-order com-
pact schemes for simulating viscous incompressible flows. For steady-state
Navier—Stokes (NS) equations, these compact schemes [3, 5, 10, 18] are
found to be computationally efficient and stable and yield highly accurate
numerical solutions. In particular, E and Liu [7] were able to solve
unsteady NS equations by using the fourth-order compact differencing in

! Department of Mathematics, Simon Fraser University, Burnaby, B.C. Canada V5A 1S6.
2 Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
E-mail: ttang@math.hkbu.edu.hk

29

0885-7474/01/0300-0029$19.50/0 © 2001 Plenum Publishing Corporation



30 Li and Tang

space. With the use of fourth-order Runge—Kutta methods, they can solve
the unsteady NS equations at very high Reynolds numbers. In their
approach, the approximations needed to obtain the velocity to fourth-order
accuracy extend outside the 3 x 3-point domain so the compactness holds
only weakly for the vorticity equation. In a previous paper [ 18], we derive
a compact fourth-order finite-difference scheme for the time-independent
NS equations with the novelty of genuine compactness, i.e., the compact
scheme is strictly within a nine-point stencil. It is shown that this scheme
yields highly accurate numerical solutions while still allowing SOR-type
iterations for large Reynolds numbers. The aim of the present work is to
extend the genuine compact scheme proposed in [18] to deal with the
unsteady NS equations.

The efficient solution procedure for the time-dependent NS equations
requires elaborately designed finite difference schemes in both space and
time, as well as the appropriate implementation of the numerical vorticity
conditions. In this work we shall propose a numerical approach with these
goals in mind. Using the idea of the method of lines, the NS equations are
first discretized in space in a way similar to that of [ 18]. The time derivatives
are then discretized in such a way as to maintain the compactness of the
stencil. Several known time-stepping approaches will be investigated. The
resulting system from the above procedure is nonlinear, but we can decom-
pose it into two subsystems: a linear system with respect to streamfunction
and a nonlinear system with respect to vorticity. We deal with the former
by an LU decomposition at the beginning and simple back substitutions
afterwards. The latter subsystem is solved by the GMRES procedure [20].
These two subprocesses are coupled by boundary conditions with several
inner iterations. Numerical experiments show that the overall procedure is
stable and efficient.

The paper is organized as follows. In next section we give the deriva-
tion and implementation of the numerical schemes. An application to the
driven cavity problem is presented in Section 3, and some concluding
remarks will be made in the final section.

2. NUMERICAL SCHEMES

2.1. Spatial Discretization

We shall first use the method of lines to carry out a semi-discretization,
ie., proceed with spatial discretization while retaining the temporal
derivative. Time-marching is treated separately by efficient temporal
approximations. The streamfunction-vorticity form of the unsteady NS
equations is written by
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Yot b, =—C (2.1)
1
Ct+lpny_lpnyzﬁ(Cxx—i_ny) (22)

Here  is the streamfunction, { the vorticity, and R the non-dimensional
Reynolds number. For brevity we only consider the grid network with the
uniform meshsize / in both x- and y-directions. We number the grid points
(X, y)a (X+/’l, y)a (X, y+h)n (X—h, y): (X, y_h)a (X+/’l, J’+h), (X—/’l,
y+h), (x—h,y—h), (x+h,y—h)as 0,1, 2,3,4,5,6, 7, 8§ respectively
(see Fig. 1). In writing the finite difference approximations a single subscript
j denotes the corresponding function value at the grid point numbered j.

The compact scheme for (2.1) can be given in a straightforward way
(see, e.g., [18]):

Wi+ Yo+ s+ a) +2(s+ s+, +s) —40y,
="+ G+ G+ +8) (2.3)

The existence of the nonlinear terms in Eq. (2.2) creates extra complexity
in deriving a compact scheme. The basic idea of the derivation is to cancel
the higher order terms in the Taylor expansions by using the original
differential equations with additional differentiation to appropriate order.
For (2.2) this process results in third derivatives such as ¥ . and v,
which can not be directly approximated within a nine-point stencil. However,
these terms can be replaced by invoking the differentiation of (2.1) and
(2.2) in a coupled way. The procedure is rather tedious and we will defer
the details to an appendix. Here we only give the resulting scheme:

8L+ 6+ G+0) + 20+ 6+ + ) =400+ T, =T, (24)

‘ T4 8 j-1
T

Fig. 1. Computational stencil.
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where
T1=—Rh2<<l—mZ24>a§;+<l+RlZ13>aa%
Ryos\ 005 Rii3\ 0y 0o
+<1+ 4 >8t+<l_ 4 >6t+88t> (2.5)

T2 = R(l//24é13 - l1013624 _cl l//85 - 521/156 - é2w56_é3w67 - C4l//78
_€5w12_£6w23 —4V7W34—C8W41)

2

R 1
+T <¢13C13lﬁ204+ V2aloa 03 +§ V13Waa(Lse+Cas)

1
71 (lp13€24 + ¢24C13)(w56 + ¢78) - l701324/204 - l702424/103) (26)

In the above expressions we have used the notation f;:= f;— f;, fu;:=
fi=2f+ 1,

The schemes (2.3) and (2.4) formulate the fourth-order compact
approximations in space only. It can be seen that 7, in (2.4) is related to
the temporal derivative of the vorticity function. Without 7, the scheme
(2.3)—(2.4) is in coincidence with the compact scheme for the steady
problem as obtained in [18].

2.2. Temporal Discretizations

The semi-discretized scheme (2.4) is based on the method of lines.
A variety of temporal discretizations can be applied to further formulate a
full nonlinear system. Combined with (2.3), we have a system of differen-
tial-algebraic equations (DAE) which seemingly can be solved by typical
numerical techniques for DAEs (see [2]). However, due to the complexity
of (2.4) and the large size of the system, the DAE approach is not economi-
cal. We shall employ instead a sequential solution method for (2.3) and
(2.4). In this subsection we discuss the temporal differencing. The detailed
implementation of the whole process will be given later.

Equation (2.2) is of diffusion-convection type. Much effort has been
made to design stable and efficient time differencing for such equations,
often using explicit schemes for the convection term and implicit schemes
for the diffusion term. This kind of approach has been termed as IMEX
(implicit-explicit) schemes and is well documented in [1]. Unfortunately,
the coefficients of the diffusion terms in (2.2) depend on the streamfunction
values which need to be updated at each time level. Hence we cannot
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design an IMEX-type scheme with universal explicit treatment for { at all
time levels. For this reason, we will use multistep implicit schemes based on
backward time-differencing. This schemes, called backward differentiation
formula (BDF), have been proved highly stable and widely used for solving
stiff ODEs and DAE:s (see, e.g., [2, 14]).

As a model ordinary differential equation, consider

6u_

5=/ (2.7)

Denoting the time level by a superscript and the stepsize by k, we sum-
marize some relevant BDF formulas as follows. The detail discussion for
these formulas can be found in, e.g., [21].

e Second-order BDF formula:

1
o G —du =t =) = (2.8)

o Fourth-order BDF formula:

1
o (250" —48u" =t 4 360 — 16w 4 3u" ) = £ (2.9)

For multistep BDF methods we also need difference formulas for several
initial steps. In this paper we shall use the following finite difference
schemes:

e Crank—Nicolson (second-order accuracy) using two time levels:

1
(u"—u"_l)=5(f"+f"_1) (2.10)

=

e Fourth-order accuracy using three time levels:
n n—2 1 n n—1 n—2
—(u"—u )=8(f +4 + /"7 (2.11)

¢ Fourth-order accuracy using four time levels:

1 1
— (17u" ="' —u" 2 +u"3) =

Ak (f"+3/"h (2.12)

&1
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2.3. Boundary Condition

Applying appropriate time differencing in the previous subsection to
(2.4) results in a full discretization for Eq. (2.2):

8@1+C2+C3+C4)+2(C5+c6+§7+C8)*4050‘*‘T/l :Tz (2-13)

where T is the variation form of 7', with all time derivatives replaced by
desired temporal discretizations. At first sight, (2.3) and (2.13) are a system
of nonlinear equations with 2N unknowns, with N the total number of grid
points used. However, by observing that (2.13) is linear with respect to
vorticity, we can solve the whole system in a sequential or uncoupled way,
i.e., first solve linear system (2.3) for i, then solve linear system (2.13) for {.
This inner iteration at each time level will be performed until the difference
between consecutive solutions for ¥ or { falls within a pre-assigned toler-
ance. The description for this process can be found in [19].

In the streamfunction-vorticity formulation, numerical vorticity must
be specified at the boundaries. Commonly this is accomplished by linking
the desired boundary vorticity values with the adjacent streamfunction/
vorticity values. Among the frequently used formulas are Wood’s formula
[23] and Thom’s formula [22]. In addition, many other versions based on
Taylor expansions have been developed, see, e.g., [ 13] and [ 15]. Recently,
more rigorous investigations have been carried out towards the implemen-
tation of the boundary vorticity from a global and dynamical point of view,
see [ 12, 24] and the references therein. An observation has also been made
that some popular global constraints for the numerical boundary vorticity
can be interpreted as variation forms of classical local formulas [ 8]. Math-
ematically, the boundary conditions are

W _

y=0, = =v (2.14)

where 7 is the direction of the outward normal vector and v is the tangen-
tial component of the velocity at the physical boundary. With regard to
numerics, it is the boundary treatment that provides a coupling between
two seemingly separate solution processes for ¥ and {, and it is so crucial
that inappropriate treatment will lead to failure of convergence in the inner
iterations even if a large amount of under-relaxation is used. Here we shall
use the numerical boundary conditions as described in [16, 17, 18]. The
compact schemes (2.3) and (2.13) are to be implemented in the region
[2h, 1 —2h] x [2h, 1 —2h] (assuming the physical regionis [0, 1] x [0, 1]),
so the grid function values of i and { must be specified on the grid points
next to the physical boundaries. Denoting the grid point on a physical
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boundary by the subscript 0 and the jth internal point from the boundary
by the subscript j, we have

0
18¢1—9¢2+2zp3:11¢0—6ha—‘: +O(h*)
0
which becomes
V2 Y5 K
w1—2—9—3v (2.15)

by using (2.14). The vorticity value is determined by a second-order central
difference for (2.1), i.e.,

1
Clz_ﬁ(w2+l//a+wb_4lpl) (2.16)

where subscript ¢ and b denote the two points adjacent to point 1 along the
direction parallel to the boundary.

2.4. Solving Nonlinear Systems

Our goal is to solve systems (2.3), (2.15) and (2.13), (2.16) in an effec-
tive way. The former system has a constant coefficient matrix so we can
perform LU decomposition at the beginning, which is to be used to find
solutions for ¥ values at all time levels. The nonlinear system for { carries
the main workload owing to the variable coefficients. We shall use an
GMRES method with a Jacobian preconditioner to solve this linear system
[20]. Although other linear system solvers can also be used, an advantage
of the GMRES method is that it is particularly efficient fora large nonsym-
metric system.

2.5. Algorithm
In summary, the solution process is implemented as follows:

o Step 1. Initialize the first few steps for multistep methods.
« Step 2. Evaluate boundary vorticity (4, from (2.16).

e Step 3. Solve for { using (2.13).

e Step 4. Solve for y using (2.3) and (2.15).
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« Step 5. Store (44, as ‘gfj‘ﬁy and update (,,, using (2.16).

If szbdry_éz%yH <tolerance
then goto Step 6
then goto Step 3

e Step 6. Increase time step by A4z, and goto Step 3.

The tolerance in the above algorithm is dependent on the time step
and should be sufficiently small. In practice, smaller mesh size requires
smaller tolerance. In our computations, it was chosen in the order of
0(1073) for the time step k= 0(1072).

3. NUMERICAL RESULTS FOR THE DRIVEN CAVITY PROBLEM

The drive cavity flow is a standard test problem for numerical com-
putations for the viscous incompressible flows. The fluid flow is governed
by Egs. (2.1) and (2.2) in a square cavity. The boundary conditions are
given by (2.14) with v =1 at the top boundary and v =0 at the other three
boundaries. For this problem there are ample computational results avail-
able in the literature. We shall compare our results with the benchmark
solutions of Goodrich and Soh [11] and Chudanov et al. [4].

The solution procedure is described in the previous section. Three time
integration methods have been tested: the Crank—Nicolson scheme (CN),
the second- and fourth-order BDF schemes (BDF2 and BDF4, respec-
tively). For multistep BDF schemes, (2.10) is used to give solutions at the
second time step. This is done by simple point SOR iterations and the con-
vergence is fast in this very early stage. The use of a second-order scheme
as initialization at the second time level for BDF4 will not deteriorate the
global fourth-order accuracy for the NS equations (see, e.g., [21]). The
initial values at the third and fourth time levels for BDF4 are obtained by
using (2.10) and (2.11), respectively. All three schemes have been tested for
different grid sizes and Reynolds numbers. In this paper we present results
for the Reynolds number R =400, 1000, 3200. The choice of the time incre-
ment Az is an interesting issue in time-dependent computations. Efficiency
in time-marching can be achieved by tailored techniques, such as variable-
size BDF formulas, self-adjusting time integrations etc. However, we will
not go into detail here. With uniform time step, similar to the analysis
given at the end of this section, it is expected that A¢ is proportional to
R ~L. Therefore, in all computations we use Az=0.05 for R =400, At=
0.025 for R =1000 and 4z =0.01 for R =3200. The number of inner bound-
ary iterations at each time level ranges from five to seven at the early stage
and two to four for large time. For higher Reynolds number and/or finer
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Table I. R =400: The Top Row Represents the Maximum and Minimum Streamfunction
Values and the Bottom Row the Corresponding Vorticity at the Same Positions

N t=5 t=10 r=20

CN 41 —08978(—1) 0.1286(—4) —0.1050  0.3920(—3) —0.1120  0.5346(—3)
34311 —02679(—1) 25516 —0.3002 23192 —0.3635

61 —09006(—1) 0.1857(—4) —0.1054  04406(—3) —0.1124  0.5930(—3)
3.4041 —0.3185(—1) 25383 —0.2875 22997 —0.4090

BDF2 41 —08981(—1) 0.1180(—4) —0.1052  0.3842(—3) —0.1124  0.5293(—3)
34374 —02725(—1) 25427 —0.2989 23117 —0.3634

61 —09007(—1) 0.1871(—4) —0.1055  04471(—3) —0.1126  0.6007(—3)
34169 —03194(—1) 25484 —0.2871 23142 —0.4086

BDF4 41 —08980(—1) 0.1094(—4) —0.1053  0.3765(—3) —0.1125  0.5232(—3)
3.5037 —03071(—1) 25560 —0.2931 23042 —0.3640

61 —09004(—1) 0.1817(—4) —0.1055  04457(—3) —0.1126  0.5996(—3)
3.5037 —0.3455(—1) 25627 —0.2808 23146 —0.4084

grids, smaller A7 must be used in order to guarantee the convergence of the
boundary iteration.

In Tables I and IT we present the flow features of the primary vortex
at the Reynolds numbers 400 and 1000, where in each entry the top row
represents the maximum and minimum streamfunction values and the bot-
tom row represents the corresponding vorticity values at the same position.
It can be seen that for R =400 and 1000, all three schemes agree fairly well
even when relatively coarse grids are used. These results also agree well
with the data given in [4]. The time-evolutions of the unsteady flows for
R =1000 and 3200 are depicted in Figs. 2 and 3, which compare well with

Table II. Same as Table I, Except that R = 1000

t=35 t=10 t=20

CN 41 —-0.7975(—1) 0.1707 —0.9840(—1) 0.7495(—3) —0.1143  0.1257(=5)

46102 —0.5159 32772 —0.3676 26542 —0.7917
61 —0.7980(—1) 09279 —0.9928(—1) 0.6932(—3) —0.1141  0.1500(—2)
45811 04776 3.0639 ~0.3369 23336 —0.9287

(=4)
(=1)
(=5)
(=1)
BDF2 41 —0.7926(—1) 0.2699(—6) —0.9878(—1) 04272(—3) —0.1129 0.1122(—2)
44376 —04218(—2) 29161 —0.2502 2.1393 —0.6969

61 —0.7994(—1) 0.3070(—5) —0.9940(—1) 0.5747(—3) —0.1137  0.1405(—2)

(=1)

(—06)

(=2)

(—6)

(=1

4.5433 ~0.8378 2.9891 03373 2.1973 —0.9204

BDF4 41 —0.7925(—1) 02529 —0.9860(—1) 0.5157(—3) —0.1133  0.1183(—2)
45105 —0.1879 2.9884 —0.3687 23142 —0.7187

61 —0.7994(—1) 0.6616 —0.9939(—1) 0.5336(—3) —0.1133  0.1345(—2)
45603 —0.1243 29537 —0.3353 2.1255 —0.8921
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Fig. 2. Time-evolution of the unsteady cavity flow at R =1000.

those in [11, 7, 4]. All of the figures are obtained by using BDF4 with
81 x 81 grid points in space, and 4¢=0.02 and 0.01 for R =1000 and 3200,
respectively.

For small values of the Reynolds number, the three time integration
methods demonstrate a similar behavior. However, high-order time dis-
cretizations outperform the low-order ones for problems with larger values
of the Reynolds number. For R =3200 with mesh size #=1/80 and time
step 4t=0.01, BDF4 produces good numerical results, while BDF2 and
CN fail to converge in the boundary iterations. The main reason for this
is due to the different stability properties of these methods. Although the
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Fig. 3. Time-evolution of the unsteady cavity flow at R =3200.

formal CN method is implicit which guarantees the stability of the scheme,
the way we are implementing it is based on simple iterations for the
implicit system. Of course, this approach will make the overall procedure
more efficient, but the iteration will significantly reduce the stability
property of the method. It was found (and analyzed) by E and Liu [7]
that some higher order methods such as 4th order Runge-Kutta method
not only increase the accuracy of the time integration but also increase the
stability of the overall scheme. The stability property (which controls the
choice of the practical time steps) is more important than the temporal
accuracy for the driven cavity problem, since the solution will yield a
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steady state for large time. With the same analysis method of [ 7] and [6],
it can be shown that the higher order method BDF4 is more stable than
the BDF2 and (the iterated version of) the Crank—Nicolson method.

The stability problem is also well understood by using the terminology
of the so-called cell Reynolds number, see e.g., [ 6]. Consider the simplest
convection-diffusion equation

Uy =au, =V, (3.1)

X

The analog of Reynolds number is R = aL/v. If we solve this problem using
forward Euler in time, and central difference in space

utt—yn ur_,—u’ \—2uf tup
P TEEA YT o yre (3:2)

then the amplification factor in the von Neumann analysis is

sin & 2(cos & —1
g(é)=1+At{—a e +v ( e )} (3.3)
For stability, we need
1g(&)| <1+ C 4t (34)

for all £. This translates to C=a?/v=aR/L, and the stability constraint is
At)v Ax* < 5. If we had treated the diffusion term implicitly,

n+1 n
uj Llj

At 24x sz

n+ n+1 n+1
uilty —2uiT +u

/=1 (3.5)

Then stability requirement (3.4) would be satisfied with C=24?/v but no
other conditions on At other than At being sufficiently small. In any case,
these schemes are useless at high Reynolds number even though they are
stable at fixed Reynolds number since the error grows as e = e® where
¢ is a positive constant. This means that to design schemes that work for
high Reynolds number, the standard stability concept is not enough as a
designing principle. What we need is uniform stability with respect to

Reynolds number, ie., C in (3.4) should be independent of R. It was
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pointed out in [ 7, 6] that this can be done by switching to a time stepping
scheme whose stability region covers a neighborhood of the imaginary axis
near the origin. Examples of such schemes include the 3rd and 4th order
Runge-Kutta, 3rd and 4th order Adams—Bashforth formulas. The above
analysis seems also valid for the present high-order space discretization
approach, since here the main problem is also the stability of the temporal
discretization.

4. CONCLUDING REMARKS

In this paper we have extended a previous work on a compact scheme
for the steady Navier—Stokes equations to the unsteady case. The genuine
compact scheme developed in [ 18] provides a useful framework for spatial
discretization. Using the method of lines with implicit time differencing, we
have obtained a fully discretized system which has good stability properties
for time-marching. The numerical solution of the resulting system is
obtained by a sequential solution process. This idea can be traced back as
early as in 70s, see e.g., [19], but few successful applications have been
reported in the literature since. As pointed out by E and Liu [ 7], the main
difficulty is how to guarantee the convergence of the inner boundary itera-
tions at each time level. The numerical experiments presented in this paper
justify the applicability and robustness of the genuine compact schemes. In
practice, the efficiency of the proposed schemes should be improved by
using variable step (higher-order) BDF formulas. A specific procedure is
required to estimate the amount of enlargement of the time step. This issue
remains to be further investigated.

APPENDIX: FOURTH-ORDER COMPACT SCHEME FOR THE
VORTICITY EQUATION

In this appendix we present the derivation of the fourth-order compact
scheme for the unsteady vorticity equation. The stencil structure and grid
numbering are described in Section 2. For convenience we restate the Ns
equations:

‘//xx+lpyy=_é (41)
o 1
a'*‘ g ZE (Cxx + Z:yy) (42)
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where we have denoted

»N=v,0—v.L, (4.3)

By Taylor expansion, (4.2) can be rewritten as

o 1 /GH+GHGHL—4, P
871+ - ﬁ < h2 _E (Cxxxx + nyyy)) + 0(h4) (44)

On the other hand, differentiating (4.2) yields

W+ Loxt gyy:%(cxxxx+i:yyyy+2€xxJ’y) (43)
It follows from (4.4) and (4.5), (4.4) + (h¥/12) x (4.5), that
%+g %(cxx+éyy)+g+h2 (8xx+ 81)
_F1‘<CI+C2+Ch32+C4 4Co Cmy>+0(h4)
o B Gt G G G Gt oGy = 2000+ OU)

(4.6)
where we have used the fact that
Loy =h""Ls+ L+ G+ G20+ G+ G+ +H46)) + 0(h?)
Next we proceed to approximate g and g, + g,, on the left hand side
of (4.6) within a nine-point stencil. Using a Taylor expansion for

Yy — s i=v3 and ¥, — Yy =y up to O(h*) gives

YauVis—Vis¥os
4h*

h2
+€(Cxlpyyy—i_gylpxxx_wayyy_l//ycxxx) + O(h4) (47)

The third derivative terms in (4.7) are troublesome since the corresponding
O(h?) approximations require grid function values outside the 3 x 3 stencil.
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However, this can be fixed by replacing them with some mixed third
derivatives. From (4.1) and (4.2) we have

lpxxx = - lpxyy - Cx
'//yyy == lpxxy - gy

g,
Cxxx_ R <8t+ gx_gxyy>

_Rr (%
nyy_R < ot +gy Cxxy>

Substituting the above terms into the right hand side of (4.7) and making
suitable rearrangements, yield

:lp24C1371//13C24 ha < ag %

4h2 'ﬁx at lpy al +wxgy_wygx>

h2
_g (l//xCxxy + Cyl//xyy - lpyC)cyy - Cxlpxxy) + 0(h4)

For the term g,, + g,,, we differentiate g =y ,{, — ., to obtain
8 xx + gyy = gx(lrbxx + lpyy)y - Cy(l;bxx + lpyy)x + Zny(lpxx - l//yy)
+ lejxy(Cxx - ny) + lpy(gxx + éyy)x - lpx(éxx + gyy)y
By using the NS Egs. (4.1)—(4.2) the above equation can be simplified as

8 xx + gyy = 2§xy(wxx - ‘//yy) + lexy(gxx - ny)

2
+Rh(w a, ., &

(10 v e, )

Combining the above results for g and g,, + g,, yields

hz lp24é:l3 ¢13€24

12 (gxx + gyy) 4/’12 ( xy lpxx lpyy) + lpxy(Cxx - gyy))

h2
- E (lpxCxxy + Cyl/jxyy - lpyéxyy - é/xl//xxy)

ha (. RA? 4
(0 5202 ) - e vag) + o
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By expanding g, and g,, we obtain
hz
+15 (8t &)

_¢24£13_‘//13C24 hz
- T—F g (gxy(lpxx - lpyy) + wxy(Cxx - ny))

hz
- E (lpxCxxy + Cylpxyy - l//nyyy - Cxlrbxxy)

aC, 4
i (wyat—wx az>+0(h)

WAl 4 L) by 20,0,V

7wyé/ywxx+lpfc§yy+wi§xx) (48)

The compact scheme (2.4) can be obtained by combining (4.6) and (4.8),
together with the following finite difference formulas:

1
Uy =3 (us — g + ti; — ug) + O(h?)

1
Uy = 3 (s + ug — 117 — ug — 2(1y — uy)) + O(h?)

1
Uy = 2/3(u5—i-u6 Ug— U7 — 21Uy — U3)) + O(h?)
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