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ABSTRACT

In this work we formulate a novel approach to estimating the pa-
rameters of continuous density HMMs for speaker-independent (SI)
continuous speech recognition. It is motivated by the fact that vari-
ability in SI acoustic models is attributed to both phonetic variation
and variation among the speakers of the training population, that is
independent of the information content of the speech signal. These
two variation sources are decoupled and the proposed method jointly
annihilates the inter-speaker variation and estimates the HMM pa-
rameters of the SI acoustic models.

We compare the proposed training algorithm to the common SI
training paradigm within the context of supervised adaptation. We
show that the proposed acoustic models are more efficiently adapted
to the test speakers, thus achieving significant overall word error
rate reductions of 19% and 25% for 20K and 05K vocabulary tasks
respectively.

1. INTRODUCTION

The most common approach to modeling inter-speaker variability
for speaker-independent (SI) HMM-based recognizers, is to estimate
the parameters of the acoustic models from speech collected from
a large population of speakers. While the SI models achieve a low
average word error rate for test speakers that are not included in the
training data, they are less accurate than adequately trained speaker
dependent (SD) acoustic models1.

An inherent difficulty in modeling SI continuous speech is that spec-
tral variations in each speech unit are caused by inter-speaker vari-
ability, in addition to phonetically relevant variation sources. The
differences among speakers lie in the anatomy of the vocal tract and
the vocal cords, in regional dialects and in speaking idiosyncracies
which are all manifested as variations in the speech signal. As a

1The distinction between speaker independent (SI) and speaker dependent
(SD) speech recognizers refers to the collection of the training data only,
as both approaches use the same parameter estimation techniques. The
parameters of SD acoustic models are estimated from training data from
the speaker that will use the system and potentially achieve the lowest error
rates. Previous studies have shown that SI recognizers have 2 to 3 times
higher word error rate than adequately trained SD systems. However the
requirement of large amounts of training data for each test speaker decrease
the utility and portability of SD systems.

result, the spectral distributions often exhibit higher variance than
the corresponding SD distributions and hence higher overlap among
different speech units. This may result in diffused acoustic models
with reduced discriminatory capabilities.

Previous efforts to generate acoustic models with reduced variation
due to speaker- or channel-induced factors focused on normalizing
the acoustic space prior to estimating the parameters of the acoustic
models. Cepstrum mean removal [1] has been the simplest feature
space based normalization method that was used mainly to counter-
act channel effects. In [2] a parametric model of vocal tract length
normalization reduces the inter-speaker variability of the acoustic
space by appropriately warping the frequency axis for each training
speaker prior to computing the cepstral coefficients. The Meta-
morphic algorithm [3] estimates a piecewise linear transformation
between the spectral space of a prototypical speaker and other refer-
ence speakers in order to map the reference speakers onto the proto-
typical space. In [4], an acoustic normalization technique within the
framework of mixture density HMM was applied to normalize the
training as well as the test data, and in [5], a maximum likelihood
signal bias was jointly estimated with the parameters of a discrete
HMM.

In this paper, we propose an approach to HMM training for speaker
independent continuous speech recognition that integrates the nor-
malization as part of the continuous density HMM estimation prob-
lem. The proposed method is based on a maximum likelihood
formulation that aims at separating the two processes, one being
the speaker specific variation and the other the phonetically relevant
variation of the speech signal. By modeling separately the speaker
variation and annihilating its effect in the training data, we are able
to reduce the variance and hence the overlap of the acoustic models.
We term the resulting HMM acoustic models as compact models.

2. GENERAL FRAMEWORK OF THE
SPEAKER ADAPTIVE TRAINING

PARADIGM

In the common pooled speaker independent training paradigm
we estimate the parameters � of the HMM model so that the
resulting model maximizes the likelihood of the training ob-
servation sequences. Consider a training database that con-
sists of speech collected from R speakers, with each speaker r,
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whereL(O(r)
;�) is the likelihood of the observation sequence O(r)

given the existing set of models �. The underlying assumption of
this approach is that all observations are produced from the same
source. Hence, speaker characteristics, channel conditions and noise
level are considered constant through the entire database.

The proposed Speaker Adaptive Training (SAT) paradigm is based
on an underlying generative process that addresses explicitly the
speaker-induced variations. We hypothesize a model of phoneti-
cally relevant variation �c, and use the term compact model for �c
to indicate that this model would exhibit less overlap among the
speech units. A transformationG(r) for each speaker r in the train-
ing population accounts for the particular speaker individuality and
maps the compact model to a speaker dependent model in the same
way that speaker adaptation methods [6, 7] generate speaker depen-
dent models for each test speaker from a speaker independent seed
model. Based on these two components, each training observation
sequence O(r), collected from a particular speaker r, is generated by
the hypothesized speaker dependent model G(r)(�c). In the SAT
framework, the optimum set of HMM parameters�c and the speaker
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The introduction of the speaker transformations aims at reducing
the speaker-specific variation in the speech signal allowing the com-
pact model to represent more accurately the phonetically relevant
context dependent variation. It is our goal to estimate these trans-
formations from the training data jointly with the compact model
HMM parameters.

The choice of transformation is coupled with the SAT paradigm
in as much as we would like to apply the same speaker transfor-
mation method in the recognition stage. The modeling accuracy
of the acoustic models is important in adapting the system to the
test speakers efficiently using very little adaptation data. Hence
the relative merit of the SAT paradigm would be demonstrated in
recognition scenarios that involve speaker adaptation. It intuitively
appears that the variation that is being modeled by the transforma-
tion in the training should be compensated during recognition in
order to match more accurately the test speaker characteristics.

2The observation sequence may consist of a number of utterances. We
denote the training data of one speaker as a single entity for notation sim-
plicity.

3. SAT PARAMETER ESTIMATION

We assume that �c is a set of continuous density HMM triphone
models with N states that is characterized by the state transition
matrixA, the initial probability vector� and a set of state observation
probability density functions. The i-th state observation density is
assumed to be a mixture of Gaussians given by

bi(ot) =

KX
k=1

cikN (ot; �ik; �ik) (3)

where K is the number of mixture components, cik are the mixture
component weights and (�ik;�ik) are the mean vector and the
covariance matrix of the d-dimensional multivariate Gaussian k-th
component of the i-th state distribution.

The functional form of the transformation depends upon our prior
knowledge about the extraneous variation that we wish to compen-
sate. In this work we model the speaker specific characteristics using
linear regression matrices, motivated by the Maximum Likelihood
Linear Regression (MLLR) method [8, 6] that has recently shown
to operate effectively in a variety of scenarios of supervised and
unsupervised speaker adaptation. The aim of MLLR is to obtain the
linear transformation that maximizes the likelihood of the adapta-
tion data. The transformation G(r)
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where W (r) is a d� d transformation matrix and �(r) is an additive
bias vector. Hence the i-th state observation density adapted to the
specific speaker is given by
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In the following development, we shall assume that the speaker
specific transformation consists of a single regression matrix for
simplicity. It is possible however to define regression classes and
associate a regression matrix with each class [6]. The extension of
the SAT parameter estimation to multiple regression transformations
is straightforward.

The HMM parameter estimation is an incomplete-data problem as
available observation sequences O provide only probabilistic evi-
dence of the underlying hidden state sequenceS and mixture compo-
nent sequenceK that correspond to each observation sequence. The
Expectation-Maximization (EM) algorithm [9] is an iterative proce-
dure for approximating ML estimates in the context of incomplete-
data cases and has been used extensively in the HMM parameter
estimation. This procedure consists of maximizing at each iteration
the auxiliary Q-function

Q(�; �) = E
�
logL(fO;S;Kg ; �)jO; �

	
(6)

defined as the expectation of the log-likelihood of the complete-data
fO;S;Kg given the incomplete-data O and the current parameter
estimate �. It can be shown [10] that maximization of the auxiliary
function with respect to � leads to parameter estimates that increase
the likelihood of the training data so that L(O; �) � L(O; �).



In the SAT paradigm, the state transition matrix A, the initial prob-
ability vector �, and the mixture component weights cik follow the
standard EM re-estimation formulae [10]. Our development focuses
on the re-estimation of the Gaussian mixture component parameters
and the speaker transformations that deviate from the standard EM
re-estimation. The auxiliary function with respect to the Gaussian
densities can be written as

QN (�; �) =

R;Tr ;N;KX
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t

was drawn according to the k-th mixture Gaussian component of the
i-th state. These probabilities can be computed efficiently using the
forward-backward algorithm [10]. The parameter vector � consists
of three sets of parameters: the speaker-specific transformations, the
mean vectors and the covariance matrices of the Gaussian densities.
Direct maximization of the auxiliary function via the gradient of
QN (�; �) with respect to the components of the parameter vector �
results in a non-linear system of equations that requires expensive
numerical optimization methods for its solution. We have, instead,
employed a three-stage iterative scheme to approximate the opti-
mum parameter vector, where at each stage we keep two sets of the
parameters fixed and optimize with respect to the third set.

We first maximize the Q-function with respect to the speaker trans-
formations while keeping the Gaussian parameters fixed to their
current values. The optimum transformation parameters for each
speaker are derived from the solution of

@QN (�; �)
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It is shown in [8] that if the covariance matrices are diagonal the
transformation parameters are derived in closed form. A detailed
description of the solution is contained in [8].

We then compute the mean vectors of the Gaussians using the up-
dated values of the transformation matrices while keeping the co-
variance matrices to their current values. The updated mean vectors
are derived from the solution of
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Finally the re-estimation of the covariance matrices utilizes the up-
dated values for the speaker-specific transformations and the Gaus-
sian mean vectors in the auxiliary function. The solution of
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gives the updated covariance matrices as
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are the Gaussian means adapted

to each speaker r using the updated values of the transformation
parameters and the Gaussian mean vectors.

It is easily verified that at each stage of the update process the value
of the auxiliary function is guaranteed to increase
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Hence the likelihood of the training data is also guaranteed to in-
crease, based on the properties of the auxiliary Q-function stated
earlier. Typically one or two iterations of the outlined three-stage
process are adequate to ensure convergence to an optimal point.

In the experiments that we conducted thus far, we used a sufficiently
trained SI model as the initial seed to the SAT re-estimation process.
The speaker-specific transformation matrices were initialized to the
identity matrix and the additive bias vectors to zero for all training
speakers.

4. EXPERIMENTAL RESULTS

In this section, we present the results of several recognition ex-
periments to evaluate the efficacy of the SAT paradigm. These
experiments were conducted using BYBLOS, BBN’s state-of-the-
art large vocabulary speech recognition system [11]. The baseline
speaker-independent system is a gender dependent triphone-based
continuous density HMM system. All allophone models of each of
the 46 phonemes of the system are modeled by a mixture density
of 256 Gaussian components in a configuration termed as Phonet-
ically Tied Mixture (PTM) HMM. Speech is parameterized using
14 mel-warped cepstral coefficients, a short-term power coefficient
and the first and second order difference of these parameters to give
a 45 dimensional feature vector.

The acoustic training data consists of 62 hours of speech, collected
from 284 speakers (male and female) from the SI-284 Wall Street
Journal (WSJ) corpus. Following the common SI paradigm, we
constructed SI gender-dependent acoustic models, to use as initial
model seeds for the SAT re-estimation procedure that was outlined
in Section 3. We evaluated the efficacy of the new algorithm by
comparing the recognition performance of the SAT acoustic models
to that of the SI acoustic models with and without adaptation to the
test speakers. The testing material was drawn from the 1994 H1 and
the 1994 S0 development tasks which are based on 20,000 and 5,000
words vocabulary tasks respectively. Each of the 20 test speakers
included in each test provides 40 sentences of transcribed data that



are used for batch supervised adaptation of the acoustic models. The
MLLR adaptation paradigm, using dynamically allocated number
of regression classes, was used to adapt both the SI and the SAT
acoustic models.

Word Error (%)
Test Set Training Cond. No Adapt. Adapt.

H1-20K SI paradigm 12.77 11.41
SAT paradigm 12.81 10.40

S0-05K SI paradigm 6.51 5.29
SAT paradigm 6.51 4.80

Table 1: Word Error Rate (%) Comparisons

The results of the first column of Table 1 show that the un-adapted
recognition performance of the SAT derived acoustic models is sim-
ilar to that of the pooled SI acoustic models. This indicates that
the signal variation that is removed from the acoustic models when
we apply the SAT paradigm does not have any phonetic information
content. Additionally, the results of the second column of Table 1
demonstrate the efficacy of the proposed method as the adapted SAT
acoustic models perform consistently better than the corresponding
adapted SI acoustic models in both tasks. The SAT acoustic models
are able to adapt more accurately to the test speakers using little
adaptation data (approximately 3 minutes of speech). Hence they
achieve a significant reduction (almost a factor of 2) in word error
rate over the adapted SI models and overall achieve 19% and 26%
reductions in error rate for the 20k and 05k tasks respectively.

5. CONCLUSIONS

We have presented a novel formulation of the SI training paradigm
that aims at reducing the overlap of the SI acoustic models that is
caused by variation among the speakers of the training population.
The method is based on explicitly accounting for the inter-speaker
variation in the HMM parameter estimation process. A modified
EM-based algorithm for the continuous density HMM parameter
estimation is presented for the case that the speaker-specific charac-
teristics are modeled by a linear transformation.

We have evaluated the proposed training algorithm in large vocab-
ulary continuous speech recognition tasks. We conducted experi-
ments that demonstrate that the SAT acoustic models are more effi-
ciently adapted to the test speakers than common SI trained acous-
tic models. Experimental results show that SAT acoustic models
achieve 10% additional reduction in word error rate relative to the
SI acoustic models and result in overall reductions of up to 25% for
batch supervised speaker adaptation.

Although the results considered in this paper focus on the extraneous
variation caused by the speaker variation in the training population,
the process of counteracting variations caused by other sources relies
on the same algorithmic development that is described in this work.
Specifically recording and channel conditions have been so far as-
sumed stationary within the training data of any particular speaker.
Within the proposed framework, we can annihilate variation effects
within a smaller time window (such as a single utterance) than that

defined by a speaker’s activity. Additionally we are currently experi-
menting with different methods of initializing the SAT re-estimation
process, as we believe that the convergence of the algorithm depends
strongly on the initial seed.
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