Optical Acceleration of lons and Perspective for Biomedicine

Bologna (IT) | November 4 – 5, 2011 Sala Refettorio, Istituto Storico Parri Emilia Romagna Via Sant'Isaia 18

Coulomb '11

A Compact Post-acceleration Scheme for Laser Generated Protons

P. Antici, L. Lancia, M. Migliorati, A. Mostacci, L. Palumbo, L. Picardi, C. Ronsivalle

Motivation and context

Starting point: we consider "today" measured parameters and try to make beamlines out of it

Improvements using beam shaping with conventional accelerator devices

Combined accelerator

Logan, Caparasso, Roth, Cowan, Ruhl et al. (LBNL-LLNL-GSI-GA) (2000)

Focalisation using Quadrupoles

M. Schollmeier et al., PRL 101, 055004 (2008)

Injection studied using RF-cavity

4

S. Nakamura et al. Jap Jour. Appl. Phys. 46 L717 (2007)

Beam shaping with conventional accelerators becomes more fashionable

Focusing with Solenoids

K. Harres et al J. Phys Conf. Series 244 022036 (2010) F. Nürnberg et al., PAC 2009

V. Bagnoud et al., APB (2009) 8 T solenoid

Post-acc with modified DTL

A. Almomani et al., Proceeding IPAC (2010) **N** General scheme for beam capture and post-acceleration

6

Looking for the best compromise in terms of

- 1) Highest (stable) energy
- 2) Highest dose
- 3) Lowest energy spread
- 4) Smallest beam divergence
- 5) Fully characterized source
- 6) Feasible

Focusing & energy selection: ultra-fast laser-triggered ion micro-lens

T.Toncian et al; Science 16 Feb. (2006) Patent: 10 2005 012 059.8 PILZ (2005)

The micro-lens offers (tunable) energy selection

10.

- 6.9 to 7.1 MeV after the cylinder \rightarrow 2 10⁹ protons (320 pC)
- transverse source sizes (FWHM): x=y=80 μ m with σ x= σ y=20 μ m
- residual divergence: x'=y'=40 mrad with σ x'= σ y'=9 mrad

• un-normalized emittance 0.180 mm.mrad

Simulations: Parmela / TStep

Drift Tube Lin(ear)ac(celerator) designed with EM Field solver for particle accelerators

We used typical state of the art capturing sections and accelerating structures DTLs (SNS) 48 cells, 0.17 MeV/cell, f=350 MHz

13

We use the drift-kick method (electric fields are designed with SUPERFISH, average = 3 MV/m)

Parmela results without space-charge

Space charge effects

Average current for 350 MHz (all particules = 112 mA), SNS is 0.11 mA

P. Antici et al., J. of Applied Physics, 104, 124901 (2008)

SCDTL improves capturing and post-acceleration

SCDTL:

- Short DTL tanks + side coupling cavities
- Side coupling cavities on axis with very small Permanent Magnet Quadrupole (PMQ) (3 cm long, 2 cm o.Ø, 6 mm i. Ø) for transverse focusing.
- Designed for medical applications
- S-band (3 GHz) very versatile to develop

L. Picardi et al., "Struttura SCDTL", Patent n. RM95-A000564

Frequency	3 GHz
Number of modules	2
Number of tanks/module	11
Number of cells/tank	4
Inter-tank distance	4.5 $\beta\lambda$ in module #1,
	4.5 $\beta\lambda$ -3.5 $\beta\lambda$ in module #2
Bore radius	2 mm in module #1,
	2.5 mm in the module #2
Total length	2.59 m
Average electric field, E ₀	11.3 MV/m
Acc. electric field, E ₀ T	between 7 and 7.75 MV/m
Synchronous phase, ϕ_s	-30°
Maximum PMQ gradient	220 T/m
RF power for the structure	<1.5 MW

Lattice structure using Side Coupled DTLs

Total length	2.59 m
Average electric field	11.3 MV/m
Acc. electric field, E_0T	7 - 7.75 MV/m
Max PMQ gradient	220 T/m

18

K. Harres et al., Phys. Plasmas 17, 23107 (2010)

Output of SCDTL

lstituto Nazionale di Fisica Nucleare

Beam dynamics with space charge yield high output current

Transmission (red points), output norm. emittance (blue points) versus the input current

TSTEP, 3 10⁵ macroparticles

Total output current (red) and useful output current (i.e. 0.6 MeV around maximum)(blue) versus the input current

Useful output current=13 mA, ~36 % of total

Spectrum becomes even more monoenergetic using the SCDTL

Normalized energy spectrum for 100 mA input current and two different lengths of the leading drift.

We have a laser-driven proton beamline !

P. Antici et al., PoP 18, 073103 (2011)

Study at the proton source

Case	Input σx (μm)	Input σx' (mrad)	Input rms unnormalize d emittance (mm-mrad)	Total output current (mA)	Useful output current (mA)	Output rms normalized emittance (Exn*Eyn)0.5 (mm-mrad)
1	20	9	0.18	37	13	0.264
2	40	9	0.36	64	26	0.197
3	20	18	0.36	30	10	0.210
4	40	18	0.72	47	20	0.209

Sensitivity study (typical for a beamline)

Study with the lattice structure

P. Antici et al., Submitted to J. Plasma Phys

50 runs, values uniformly distributed ±|Error amplitude|

- It is possible to couple laser-generated protons to a high frequency LINAC in a compact acceleration hybrid scheme.
- A current between 13 and 26 mA can be captured and accelerated up to 15.5 MeV in ~3 m.
- A 10 Hz laser repetition rate corresponds to an average proton current of 43-86 pA that could be used to perform radiobiology experiments.
- Conventional accelerator community could provide necessary know-how and techniques to reach laserdriven beamlines

Thank you for your attention

