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A COMPACT REGULAR OPERATOR WITHOUT MODULUS

Y. A. ABRAMOVICH AND A. W. WICKSTEAD

(Communicated by Palle E. T. Jorgensen)

Abstract. We construct an operator with the properties mentioned in the title.

Without the regularity assumption such an example was first discovered by U.

Krengel.

1. Introduction

It is a classical result due to Krengel [Kl] (see also [AB, Example 16.6]) that

a compact operator on a Banach lattice does not necessarily have a modulus.

The aim of this article is to strengthen this result by showing that, even under

the additional assumption of regularity, a compact operator may still not have a

modulus. Recall that an operator is regular if it can be written as the difference

of two positive operators. It follows from our example that there are compact

sets in Banach lattices that are bounded above but fail to possess a supremum

(else we could use the Riesz-Kantorovich formula to construct the modulus of a

compact regular operator). Since this rather fundamental counterexample seems

to have been overlooked in the literature, we present in the next section a direct

construction of such a set. This result should be compared with another classical

result of Krengel [K2] that each compact subset A of an arbitrary C(K)-space

has a supremum, and consequently, each compact operator T: X —> C(K),

where X is any Banach lattice, has a modulus. Some relevant information

about the characterizations of compact subsets of AM-spaces may be found in

[AB, Abi, W].
We refer the reader to [AB, S, V, Z] for the basic definitions in this topic.

2.  A COMPACT SET THAT IS BOUNDED ABOVE BUT HAS NO SUPREMUM

Before presenting the example, let us establish some notation. If E is a Ba-

nach lattice, we shall denote by c(E) the space of all norm convergent sequences

(x„) from E ; when given the usual linear operations, the coordinatewise order

and the norm ||(x„)|| = sup{||jc„||/^: n e N}, this becomes a Banach lattice. If

(En) is a sequence of Banach lattices, then the space cq(E„) of all sequences
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(x„) such that x„ e E„ and \\x„\\ —> 0, is also a Banach lattice under the same

operations and norm. We will denote by 1 the constantly one sequence in c,

the space of all convergent real-valued sequences, and by en the real sequence

with all terms zero except for the nth, which is one. Similarly we will use the

notation l[o,i] to denote the constantly one function on [0, 1]. If {x„) e c

and tp e E, then (x„) ® tp will denote that element of c(E) with nth term

x„ x tp , the usual product of the element tp e E by the scalar x„ .

Define a set of elements A = {y"-k: 1 < k < n, n e N} U {0} in c(Lx[0, 1])

as follows. Let yn>k be the sequence with all entries zero except for the 2«th

one, which is the characteristic function of the interval [(k- l)/n, k/n]. Then

we see that ||y"fc|| = l/n so that the set A is certainly norm-compact. The

sequence 1 ® lm, xx is in c(Lx[0, 1]) and is an upper bound for A . It remains

only to show that the set A has no supremum.

If some (z„) e c(Lx[0, 1]) is any upper bound for A , then we have z2„ > 1

on each interval [(k - l)/n, k/n] and, therefore, z2n > 1 on the whole of

[0, 1]. Clearly also z2n+x > 0. Conversely if z2n > 1 on [0, 1] and z2n+x > 0,

then (z„) will be an upper bound for A. We show now that such an upper

bound (z„) cannot be a supremum. Since z„ —> z^o e Lx[0, 1], we see that

Zoo = lim z2n > 1 on the whole of [0, 1 ]. Choose «o such that n > no implies

that ||z„ - Zoo||i < 3 ; then for such n we have \\zn\\x > \\z00\\x - j > j . In

particular, if n > n0 then z„ ^ 0. But if (z„) is an upper bound for A,

then picking any odd integer m > no and replacing zm by the zero function

in Lx[0, 1] gives us an upper bound for A that is strictly less than (z„). It

follows that A has no supremum.

Note that a Banach lattice containing a set like A cannot be Dedekind com-

plete. Otherwise, being order bounded, A would have a supremum.

3.  A REGULAR COMPACT OPERATOR WITH NO MODULUS

Before presenting this example let us recall from [AW] the following result,

which is easily proved by induction.

Lemma. For any elements xx, x2, ... , xn in a Riesz space

sup lY^CkXk-ek e {-1, 0, l}\ =¿|JCjt|.
U=i J       k=X

Let l™ denote m-dimensional real space with the pointwise order and the

supremum norm || • ||oo . It is routine to verify that co(l^) is norm and or-

der isomorphic to the familiar sequence space Co. Let r„ denote the nth

Rademacher function on [0, 1] (see [AB, p. 161]). The only properties that we

need of these functions are that they are orthonormal in L2[0, 1] and all have

modulus that is constantly one (almost everywhere). Our example will be an

operator from the sequence space c into c{L2[0, 1]).

Define an operator Tn:l^ -* c{L2[0, 1]) by

^2/I

*k=

(n even).

j i    \ = { T"e* ® T,k=x a^k    (n odd),
"[  k)      I 0    (n

Using the orthogonality of the Rademacher functions we see that if n is odd
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|T„K)|| < —||e„|| x
2"\

k=X

&k\

then

2"

Ylakrk
k=X

<2-"l2\\(ak)\\00,

so that || Tn || < 2~nl2 no matter whether n is odd or even. It follows that we

may define a compact operator on Co(l^) by T(x„) — Y¿ Tnx„ . If we define

7T = 0 and use the identification of Co{l^) with Co, then we have produced a

compact operator from c into c{L2[0, 1]).

Define also Sn:l£ -* c(L2[0, 1]) by

Sni<Xlc) = 2n~ [ E0¿ ) en® l[0,X)

for all n e N. Note that ||5„|| = 1 . Observe now that if F is a finite subset of

N , x„ e l^ and ||xrt||oo < £ for all n e F , then || ¿ZneF^nX„\\ < e as

7 _, S„xn

neF

sup
yt€N

/ _, snxn 1
«6F / ,

||SjfcJCfe||2   ifkeF,

io
sup < " ' .„ , < e.
fc6N I 0 if /c g F    -

It follows that if xn e ¿2? and ||x„||oo -> 0, then X^,,*,, converges in norm

in c(L2[0, 1]) to an element, which we will denote by S{x„). Define also

S\ = (2 x 1) ® l[o, i] • Obviously S is a linear operator from c to c(L2[0, 1]).

We claim that S is a positive majorant for T.

If (*„) G Co(/2°?)+ » the" *« = i<x{xn), 4"'. • ■ • > 4"'). where each a¡t° - ° '
and hence

(s-r)(x,,)= £(s„-:r„)*„

E ?«e«
«=1

¿4n)(i[o,i]-^
lk=x

>0

(as l[o, i] > rk > -l[o, i]) • Also note that

1
2"

S{Xn) = ¿2 S"X" = E Y"6" ®     E ^     £ 0.
n=l n=l \/t=l /

In order to complete a proof that 5 > T, 0 we need to consider positive

elements of c of the form 1 + (xn), where {x„) G co(^) • By the positivity of

the sum, x„ > (-1, -1, ... , -1 ), where there are exactly 2" terms equal to

-1. Thus

1
2"

5(1 + (*„)) > (2 X 1) ® 1[0)1] + J2 Yn Et"1^« ® 110, 1]
n=X        k=X

00

= (2xl)® lm>1] + 5^(-e„) ® l[o, i] > 0
«=1
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and

oo      . 2"

{S - T)(l + (Xn)) > (2 x 1) ® 1[0>1] + £ —ett ® £ -(|r*| + 1)

H=l fc=l
OO

= (2x l)®l[o,ij-2 53^®1[0.n >0.

It follows that S > T, 0 and, therefore, T = S - {S - T) is a regular operator.

It remains to prove that T fails to have a modulus. If U > T, —T then on

each /£?, for n odd, we have

(1, 1,..., l)>(e,,e2> ... ,V)>(-1, -1, ... , -1)

for any choice of ek e {-1, 0, 1}. Thus

1 T
{7(1, 1, ... , 1) > Tn(sx, e2, ...) = ^en®^£krk

k=X

and by the lemma we have

1 2"
U{\, 1, ... , 1) > 2^e«®Elr*l =i'«®1[0,i]-

*:=1

This happens for all odd n, so certainly lim„_00(t/l)„ > l[o,i]- Since each

Tx vanishes on even coordinates in c(L2[0, 1]), we see that if |T| existed it

would have (|T|x)2« = 0 for all n and x. In particular, (|7*|1)2„ = 0 and

hence limn_00(|r|l)„ = 0. As this contradicts the fact that this limit must be

at least lr0> xx, this shows that |T| cannot exist.

Notice that, as in the previous section, such an example is only possible if the

range space Y is not Dedekind complete. For if Y were Dedekind complete,

then by the classical Riesz-Kantorovich theorem, the space Lr(X, Y) of all

regular operators from any vector lattice X into Y would be a vector lattice

(even a Dedekind complete vector lattice) and | T\ would exist.

4. Comments

(1) The operator S constructed in §3 is easily seen to be noncompact. It

is therefore still possible that every compact regular operator majorized by a

compact positive operator has a modulus (and even possible that the modulus

must be compact).

(2) In spite of the "negative" nature of the results presented in this article, we

still hope that it is possible to impose extra assumptions on a compact operator

T that would imply some nontrivial information about |T|. For example, the

assumption in ( 1 ) might suffice.

On the other hand, we would like to stress that such additional hypothetical

conditions will have to be applied to an individual operator rather than to the

whole class of compact operators. Otherwise, as the following result (see [Abl,

Corollary to Theorem 5.2]) says, the nature of the space Y is predetermined.

Let X and Y be Banach lattices, where X is not a KB-space, i.e., X contains

a subspace isomorphic to Co . Then the following four conditions are equivalent.

(a) Y is an AM-space, (b) for each compact T:X-*Y there exists 17^|: A' —>■ Y ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A COMPACT REGULAR OPERATOR WITHOUT MODULUS 725

which is also compact, (c) each compact operator T:X-^>Y is regular, (d) each

compact operator T:X —> Y is regular as an operator from X to Y**.

Each of the implications (b) =>• (a), (c) => (a), or (d) => (a) shows that

a global condition on the whole space K{X, Y) of compact operators implies

immediately that Y is a classical AM-space.

(3) Using Khinchin's inequality [LT, Theorem 2.b.3], our example in §3 may

be modified to give an example of a regular compact operator taking values in

c{Lp[0, 1]), with no modulus, for each p e [1, oo). Also we can replace the

discrete space c by the space C[0, 1] and consider a corresponding analogue

of the space c{Lp[0, 1]).
(4) The following question was asked in [Ab2] (Question 3, p. 139). Does

there exist a pair of Dedekind complete Banach lattices X and Y such that

K{X, Y) c U{X, Y) but U{X, Y) ¿ L{X, Y) ? (Here L(X, Y) denotes, as
usual, the space of all continuous operators from X to Y.)

We give below a positive solution to this problem. Let X = C{Q), where

Q is an arbitrary (infinite) extremally disconnected compact space. Let qo

be a fixed nonisolated point in Q and let Y - {f e X:f(q0) = 0}. Both
X and Y axe Dedekind complete AM-spaces. By the theorem cited in (2)

K{X, Y) c U{X, Y). Moreover, | T\ G K(X, Y) for each T e K(X, Y).
We claim that L{X, Y) ¿ U{X, Y). Let T e L(X, Y) be defined as

(Tf)(q) = f-f{qo)l. Obviously T e L{X, Y) and Tf = f for all / G Y . It
is easy to see that T is not regular. Indeed, since Y is Dedekind complete, and

if T were regular, then there would exist its positive part T+ , and for each

x e X+ the value T+x e Y would be computed by the Riesz-Kantorovich

formula. In particular, we would have

r+l = y-sup{T/:0</<l}.

Observe now that Y is an ideal in X and, therefore, Y - sup{D) = X —

sup(D) for each order bounded subset D of Y .

On the other hand, Y - sup{Tf: 0 < / < 1} cannot exist, since otherwise

T+l = Y-sup{Tf:0<f< 1}

= X-sup{7y:0</<l}

> X - sup{Tf: 0<f< l&/(<7o) = 0} = 1.

Since T+1 is in the ideal Y, this would imply that 1 e Y, which is a
contradiction.

However, under the natural additional assumption that at least one of the

Banach lattices X or Y be reflexive, Question 3 from [Ab2] remains open.

(5) The first author wants to use this opportunity to improve the phraseology

of Theorem 8.12 in [Ab2]. The concluding sentence, "Then S is finite," should

have read, "Then C{S) is Dedekind complete." The original version is correct

but the modification makes it easier to understand the comment that follows

Theorem 8.12.
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