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Abstract

An analytically compact model for the nano-scale double gate MOSFET based on McKelvey’s

flux theory is developed. The model is continuous above and below threshold and from the

linear to saturation regions. Most importantly, it describes nano-scale MOSFETs from the

diffusive to ballistic regimes. In addition to its use in exploring the limits and circuit applications

of double gate MOSFETs, the model also serves as an example of how semiclassical scattering

theory can be used to develop physically sound models for nano-scale transistors.

I. INTRODUCTION

The double gate (DG) MOSFET offers the possDecember 4, 2001ibility of channel length

scaling to the 10nm scale [1-3]. The device displays high transconductance and near-ideal

subthreshold swing, and the two gates provide good electrostatic integrity which minimizes

drain-induced barrier lowering and threshold variation with channel length [2-5]. Simulations of

ballistic DG MOSFETs have been reported in [2], and nonequilibrium Green’s function
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simulations have been reported in [3]. There is, however, also a need for compact models that

capture the essential physics; one based on a simplified energy transport model has been reported

by Baccarani and Reggiani [5]. Conventional transport models, however, can fail for ultra short

channel devices [6, 7]. Drift-diffusion fails to capture velocity overshoot, and models of the

energy transport/hydrodynamic type fail in the ballistic limit [7].

Our objective in this paper is to present a sDecember 6, 2001imple, compact model for the nano-

scale DG MOSFET using a flux method originally introduced by McKelvey [8]. We use a

semiclassical approach because recent work shows that quantum effects in the direction of

transport are minor for channel lengths above about 10 nm [3]. McKelvey’s flux method

captures the essential physics of carrier transport in transistors and has been previously used for

thin-base diodes and bipolar transistors [9]. In this work, we extend our initial work on

MOSFETs to relate the current to the terminal voltages and to cover the full range of gate and

drain biases, the sub-threshold and above threshold linear and saturation regions of operation.

Our purpose in this paper is not to present new physical insights; it is to introduce a new

approach to developing compact circuit models for nano-scale MOSFETs. We develop our

model for a familiar transistor, but this work also indicates how semiclassical scattering theory

(i.e. McKelvey’s flux method) can be used to model nano-scale devices more generally.

The paper is organized as follows. In Sec. II, we will describe the model device, scattering

theory, and the charge in the channel. In Sec. III, we will discuss the procedure to calculate

backscattering coefficient, a key parameter in scattering theory. In Sec. IV, ballistic and quasi-

ballistic results from our new model will be compared with 2D numerical NEGF simulations of
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the same device. Finally, Sec. V will summarize the results and conclusions of this work. The

appendices provide derivations of important formulas used in this work.

II. THEORY

A. Model Device

Figure 1 shows the model device considered in this work, a symmetrical, double gate (DG)

MOSFET. The simple geometry of this model facilitates the development of analytical models,

but we believe that the general approach could be applied to bulk MOSFETs as well. The gate

length, L, is 20nm, and the Si-SiO2 interface is parallel to (100) plane. The top and bottom gate

oxide thickness are tox = 1.5 nm, which is assumed to be scaling limit of oxide thickness before

excessive gate tunneling current can be tolerated. The Si body thickness, tSi, is taken as 1.5 nm.

This exceptionally thin body curbs short channel effects for this device. A strong warning is in

order. For the thicker bodies that are likely to be used in practice, 2D electrostatics will be

important. The same gate voltage, VGS, is applied to both gates. The channel is undoped since the

volume of the channel of this device is of the order of 10-19 cm3, so even doping at a level as high

as 1020 /cm3, would result in only few dopants in the whole channel. The n+ source and drain are

degenerately doped at a level of 1020 /cm3. While the value of carrier mobility inside such ultra-

thin Si channel is still an open question (simulated and measured values can be found in [11,

12]), it is clear that though the undoped channel increases the channel mobility by eliminating

ionized impurity scattering, the overall mobility will be reduced due to the proximity of two Si-

SiO2 interfaces and hence increased surface roughness scattering. In the present work, a low field

mobility of 120 cm2/V-sec is assumed in the channel. All calculations are done for temperature T

= 300 K.
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B. Flux Treatment of Carrier Transport in MOSFETs

Conventional transport models are based on the net current, but McKelvey’s flux method

decomposes the current into directed fluxes traveling in the positive and negative directions. The

method can be viewed as a one-speed solution to the Boltzmann transport equation and is valid

from the diffusive to the ballistic regimes. The application of the flux method to nano-scale

devices has been reported in [7, 9, 10, 13].

Figure 2 illustrates the directed fluxes in a MOSFET. We focus on the fluxes at the top of the

source-to-channel barrier, which we define as the beginning of the channel. The positive directed

flux, F+(0), is due to thermal emission from the source over a barrier whose height is

determined by MOS electrostatics. Under ballistic conditions, the negative directed flux is due to

thermal emission from the drain and is given by thermionic emission as

TkqV
b

BDSeFF /)0()0( −+− = , (1)

where non-degenerate carrier statistics have been assumed for simplicity. (Degenerate statistics

are essential when operating above threshold, and (1) is generalized in Appendix A to remove

the non-degenerate assumption.)

In the presence of scattering, the negative directed flux contains a component, rF+(0) due to

backscattering of the positive directed flux. Here, r is a backscattering coefficient, a real number

between zero and one. The negative directed flux also contains a component from the portion of

the flux injected from the drain that transmits to the top of the barrier. We write this component

from the drain as )0()1( −− bFr , which is the product of the probability that the drain-injected
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flux transmits in the presence of scattering times the probability that it transmits by thermionic

emission. (This result can be obtained by cascading scattering matrices for scattering along and

for thermionic emission alone using methods described in Chapter 8 of [14].) Finally, adding the

source- and drain-related contributions, we find

)0()1()0()0( −+− −+= bFrFrF . (2)

Note that we have used the same backscattering coefficient, r, to describe source-to-drain

backscattering and drain-to-source backscattering. The two should be equal only near VDS = 0,

but when VDS is larger than a few kBT/q, drain injection is completely cut-off, so the value of r is

not important.

Having defined the directed fluxes, the drain current is readily evaluated from

IDS = Wq F+ (0) − F−(0)[ ] (3)

(note that the carrier fluxes are in units of per cm-s). We can also evaluate the inversion layer

density at the beginning of the channel from

Qi(0) = q
F+(0) + F −(0)[ ]

υ T

, (4)

where υT is the equilibrium uni-directional thermal velocity (i.e., the average velocity of carriers

crossing the plane x = 0 in the positive direction). Since we assume that near-equilibrium

conditions prevail near the top of the barrier, we assume that the velocities associated with the

positive and negative directed fluxes are identical. From (3) and (4), we find the drain current as
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Finally, using (1) and (2), we obtain IDS in terms of VDS and VGS (since VGS controls Qi(0)),



























+
−+

−








+
−=

−

−

TkqV

TkqV

TiDS
BDS

BDS

e
r

r
eυ

r

r
QWI

/

/

1
1

1

1
1
1

)0( . (5b)

Although (5b) is much different from the expressions developed from traditional MOS theory, it

has been shown in [10] that under high gate and drain bias, the resulting on-current expression

resembles that of a conventional velocity model except that the saturation velocity is replaced by

the thermal injection velocity. Similarly, it has been shown in [24] that the resulting current

expression in the linear regions reduces to the conventional expression except that W/L is

replaced by W/(L+λ), where λ is the mean-free-path for backscattering.

In practice, the non-degenerate assumption used here to simplify the mathematics is not valid

above threshold. As shown in Appendix A, this assumption is readily removed to express the

drain current as
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The first factor on the RHS of (6) is the inversion layer charge at the top of the source-to-channel

barrier, which is determined by MOS electrostatics. A closed form expression for Qi(VGS) which

is continuous over the full range of gate voltages is given in the next subsection. The second
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factor describes the reduction of current due to carrier backscattering. The backscattering

parameter, r, is in general, a function of both the gate and drain bias. The third factor is the

degenerate thermal injection velocity, which depends on Qi(0) through the location of the Fermi

level normalized to kBT/q, Fη . The fourth factor accounts for the drain bias dependence; it is

proportional to UDS = VDS/(kBT/q) for low drain bias and approaches one for high drain bias.

Finally, note that when r = 0, this model reduces to the ballistic model of Assad et al. [15] and

Natori [16].

C. Electron Charge in the Channel

The thickness of the Silicon body is only a few nanometers, so the charge inside the channel can

be modeled as two-dimensional electron gas in a quantum well [17-19]. The Si-SiO2 interface is

parallel to (100) plane of Si, and such confinement removes the six-fold valley degeneracy of

bulk Si [20]. Instead, there appear two ladders of energy levels from two different values of

effective masses. The first ladder results from higher longitudinal effective mass, ml
*, and has a

twofold valley degeneracy. The second ladder has a fourfold valley degeneracy. In this work, it

is assumed that only the lowest sub-band with its two degenerate valleys is occupied. For thicker

Si bodies, where more than one sub-band is populated, this simple one sub-band treatment can be

modified [16]. An expression for Q(VGS) assuming one sub-band can be derived following

arguments similar to those in [5] and is

1

)(

εχ)1log(
2

)(
2 ++−−+= m

qN

VQ

B

G

GS
GS φe

q

Tk
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VQ
V D

GS

, (7)
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where N2D is the 2D effective density of states as given in (A12) and (A13). The bottom of the

first sub-band is,

( )
( )2*

2

1
2

ε
Sil tm

π!= .

Equation (7) assumes 1D electrostatics, and the curvature of conduction band normal to Si-SiO2

interface is assumed to be negligible. Two-dimensional effects like DIBL and punch-through are

not considered here. For our model device, ignoring 2D effects and considering one sub-band

occupation are justifiable since the channel is very thin. Two-dimensional electrostatics can be

treated, but that is not the subject of this paper.

III. ANALYTICAL EVALUATION OF r

Although hot electrons near the drain of MOSFET’s have a mean free path of a few Angstroms,

which is much shorter than present day channel lengths, it has been shown that a 100 nm channel

length device operates at roughly 40% of the ballistic limit [15, 21]. The reason is that a short

low field region near the source end of the channel controls the steady state on-current of

MOSFET’s [10]. Hereafter we will denote the critical length as " . Once the low field

momentum relaxation length, λ , becomes comparable to length of this critical region, quasi-

ballistic transport occurs. The backscattering coefficient, r, is related to " and λ according to

[10],

λ
r

+
=
"
"

. (8)
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The problem of carrier backscattering from a short, high-field region is a complex [9] (and still

controversial) one. But the work in [10] (see also [13]) establishes the fact that the backscattering

that is most important to the drain current is heavily weighted towards the source. Although a

deeper understand is still needed, (8) can serve in a physics-based, but necessarily empirical

model.

In this work, we calculate r analytically by evaluating )( DSV" and λ (VDS, VGS). Under non-

degenerate conditions, the low-field momentum relaxation length, λ , can be obtained from low-

field effective channel mobility [10]. Degenerate carrier statistics are important above threshold,

however, and Appendix D describes how we extract λ from the mobility under degenerate

conditions.

In (8), " is the distance from the top of the source channel barrier to the point where potential

drops 







q

Tk Bβ , and β is a numerical factor greater than 1. According to [10], 1β ≅ for non-

degenerate carriers. Carrier degeneracy at the top of the barrier, however, increases the length of

this critical region and β becomes slightly larger than 1. The accurate shape of the potential

profile can be found by two-dimension self-consistent numerical solution of transport and

Poisson’s equations. Such a numerical calculation is against the sprit of compact modeling, so to

keep this model as simple as possible, we take an analytical approach. In Appendix B, a

simplified 1D Poisson’s equation is solved. It is shown that channel potential profile (at least

near the beginning of the channel) can be approximated in power law form, i.e.,
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αKxxV
1

)( = . (9)

The curvature of the potential profile at the beginning of the channel depends on the parameter

α , which is controlled by the transport model and by self-consistent electrostatics. In Appendix

B, the approximate range of this parameter is calculated for two transport models, ballistic and

drift diffusive. It is shown that 0.66 < α < 0.75; the lower value is for diffusive transport and the

higher value is for ballistic transport. Equation (9) is based on a very simple model that assumes

that the gradual channel approximation applies only at the beginning of the channel. This simple

analysis is however, consistent with our numerical simulations, and the parameter, α , that we

use to fit the simulated characteristic turns out to be close to the result of this simple analysis.

Although two-dimensional electrostatics will affect α , this 1D analysis indicates its approximate

value.

At the top of the source channel barrier V(0) = 0, and at the drain end of the channel V(L) = VDS.

At "=x we have,









=

q

Tk
V Bβ)(" . (10)

From (9) and (10), the length of the critical channel length is found to be

α









=

DS

B

V

qTk
L β" . (11)

In our model, α and β are taken as parameters which can best fit measured (or simulated)

output characteristics. As discussed earlier, we expect α 7.0≈ and that β should be somewhat
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greater than 1. Equation (11) breaks down as 0DSV → since " becomes larger than the channel

length. Physically, at very low drain bias, the entire channel length, L, acts as the critical

scattering length. Therefore, whenever the calculated " from (11) was found to be larger than L,

L=" was assumed.

V. RESULTS

To test the model, analytical results were compared to non-equilibrium Green’s function

simulations of the same device. Before presenting and discussing the results, we briefly discuss

the methodology used here to obtain analytical results for the model device. In the case of

diffusive transport, for both analytical and numerical methods, a low field effective mobility,

µeff,0 = 120 cm2/V-sec, was assumed in the channel. For the analytical model, the momentum

relaxation length, λ , was calculated from µeff,0 and the critical length, " , was obtained from (11)

and then these two were used in (8) to get r. Excellent agreement of analytical and numerical

results was found even for the simple model for r. This suggests that (6) has the potential for

predicting device behavior.

In Appendix A, the following expression for Q(VGS) is derived,

( ) ( )
( ) 








ℑ

−ℑ
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r
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In (7), the channel charge density, Q(VGS), was expressed as a function of the gate bias, VGS. In

(12) the same charge density is related to the Fermi level, Fη . Together, these two equations

allow us to estimate carrier degeneracy at the beginning of the channel for a given gate and drain
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bias. To evaluate Fη for any drain and gate bias, (7) and (12) were solved simultaneously with r

= 0 in (12), and a closed form expression relating Fη to VGS was found. Ignoring the

backscattering coefficient, r, may not be a good assumption for diffusive transport, but it is

shown in Appendix C, that even when 0≠r , this assumption doesn’t introduce any significant

error. The calculated Fη is then inserted along with biases and Q(VGS) in (6) to calculate transfer

and output characteristics. To evaluate Fermi-Dirac integrals, expressions in [22] were used.

Figure 3 shows the carrier density vs. gate voltage on logarithmic and linear scales at the top of

the source-channel barrier at zero drain bias. The results marked by circles were computed by a

2D self-consistent simulation [3, 23], and the solid line was obtained from (7). The results agree

remarkably well both in sub-threshold and above threshold regions. For this 20nm device, the top

of the barrier is the middle of the channel (at zero drain bias) where the diffused carriers spilling

from over the heavily doped (1020 /cm3) source and drain are negligible, so a 1D electrostatic

analysis is valid. However, in shorter channel devices the diffused charge is not negligible at the

top of the barrier, which is a limitation of 1D electrostatic analysis used here.

In Fig. 4, the ballistic (r = 0) transfer characteristics (IDS vs. VGS) of the model device are shown.

Results from the analytical compact model of (6) (solid lines) are seen to be in good agreement

with the corresponding numerical simulations. For this 20 nm channel length device, the body is

thin enough (1.5 nm) to curb 2D effects, so very small DIBL is observed between high (VDS =

0.55V) and low (VDS = 0.05V) drain bias conditions. The sub-threshold characteristics are ideal

for both the analytical and numerical results. Figure 4 shows that (6) can be used to describe both

the sub-threshold and above threshold behavior of a ballistic device.
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Figure 5 shows the output characteristics of the ballistic DG MOSFET as calculated from (6),

and it can be seen that the results are continuous from the linear to saturation regions of device

operation. Two things should be pointed out in this plot. First, even with ballistic transport, the

low drain bias (linear region) characteristics show a finite channel resistance as discussed by

Assad et al. [15]. Second, the saturation current does not vary according to (VGS-VT)2, but closer

to (VGS-VT). This happens because at high drain bias the current depends on the product of

charge times injection velocity. The charge varies as (VGS-VT), and the injection velocity is nearly

constant.

In Fig. 6, the output characteristics of the DG MOSFET in the presence of scattering are

displayed. The solid lines are calculated using the compact model of (6). The backscattering

coefficient, r, was estimated from (8), using the critical length from (11), where α and β were

treated as parameters to produce the best fit with the numerical NEGF simulation shown by the

diamonds in the same figure [23]. A single pair of values, i.e. 0.57=α and 1.18β = , was

sufficient to obtain best fit for full ranges of VGS and VDS. The value of β is found to be close to

but greater than 1, as expected.

The value of α , obtained by the fitting process needs some discussion. In Appendix B, the

approximate range was given as 0.66 ≤ α ≤ 0.75. The value of α which produced the best fit, is

close to but smaller than the lower range. The fact that it is outside the expected range can be

attributed to the 1D assumption in the derivation, which pushes the calculated range of α to a

higher value. When a realistic channel potential profile is computed from a self-consistent
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numerical solution, we observe that the profile has higher curvature (smaller α ) at the beginning

of the channel (source end), but much lower curvature (higher α ) throughout the rest of the

channel. So α is a function of position, and this results from sharing of the charge density by the

drain and gate in (B1). For the simple derivation in Appendix B,
2

2

dy

Vd
was ignored. This

removes the control of gate bias on the curvature of channel potential profile, and results in a

constant α . This calculated α represents an average curvature for the entire channel, and

naturally it is smaller than the curvature at the beginning of the channel where we are mostly

interested in. From (9), we can see that, this smaller curvature, results in higher limiting values of

α , and hence the range of α calculated by 1D analysis is higher than the real value.

Since λ is the controlling factor that determines r, the channel mobility will continue to function

as a crucial device parameter even in nanoscale MOSFET’s where for almost the entire channel,

carrier transport is non-local and off-equilibrium. Higher channel mobility results in a longer

momentum relaxation length, λ , which in turn, decreases r, and hence increase the on-current, as

can be understood from (6). Figure 7 shows the mobility required to fulfill the on-current target

for our model device. Here, to calculate r, the same values of α and β were used as for Fig. 6.

The ballistic limit of the device is also shown in the figure.

V. SUMMARY AND CONCLUSION

In this paper, we introduced a new approach to compact transistor modeling, one with roughly

the complexity of a SPICE model but which is developed from basic physical reasoning and is

therefore expected to be valid to the scaling limits of transistors. To describe quasi-ballistic
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transport, an analytical approach was proposed to compute r, the key parameter in the analytical

model. The analytically calculated I-V characteristics display excellent agreement with detailed

2D numerical simulations. The results also point out the importance of the channel effective

mobility in the very short channel MOSFET’s, where almost the entire channel transport is non-

local and off-equilibrium.

For further development of this prototype circuit model, several additional factors have to be

addressed. The factors include: (1) 2D electrostatic effects in calculating Q(VGS) and α (2)

Effects of source and drain series resistance (3) Closed form expressions for α and β . Although

we have focused on a specific device, the DG MOSFET, this work is an example of how flux

method can be used to model nanotransistors more generally. New models of this class can

provide a useful conceptual guide for device development as well as circuit models for new,

unconventional transistors.
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Appendix A

In Fig.1, the current is evaluated at the source end of the channel as the difference between

opposite-going fluxes, i.e.,

)]0()0([ −+ −= FFWqI DS . (A1)

The source-injected flux, )0(+F , and the charge density in this flux, )0(+n , can be expressed as

[15]

( )FTD ηNF υ 2/12)0( ℑ=+ , (A2)

and

( )FD ηNn 02)0( ℑ=+ . (A3)

It should be pointed out that, )0(+F and )0(+n are independent of channel transport.

The negative going flux, )0(−F , at the source end is composed of two components. The first

component is the fraction of )0(+F that is backscattered from the channel. The second

component is the fraction due to carrier injection from drain. In the case of ballistic transport, the

later part and the charge density in it can be expressed as [15]

( )DFTDb UηNF υ −ℑ=−
2/12)0( , (A4)

and

( )DFDb UηNn −ℑ=−
02)0( . (A5)
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In (A2)-(A5), the effective 2D density of states is,

2 22
B

D D

k T
N g= , (A6)

where

22 π!
t

D

m
g = . (A7)

The non-degenerate thermal velocity of a hemi-Maxwellian distribution is

πm
T2kυ

t

B=T . (A8)

The transmitted drain flux at x = 0 rapidly approaches zero as drain bias exceeds few kBT/q, and

so its contribution to the total current is not significant. Therefore, though in general, the

backscattering coefficients DSr → and SDr → are different, we take the backscattering coefficient, r,

to be same for the two opposite directed fluxes. When scattering is present, therefore, )0(−F can

be expressed as,

)0()1()0()0( −+− −+= bFrrFF . (A9)

From (A2), (A4) and (A9), we find,

( )
( )F

DF

η
Uη

rr
F

F

2/1

2/1)1(
)0(

)0(

ℑ
−ℑ

−+=+

−

. (A10)

Equations (A1) and (A10) combine into,
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( )
( ) 








ℑ

−ℑ
−−= +

F

DF
DS η

Uη
FrWqI

2/1

2/11)0()1( . (A11)

Now, charge density at x = 0 is the sum of charges in the opposite-going fluxes at that point, i.e.,

)0()0()0( −+ += nnn . (A12)

From (A2) and (A3), we get,

+

+
+ =

Tυ
F

n ~
)0(

)0( , (A13)

and the degenerate thermal velocity of the positive flux is

( )
( )F

F
TT η

η
υυ

0

2/1~
ℑ

ℑ
=+ . (A14)

Similarly, from (A4) and (A5), we get,

−

−
− =

T

b
b υ

F
n ~

)0(
)0( , (A15)

and the degenerate thermal velocity of negative flux is

( )
( )DF

DF
TT Uη

Uη
υ υ

−ℑ
−ℑ

=−

0

2/1~ . (A16)

At low drain bias, −
Tυ~ is almost equal to +

Tυ~ .
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The charge density in negative-directed flux, )0(−n , can be expressed in terms of the fluxes in

(A9). Assuming TTT υυυ ~~~ =≅ −+ , which is valid for 0→DSV , and since at high VDS drain flux

becomes negligible, we can write

T

b

TT υ
F

r
υ

F
r

υ
F

~
)0(

)1(~
)0(

~
)0( −+−

−+= . (A17)

or

)0()1()0()0( −+− −+= bnrrnn . (A18)

Now, substituting (A18) into (A12), and using (A3) and (A5), we get,

( )
( ) 








ℑ

−ℑ








+
−++= +

F

DF

η
Uη

r

r
nrn

0

0

1

1
1)0()1()0( . (A19)

Finally, combining (A11) and (A19), and using (A13) we get (6). Similarly, using (A3) in (A19),

we get (12).
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Appendix B

In this appendix, we will estimate the approximate range of the parameter α in (9) by

simultaneously solving a simplified Poisson’s equation and transport equation in two extreme

cases, collision free (ballistic) and collision dominated (diffusive) transport in the channel.

Poisson’s equation in the channel is

ε
ρ

dy

Vd

dx

Vd −=+
2

2

2

2

. (B1)

To simplify (B1) we assume that except for a very short region at the beginning of the channel

(top of the source-channel barrier), the electric field Ex >> Ey and the derivative of V(x) w.r.t. y

can be neglected. For an undoped channel, )()( xqnxρ −= and (B1) simplifies to

ε
xqn

dx

Vd )(
2

2

= . (B2)

This approach may be considered as the limiting case of a nano-scale transistor in which the

gradual channel approximation holds only at the top of the barrier.

Collision-free (ballistic) transport:

For ballistic transport,

)(
)(

xqWt

I
xn

υSi

DS= . (B3)

Ignoring the average thermal velocity of the carriers at x = 0, the carrier velocity in the channel

can be expressed as
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tm

xqV
xυ )(2
)( = . (B4)

Substituting (B3) and (B4) in (B2), we get,

2/1
2

2
−= V

dx

Vd γ , (B5)

where, the constant is

q

m

εWt

I t

Si

DSγ
2

= .

One boundary condition to solve (B5) is at the top of the source-channel barrier, V(0) = 0 and

0
0

=
=xdx

dV
. As the other boundary condition we take the point x= L′ where the potential

change from the top of the barrier is VDS, i.e. V( L′ )=VDS. Using these two boundary conditions

while integrating (B5), we get

4

3
( ) DS

x
V x V

L
 =  ′ 

. (B6)

Now, comparing (9) and (B6) we find that for the ballistic transport in the channel, 75.0=α .

Collision-dominated (diffusive) transport:

For collision-dominated transport in the channel, we keep only the drift term in the drift-

diffusion equation, i.e.,

dx

dV
xnµWqtI effSiDS )(= . (B7)

From (B7), the channel charge density can be expressed as
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dx

dVµWqt

I
xn

effSi

DS=)( . (B8)

After substituting (B8) in (B2) and after few rearrangements, it follows

effSi

DS

µWtε
I

dx

dV

dx

d 2
2

=







. (B9)

Integrating (B9) once and using boundary condition 0
0

=
=xdx

dV
, we get

2

1

xκ
dx

dV = , (B10)

where the constant is

effSi

DS

µWtε
Iκ 2

= .

Solving (B10) using the same boundary conditions used for ballistic case, the channel potential

profile becomes

3

2
( ) .DS

x
V x V

L
 =  ′ 

(B11)

To make the calculation simpler, while integrating (B9) and (B10), effµ is assumed to be

independent of position. Comparing (B11) with (9), we find that 66.0=α for diffusive transport

in the channel.

These two values of α , for two extreme cases provide us a good qualitative measure of the

potential profile, without extensive numerical calculation. The actual value of α is expected to
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be close to this range, i.e. 0.66 to 0.75. The lower and upper limits will vary slightly in real

devices because of the approximations used to obtain simplified results. As discussed in Sec. IV,

ignoring gate control in (B2) results in a single average α for the entire channel and this pushes

the calculated limits of α to higher values. It was observed that the value 0.57α = that resulted

the best fit of the analytical result with the NEGF output characteristics in Fig. 6, also fitted the

numerically calculated channel potential profile near the top of the barrier reasonably for all

drain biases, according to the equation,

1

( ) .DS

x
V x V

L

α =  ′ 
(B12)

Figure B1 compares the numerically and analytically computed potential profiles for a certain

bias condition and the agreement between them is visible near the top of the barrier.

The length L′ is smaller than the metallurgical channel length L, since the region between the

points x=0 and x= L′ is entirely inside the channel. The problem with (B12) is, that the length L′

is bias dependent, and it has to be extracted directly from numerical simulation. To avoid this we

took L L′ = while evaluating K in (9). As a result of this approximation, (11) overestimates

critical channel length, " , which in turn overestimates r. To estimate the error introduced due to

the above-mentioned simplification, we calculated L′ from the NEGF simulation for the entire

bias range of Fig. 6. From it, maximum value of ( L L′− ) was found to be 1.5 nm. Therefore, the

error in calculating " from (11) is no more than 7.5%. Such an error in " results even smaller

percentage error in r as calculated from (8) and thus using L instead of L′ in this work can be

justified.
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Appendix C

Equation (12) can be reformatted as

( ) ( ) 















+

++−ℑ+ℑ= − DF

F

Uη

η

DFFDGS
e

e
rUηηqNVQ

1

1
log)( 002 , (C1)

where, ( ) )1log(0
xex +=ℑ is used.

It is apparent from (C1) that at low drain bias the log term approaches zero, and so the effect of r

can be neglected in this case. On the other hand, for a nanoscale MOSFET, the backscattering

coefficient, r, approaches zero at high drain bias, so the effect of r can be ignored in this case

too. Therefore, while relating Fη to VGS (i.e. solving (7) and (12) simultaneously), setting r = 0

is not expected to introduce any serious error.

For longer channel MOSFET’s, r approaches to a fixed value when drain bias higher than few

q

TkB . For a well-designed MOSFET, r is found to be approximately 0.5. In this case we get









+

ℑ= −

)1(

)(

2

1
0 rqN

VQ
η

D

GS
F ,

or









−









+
= 1

)1(

)(
explog

2 rqN

VQ
η

D

GS
F . (C2)

Equation (C2) should be used for longer channel MOSFET’s to calculate Fη .
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Appendix D

At the top of the source-channel barrier of a MOSFET, carriers are near equilibrium and electric

field is almost zero. Therefore, the following two rate equations for the two opposite going

fluxes hold there

−+
+

+−= FξFξ
dx

dF
00 (D1a)

−+
−

+−= FξFξ
dx

dF
00 . (D1b)

The backscattering rates, ξ , is equal for positive and negative fluxes due to absence of electric

field. Now, adding (D1a) and (D1b) we get

( ) ( )−+
−+

−−=+
FFξ

dx

FFd
02 . (D2)

Assuming same degenerate velocity, Tυ~ , for two fluxes, (D2) can be expressed as

( )
dx

υ
F

υ
F

d

ξ
υ

FF TTT








+

−=−

−+

−+
~~

2

~

0

,

and according to (A1), this can be written as

dx

dn

ξ
υ

qWI T
DS

02

~
−= . (D3)

Now defining scattering mean free path, λ , as

0

1

ξ
λ = ,

and substituting the degenerate thermal velocity in (D3), we get
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( )
( ) dx

dn

η
η

λυ
qWI

F

FT
DS 








ℑ

ℑ
−=

0

2/1

2
. (D4)

Comparing (D4) with the conventional macroscopic transport models, diffusion coefficient, D,

can be expressed as

( )
( ) λ
η
η

υD
F

F
T 








ℑ
ℑ

=
0

2/1

2

1
. (D5)

Now, diffusion coefficient for degenerate carrier statistics will be derived from a complete

different viewpoint. Inside a device, the near-equilibrium current can be expressed as

dx

dFµWnI n
DS = , (D6)

where Fn is the quasi-fermi level. At a drain bias, VDS, greater than few kBT/q, the charge density

at the top of the source-channel barrier can be written as

)(02 FD ηNn ℑ= . (D7)

Differentiating (D7) w.r.t. x and since ηF = (Fn-Ec)/kBT with Ec=constant, in absence of an

electric field, we get

dx

dF

Tk
ηN

dx

dn n

B
FD

1
)(12 −ℑ= ,

from which, by substituting N2D from (D7), we get

)(

)(

1

0

F

FBn

η
η

dx

dn

q

Tk
q

dx

dF
n

−ℑ
ℑ

= . (D8)
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Equations (D6) and (D8) can be combined into

dx

dn

η
η

q

TkµqWI
F

FB
DS 








ℑ
ℑ

=
− )(

)(

1

0 . (D9)

In (D9), the expression inside the bracket can be identified as the diffusion coefficient and

equating this with the expression obtained in (D5), we can finally express the degenerate carrier

momentum relaxation length, λ , as

{ }
( )FF

FB

T ηη
η

q

Tk

υ
µλ

2/11

2
0

)(

)(2

ℑℑ
ℑ









=

−

. (D10)

The terms inside the bracket defines the non-degenerate momentum relaxation length, 0λ , and its

value is 4.7nm for 120=µ cm2/V-sec. The second factor of (D10) describes the effect of

degeneracy on 0λ .
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LIST OF FIGURES

Fig. 1 Schematic representation of Symmetrical DG MOSFET used as the model device in

this paper.

Fig. 2 A simple one-flux representation of channel transport in the nanoscale MOSFET’s.

At the source end, )0(+F is the incident flux from source and )0(−F is the sum of

reflected and transmitted fluxes from both source and drain.

Fig. 3 Analytically computed Qn(0) from (7) (solid line) compared with charge at the top

of source-channel barrier from 2D numerical simulation at VDS = 0V (circles).

Fig. 4 Comparison of linear and log plots of ballistic (r = 0) transfer characteristics. The

solid and dashed lines represent the results from analytic model of (6) at high (VDS =

0.55V) and low (VDS = 0.05V) drain biases respectively. The corresponding results

from 2D numerical NEGF simulations are shown in circles and diamonds

respectively.

Fig. 5 Ballistic output characteristics of the model device as calculated from (6).

Fig. 6 Comparison of quasi-ballistic (r ≠ 0) output characteristics of the model DG

MOSFET with low field effective channel mobility µeff,0 = 120 cm2/V-sec. The solid

line is calculated from (6) and the diamonds represent 2D numerical NEGF

simulation of same device.

Fig. 7 Mobility required to achieve targeted on-current for the model device. The horizontal

line represents the ballistic limit of this device. The on current condition is VGS = VDS

= 0.55V.
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Fig. B1 Comparison of the numerically calculated first subband profile (solid) with the

analytical result from (B12) (circles) at VDS=0.2V and VGS=0.55V. In the analytical

calculation 0.57α = was used. Agreement between the two profiles near the

beginning of the channel is clearly visible.
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