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Abstract—We present a comprehensive analytical model of
squeeze-film damping in perforated 3-D microelectromechanical
system structures. The model includes effects of compressibility,
inertia, and rarefaction in the flow between two parallel plates
forming the squeeze region, as well as the flow through perfora-
tions. The two flows are coupled through a nontrivial frequency-
dependent pressure boundary condition at the flow entry in the
hole. This intermediate pressure is obtained by solving the fluid
flow equations in the two regions using the frequency-dependent
fluid velocity as the input velocity for the hole. The governing
equations are derived by considering an approximate circular
pressure cell around a hole, which is representative of the spatially
invariant pressure pattern over the interior of the flow domain.
A modified Reynolds equation that includes the unsteady inertial
term is derived from the Navier–Stokes equation to model the
flow in the circular cell. Rarefaction effects in the flow through
the air gap and the hole are accounted for by considering the
slip boundary conditions. The analytical solution for the net force
on a single cell is obtained by solving the Reynolds equation
over the annular region of the air gap and supplementing the
resulting force with a term corresponding to the loss through the
hole. The solution thus obtained is valid over a range of air gap
and perforation geometries, as well as a wide range of operating
frequencies. We compare the analytical results with extensive
simulations carried out using the full 3-D Navier–Stokes equation
solver in a commercial simulation package (ANSYS-CFX). We
show that the analytical solution performs very well in tracking
the net force and the damping force up to a frequency f = 0.8fn

(where fn is the first resonance frequency) with a maximum
error within 20% for thick perforated cells and within 30% for
thin perforated cells. The error increases considerably beyond this
frequency. The prediction of the first resonance frequency is within
21% error for various perforation geometries. [2007-0001]

Index Terms—Gyroscopes, microactuators, microphones,
microresonators, microsensors.

I. INTRODUCTION

E FFICIENT compact models for the squeeze-film analysis
of perforated microelectromechanical system (MEMS)

structures are indispensable in the design of MEMS devices.
The most important design goals for dynamic MEMS devices
such as accelerometers, microphones, tuning-fork gyroscopes,
microswitches, micromirrors, etc., are high sensitivity and high
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resolution. When designing MEMS parallel-plate capacitive
transducers for these applications, the aforementioned goals
can be achieved by maximizing the mechanical compliance
Cm ∝ (A/t3) and the base capacitance Cb ∝ (A/ha) of the
structures. This clearly requires sufficiently high surface area A
and small thickness t of the vibrating structure, as well as a
very small air-gap ha separating the two structures. However,
the air in the small gap between the transversely moving planar
structure and the fixed substrate imparts damping, spring, and
inertial forces to the structures [1]–[3]. These forces have a
complex dependence on the air-gap height and the operating
frequency. These forces affect the frequency response of the
structure and, hence, the sensitivity, resolution, and bandwidth
of the device. Damping due to the squeeze-film is considerably
high for large surface-to-air-gap ratio. At low frequencies,
damping dominates, whereas at high frequencies, spring and
inertial effects dominate. Damping can be minimized if it is
possible to operate the device under a vacuum condition, which,
in turn, requires expensive packaging. However, in cases with
high-Q materials, such as silicon, the Q-factor of a vibrating
system is still mainly determined by the energy losses to
the surrounding air as the vacuum in the encapsulated device
can hardly be high enough [4]. The amount of squeeze-film
damping can be controlled by providing perforations in either
the back plate or the oscillating proof mass. These perforations
also facilitate the etch release of the sacrificial layer in surface
micromachining but reduce the device capacitance, which is
undesirable. An adequate value of the base capacitance can be
obtained by reducing the air-gap. While reducing the gap, the
perforations need to be designed such that constant damping
is maintained without sacrificing the capacitance. A feasible
range of perforation geometry depends on the chosen micro-
machining process. To achieve the design goals of minimizing
damping and maximizing the capacitance, a tradeoff analysis
must be carried out between the perforation geometry and the
air-gap. This necessitates creation of simple analytical models
and derivation of closed-form formulas for the squeeze-film
analysis. These models, in turn, should be validated using finite-
element method (FEM) tools or experimental measurements.
The forces due to the squeeze-film extracted from these behav-
ioral models are, in turn, employed in a system-level model for
the performance optimization of a MEMS device. Thus, the air-
gap ha is perhaps the single most crucial parameter that affects
the squeeze-film behavior, the base capacitance, and, hence, the
overall device performance. However, for small air-gap, the
rarefaction and compressibility effects are predominant. In
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addition, at higher frequencies, the compressibility and inertial
effects considerably increase and cannot be neglected. In all
such applications, where these effects cannot be neglected,
the proposed model will be very valuable. Such applications
include high-frequency MEMS transducers such as ultrasound
transducers (with perforated back plates), moderately high fre-
quency devices with larger air-gap, etc. Although obvious, we
add here that the proposed model can, of course, be used in
regular cases as well, where compressibility and inertia are
negligible.

In the next section, we discuss various phenomena associated
with the squeeze-film effect in terms of the nondimensional
numbers characterizing them and highlight how they are related
to the perforation geometry and the operating frequency of a
device.

II. MODELING RAREFACTION, COMPRESSIBILITY,
AND INERTIAL EFFECTS

A. Rarefaction

The degree of rarefaction in the fluid flow is characterized by
the Knudsen number Kn. For the air-gap, we define Kng =
λ/ha, where ha is the air-gap thickness, and λ is the mean
free path of the gas molecules. For the flow through a hole,
we define Knh = λ/ri, where ri is the radius of the hole. The
molecular mean free path λ is related to the packaging pressure
P as λ = Paλa/P . At ambient conditions, the mean free path
λa for air is 0.064 µm. For MEMS devices with very small air-
gap and low packaging pressure, the Knudsen number becomes
sufficiently high, and the fluid flow transits from a continuum
to a rarefied flow. Based on the values of Kn, the flow regimes
are usually divided into four different types: continuum (Kn <
0.01), rarefaction (0.01 < Kn < 0.1), transition (0.1 < Kn <
3), and molecular (Kn > 3) regimes [5]. The relative flow rate
coefficient Qpr(h, p) is generally included in the fluid viscosity,
and the combined term is called the effective viscosity µeff =
µ/Qpr. Veijola et al. [6] present a simple approximation for the
effective viscosity by fitting the respective flow rate coefficients
to the experimental values tabulated by Fukui and Kaneko [7].
This relationship is given as µeff = µ/(1 + 9.638Kn1.159

g ).
The value of µeff drops by 30% (from µ) for a 1-µm air-gap
at 1-atm pressure. For the slip-flow regime, an analytical model
is derived using the slip-flow wall boundary conditions on the
planar surfaces in the air-gap and on the cylindrical on the
hole walls.

B. Compressibility

The repetitive patterns of pressure distribution observed
around the etch holes in a perforated structure can be approx-
imated by equivalent circular pressure cells with a venting
boundary condition on the edge of the holes. Consideration of
such circular cells considerably simplifies the flow analysis.
In the squeeze-film analysis, the extent of compressibility is
measured by the squeeze number σ. An expression for the
squeeze number for an annular plate is given in [8] as σ =
12µωr2

o/Pah2
a((1 − β)2/π2), where β is the ratio of the inner

radius to the outer radius of the annulus with a value near

unity. A more accurate expression for the squeeze number is
derived in [9] by considering the squeeze-film flow, as well as
the flow through holes and various other losses. The common
parameters in these expressions and in the analytical expres-
sions derived in this paper are given by 12µωr2

o/Pah2
a. Here,

ro is the radius of an equivalent circular pressure cell, which
is approximately half the pitch of the holes (ro ≈ ξo/2). It
is observed that compressibility is proportional to the square
of the pitch-to-air-gap ratio (ξo/ha)2 and the frequency of
oscillation ω, and it is inversely proportional to the ambient
pressure Pa. If σ ≪ 1, the compressibility can be neglected,
and the flow can be treated as incompressible. For higher values
of σ, the compressibility leads to a significant air-spring effect,
which can be undesirable as it can adversely affect the dynamic
behavior of a device [10]. Contrary to this, the fact that perfo-
rations increase the cutoff frequency—the frequency at which
the damping and spring forces are equal—can be exploited by
suitably tuning both of these forces by varying the number
and size of perforations [11]. Blech [12] and Allen et al. [13]
have also reported the use of squeeze-film damping to tailor
the frequency response of a seismic accelerometer and that of
micromachined sensors, respectively. Therefore, including the
compressibility effects in the analysis enables the designer to
design the perforation geometry such that the compressibility
effects are either totally ruled out or suitably tuned, as the
case may be.

C. Inertia

The small dimensions of MEMS devices lead to a very small
volume, which contains a minuscule quantity of air. Hence,
fluid inertia may be neglected at low frequencies (Re ≪ 1).
However, for larger air-gap heights and at higher frequencies
of oscillations, the inertial effects may not be negligible and,
hence, need to be considered when calculating the quality
factor of such devices [3]. This is done by incorporating the
frequency-dependent flow rate coefficient Qpr, which modifies
the velocity profile with frequency. For the squeeze-film flow
in the air-gap, the modified Reynolds number is defined as
Reg = ρωh2

a/µ, and for the flow through the hole, it is defined
as Reh = (ρωr2

i )/µ. As is evident, the Reynolds number in the
two cases increases with the square of the air-gap height and
the radius of the hole, respectively.

The analytical model presented in this paper incorporates
compressibility, inertia, and gas rarefaction effects and is ap-
plicable over a moderate range of perforation geometries and a
wide range of frequencies. In the next section, we briefly review
various modeling and analysis approaches used for squeeze-
film damping of perforated structures.

III. MODELING STRATEGIES FOR

PERFORATED STRUCTURES

The squeeze-film flow in dynamic MEMS structures is well
modeled by the 2-D Reynolds equation obtained from the
Navier–Stokes equation by neglecting inertia and assuming
the lateral dimension to be an order of magnitude larger
than the air-gap height. For perforated MEMS structures, the



MOHITE et al.: SQUEEZE-FILM MODEL INCLUDING INERTIA, COMPRESSIBILITY, AND RAREFACTION EFFECTS 711

effective lateral dimension is the pitch of the holes ξo. There-
fore, in the case of perforated structures, the assumption of a
large lateral dimension begins to deviate. Moreover, the flow
through the perforations comes into play, adding an extra di-
mension to the model. The model dimensionality (2-D or 3-D)
is governed by the relative size of the perforation parameters.
The significant perforation parameters are the pitch ξo, the
diameter d, and the length of the holes l (which is the same as
the thickness of the perforated plate). Various models have been
presented for the squeeze-film analysis of perforated MEMS
structures in the literature. These models differ in various
respects such as the model dimensionality, the methodologies
used, and the different effects considered in the governing
equations. Fig. 1 gives an overview of the different perforation
geometries and various squeeze-film models at a glance. So-
lution methods based on numerical, analytical, or mixed tech-
niques are developed to suit the different perforation geometries
shown in Fig. 1(a). Numerical methods are best suited for
modeling the nonlinear pressure response due to the high am-
plitudes of oscillation, arbitrary boundary conditions, complex
geometries, and nonuniform size and distribution of the holes
[10], [15], [16]. Computationally efficient FEM-based simula-
tion schemes are reported in the recent past [17]–[22]. A hybrid
model combining the Navier–Stokes equation and the Reynolds
equation is proposed in [17]. A mixed-level approach based on
FEM and finite network simulation is presented in [18]–[20].
A hierarchical two-level simulation strategy is employed, and
a coupled reduced dimensional analysis is performed in [21].
Another method for the arbitrary perforation problem utilizes
a Perforation Profile Reynolds solver, which is a multiphysics
simulation software [22]. These seminumerical approaches are
more efficient than the numerical methods but take time to build
the model and require special computational tools.

Our goal of modeling and analyzing the squeeze-film behav-
ior in perforated structures is to perform a reasonably accurate
analysis with minimal modeling and computational effort. In
this respect, analytical methods are desirable since they give
closed-form expressions that can directly be used in system-
level simulations to evaluate design tradeoffs. In these methods,
the repetitive pressure pattern around each hole is exploited, and
the entire perforated domain is discretized into pressure cells
under simplifying assumptions [9], [23]–[31].

We now discuss different analytical models used for various
perforation geometries, as shown in Fig. 1(a.1)–(a.3). When the
size of the holes is much larger compared to the air-gap height
(d > 10ha) and the perforations are short (l/d < 1), as shown
in Fig. 1(a.1), the loss through the holes is not significant. In this
case, the problem is reduced to solving the 2-D Reynolds equa-
tion under the simplified boundary condition that the acoustic
pressure vanishes at the edge of a hole. Closed-form solutions
derived assuming incompressible flow exist [23], and solutions
including rarefaction, compressibility, and inertial effects are
also reported [27]–[29].

For inertial MEMS sensors (e.g., gyroscope and accelerome-
ter), high-aspect-ratio (l/d > 1) perforated structures using a
deep reactive-ion etching process are designed, as shown in
Fig. 1(a.2). In this case, the loss through holes can be significant
as the flow is a combination of the horizontal flow between the

planar surfaces and the vertical flow through the holes. This
problem is modeled by modifying the Reynolds equation by
adding a pressure leakage term corresponding to the loss due to
the flow through the holes (in the z-direction) [24]–[26]. It is
assumed that for uniformly distributed holes, the contribution
of holes can be homogenized over the entire domain. In these
models, the flow is assumed to be incompressible. Alternatively,
the flow problem can be treated in two distinct parts. The
lateral flow is modeled by the Reynolds equation, and the flow
through the holes is modeled by the Poiseuille equation, as
done by Homentcovschi and Miles [28]. Their work discusses
losses due to flow through holes including inertia but leaves the
solution in the squeeze region with a zero-pressure boundary
condition. However, in the region just above a hole where
the lateral squeeze flow joins the Poiseuille flow, there is a
complex interaction causing losses that are difficult to estimate.
Moreover, the trivial boundary condition (i.e., P = 0) used
in [28] does not hold, and the effect of backpressure due to
flow through holes must be accounted for. Darling et al. [30]
used arbitrary pressure boundary conditions based on the
complex acoustical impedance of an aperture and treated the
squeeze-film problem using the Green’s function approach.
Kwok et al. [31] used the boundary condition on the hole
evaluated for incompressible flow in the numerical simulation
performed using PDEase, which is a finite-element solver. Un-
der the assumption of incompressible flow (i.e., a low squeeze
number), the flow through a hole is merely obtained by geomet-
rical scaling between the cell diameter and the hole diameter. In
a recent study, Veijola [9] has used existing analytical models
in the squeeze-film and capillary regions, and using FEM
simulations, he has derived approximate flow resistances at the
intermediate region and at the exit from the hole. The model
is valid over a wide range of perforation fractions, from 1% to
90%. The said study also presents analysis of cutoff frequencies
for compressibility and inertia and specifies an upper limit on
the frequency up to which the model is valid.

When the pitch of the holes, the air-gap, and the diameter
of the holes are all of the same order, as shown in Fig. 1(a.3),
the assumptions made in deriving the Reynolds equation do
not hold, and the computationally intensive 3-D Navier–Stokes
analysis becomes indispensable. Moreover, if the outer borders
are open to the ambient, there is a pressure gradient from the
center of the plate to its borders, and the pressure patterns
around the perforations are not repetitive. In a recent study, a
surface extension model has been proposed [32], where the gap
size is comparable to the lateral dimensions. In this approach,
it is shown that after extending each open border by (1.3/2)ha,
the 2-D Reynolds equation can give accurate results, and the
3-D Navier–Stokes equation can be dispensed with. This ap-
proach could be applied to the perforated structures as well.

The central motivation of this paper is to provide closed-
form expressions to estimate the squeeze-film forces inte-
grated with perforation losses and with more realistic boundary
conditions at the holes. When the compressibility and inertial
effects, which are prevalent at high operating frequencies, are
included in the Reynolds equation, the pressure at the edge of
a hole changes with the frequency of oscillations. The venting
through the holes acts as a restrictive passage, and the venting
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Fig. 1. (a) Different perforation geometries (ξo is the pitch of the holes, ha is the air-gap height, and l and d are the length and diameter of the holes, respectively).
(b) Overview of different squeeze-film models for perforated structures.

boundary condition becomes a complex acoustical impedance.
This boundary condition then depends on the hole geometry
(i.e., length and diameter) and flow through the hole. This
pressure at the boundary must be evaluated and then applied
as a boundary condition at the edge of the hole near the air-

gap. This apparently circular computation is circumvented by
solving the two flow equations—one for the horizontal flow
in the air-gap and the other in the hole—by first assuming an
intermediate value of the pressure and then solving for it using
two paths of computations discussed in the next section.
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Fig. 2. Schematic showing the staggered hole configuration. ξo is the pitch of the holes; ro = 0.525ξo and ri = s/
√

π are the area equivalent outer and inner
radii of the pressure cell, respectively; rh = s/2 is the equivalent hydrodynamic radius of the hole; ha is the air-gap height; and l is the length of the hole (also the
thickness of the back plate). (a) Hexagonal pressure patterns in a staggered configuration. (b) Single equivalent circular pressure cell. (c) Poiseuille flow through
the perforation.

IV. ANALYTICAL MODEL FOR A CIRCULAR

PRESSURE CELL

A. Modified Reynolds Equation With Inertia, Compressibility,

and Gas Rarefaction Effects

In this section, we present the modified Reynolds equation
including unsteady inertia and compressibility, as well as its
solution, for a single circular pressure cell under the approxi-
mation of 1-D radial flow. Isothermal assumptions are used in
deriving the model. The derivation follows the general approach
given by Veijola [2], [3] for rectangular plates separated by
a small air-gap. We analytically solve the resulting equation,
first for a finite-pressure boundary condition at the edge of the
hole. Subsequently, in Section IV-B, we show how to compute
this pressure at the edge of the hole by analyzing the flow
through the hole. A large perforated domain formed by the
staggered hole configuration is shown in Fig. 2(a). This domain
is discretized into circular pressure cells, and a single pressure
cell considered for the analysis is shown in Fig. 2(b). For the
squeeze-film problem of a single circular pressure cell, let us
assume a constant pressure across the gap (∂p/∂z = 0) and no
net tangential flow (∂p/∂θ = 0). The Navier–Stokes momen-
tum equation in cylindrical–polar coordinates then reduces to

ρ
∂ur

∂t
+ ρ

∂ur

∂r
ur = −∂p

∂r
+

∂

∂z

(

µ
∂ur

∂z

)

(1)

where ur(r, t) is the flow velocity in the radial direction, p(r, t)
is the air pressure, and µ and ρ are the viscosity and density
of air, respectively. We assume small air-gap compared to the
pitch of the holes and small amplitude harmonic oscillations

(ǫ = ǫoe
jωt). For small air-gap-to-pitch ratios, the lateral veloc-

ity ur is relatively small, and the contribution of the convective
inertial term ρ(∂ur/∂r)ur can be neglected compared to the
unsteady inertial term ρ(∂ur/∂t).

Hence, (1) further reduces to

ρ
∂ur

∂t
= −∂p

∂r
+

∂

∂z

(

µ
∂ur

∂z

)

. (2)

We nondimensionalize (2) using scaled variables Φ=∆p/Pa,
Z =z/ha, R=r/ro, τ =ωt, Uz =∂ǫ/∂τ (i.e., jǫoe

jτ ), Ur =
ur/Uo, and Uo = roω. Here, Pa is the ambient pressure, ha is
the equilibrium gap thickness, ω is the circular frequency, and
ro is the outer radius of a pressure cell. The nondimensional
form of (2) becomes

∂2Ur

∂Z2
− jRegUr =

1

σ̄

∂Φ

∂R
(3)

where σ̄ = µωr2
o/Pah2

a, and the modified Reynolds number
Reg = ρωh2

a/µ. For very small gaps, or when the pressure is
lower than the ambient pressure, the no-slip boundary condi-
tion may not hold; therefore, we consider the first-order slip
boundary conditions on the two oscillating planar structures as

Ur

(

R,±1

2

)

= ∓Kng
∂Ur

∂Z

(

R,±1

2

)

(4)

where the nondimensional mean free path Kng = λ/ha is also
the Knudsen number based on the characteristic length ha and
the mean free path λ. When the pressure is lower than the
ambient pressure, a quantity Ks = σpKn is used as a measure
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of rarefaction, where σp is the slip coefficient [3]. Integrating
(3) and applying the boundary conditions (4), we obtain the
radial velocity in (5), shown at the bottom of the page.

Integrating (5) w.r.t. Z in the limits (−1/2,+1/2), we get
Ũr(R) averaged in the z-direction as

Ũr(R) = − 1

Γ

∂Φ

∂R
(6)

where Γ = σ/Qpr is a nondimensional complex number that
includes the compressibility, inertia, and gas rarefaction effects.
In the expression for Γ

Qpr =
12

−jReg

×
[

(2 − KngjReg) tan(
√

−jReg/2) −
√

−jReg

]

[√

−jReg

(

1 − Kng

√

−jReg tan(
√

−jReg/2)
)]

is the relative flow rate coefficient that includes the inertial
and gas rarefaction effects based on the first-order slip, and
σ is the nondimensional squeeze number accounting for gas
compressibility. The central parameter in Γ is the product of
the Reynolds number and the squeeze number, i.e., Regσ. The
significance of this term will be discussed later in Section VI.
Next, we derive the modified Reynolds equation in the same
manner as the conventional Reynolds equation [3], [14]. For
the annular air-gap region, we assume circular symmetry (i.e.,
uθ = 0) and integrate the continuity equation in cylindrical
coordinates across the gap from −h/2 to h/2 to get

1

r

∂(ρrhũr)

∂r
+

∂(ρh)

∂t
= 0 (7)

where ũr represents the average velocity such that
∫ +h/2

−h/2 urdz = hũr.

Furthermore, we nondimensionalize this equation in the
same way as (2) and retain only lower order terms in ǫ. Using
isothermal flow conditions (p ∝ ρ) and substituting Ũr from
(6), we get

∂2Φ

∂R2
+

1

R

∂Φ

∂R
− Γ

(

∂Φ

∂τ
+

∂ǫ

∂τ

)

= 0. (8)

Making the transformations Ψ = Φ + ǫo and R =
√

jΓR in
(8), we get the transformed equation as [33]

∂2Ψ(R)

∂R2
+

1

R
∂Ψ(R)

∂R − Ψ(R) = 0. (9)

Equation (9) is in the form of the Bessel equation for an
imaginary argument of the zeroth order and has a standard
solution for a harmonic motion of the diaphragm given as [33]

Ψ = AI0(R) + BK0(R) (10)

where I0 is the modified Bessel function of the zeroth order,
and K0 is the Macdonald’s function of the zeroth order. A and
B are complex coefficients that are obtained using the boundary
conditions. Substituting back for Ψ and R, we write the normal-
ized complex pressure distribution for the fluid flow governed
by (8) over a circular domain for the harmonic velocity of the
oscillating plate as

Φ(R, τ) =
{

AI0(
√

jΓR) + BK0(
√

jΓR) − ǫo

}

ejτ . (11)

The coefficients A and B in (11) are evaluated by substituting
the boundary conditions for the pressure cell approximated
within a particular pattern. These boundary conditions can be
taken as Φ|Ri

= 0 and ∂Φ/∂R|Ro
= 0, where Ro and Ri are

the normalized outer and inner radii of the circular pressure
cell, respectively. Since the transverse velocity Uz of the plate is
assumed to be uniform over the pressure cell, the differentiation
of (11) yields

∂Φ

∂R
(R, τ) =

√

jΓ
{

AI1(
√

jΓR) − BK1(
√

jΓR)
}

ejτ .

(12)

The zero-radial-gradient boundary condition arises from the
assumption of autonomous cells, and the zero-pressure bound-
ary condition at the hole is reasonable for low-aspect-ratio
holes. This assumption, however, can be relaxed, and a solution
can be obtained in terms of an arbitrary pressure ΦRi

at the
hole. In that case, the constants A and B are evaluated as

A =
(ΦRi

+ ǫo)K1(
√

jΓ)
[

I0(
√

jΓRi)K1(
√

jΓ) + K0(
√

jΓRi)I1(
√

jΓ)
]

B =
(ΦRi

+ ǫo)I1(
√

jΓ)
[

I0(
√

jΓRi)K1(
√

jΓ) + K0(
√

jΓRi)I1(
√

jΓ)
] . (13)

Subsequently, the pressure distribution is obtained in (14),
shown at the bottom of the page.

Here, ΦRi
is the nondimensional frequency-dependent pres-

sure at the edge of the hole, and its value depends on the
backpressure Φb at the upper end of the hole. In the next section,

Ur(R, Z) =
1

jRegσ̄

(

cos(
√

−jRegZ)

cos(
√

−jReg/2) − Kng

√

−jReg sin(
√

−jReg/2)
− 1

)

∂Φ

∂R
(5)

Φ(R) =

[

(ǫo + ΦRi
)

I0(
√

jΓR)K1(
√

Γj) + K0(
√

jΓR)I1(
√

jΓ)

I0(
√

jΓRi)K1(
√

jΓ) + K0(
√

jΓRi)I1(
√

jΓ)
− ǫo

]

ejτ (14)



MOHITE et al.: SQUEEZE-FILM MODEL INCLUDING INERTIA, COMPRESSIBILITY, AND RAREFACTION EFFECTS 715

Fig. 3. Schematic showing the pressure and velocity boundary conditions in different regions. (a) Horizontal squeeze-film flow. (b) Vertical flow through
the hole.

we discuss the procedure for obtaining the pressure on the edge
of the hole by considering the loss through the hole.

B. Pressure at the Edge of the Hole

For high-aspect-ratio perforated structures (i.e., l/d > 1),
there is a significant loss through the holes that cannot be
ignored. In addition, this loss will exert a backpressure on the
squeeze-film region, and one cannot apply the trivial pressure
boundary condition (p = 0) at the edge of the hole. Thus, it
becomes necessary to find the pressure at the edge of the hole.
Analytical models based on extensive FEM simulations are
developed for incompressible flow [31]. However, at high fre-
quencies, the flow velocity in the squeeze-film region given by
the modified Reynolds equation incorporating compressibility
and inertial effects is frequency dependent. This frequency-
dependent flow must be used in the Poiseuille equation to obtain
a dynamic pressure. Fig. 3 illustrates the problem with the
appropriate boundary conditions for the squeeze-film region
and for the flow through the hole. We model the motion of
the fluid through the hole as a Poiseuille flow through a pipe
including inertial effects with atmospheric pressure at the lower
end of the hole.

We start by writing the Navier–Stokes equation for the flow
through the hole as

ρ
∂uzh

∂t
= −∂p

∂z
+ µ

1

r

∂

∂r

(

r
∂uzh

∂r

)

(15)

where uzh is the flow velocity through the hole, and p is the
pressure along the axis of the hole. The flow through the holes

oscillates with the same frequency ω as that of the plate. By
applying the ambient pressure boundary condition on the free
end of the hole, we write (15) as

1

r

∂

∂r

(

r
∂uzh

∂r

)

+ α2uzh = −p
b

µl
(16)

where p
b

represents the pressure on the upper edge of the
hole, and α =

√

(−jωρ)/µ is the complex frequency vari-
able (αrh =

√−jReh, and Reh = ρωr2
h/µ is the modified

Reynolds number for the flow through the holes). We solve this
equation with ∂uzh/∂r = 0 at r = 0, and the first-order slip
boundary condition uzh = −λ(∂uzh)/∂r at r = rh, to get

uzh = − pb

jωρl

(

1 − J0(αr)

J0(αrh) − λαJ1(αrh)

)

. (17)

Veijola [9] has extracted entry and exit losses by performing
extensive FEM simulations and presented loss factors in the
form of relative elongations. We have not used the relative
elongation at the exit as the ambient pressure is applied right
at the outlet of the hole in the numerical simulations used for
validation. The relative elongation corresponding to the entry
loss is used in this analysis, and the effective length of a hole is
obtained as leff = (l + ∆c ri), where ∆c is given by

∆c = (1 + 0.6 Knh)

(

0.66 − 0.41
ri

ro
− 0.25

r2
i

r2
o

)

. (18)

By integrating the flow velocity given by (17), we ob-
tain the total volume rate of flow through the hole as



716 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 17, NO. 3, JUNE 2008

Vzh =
∫ rh

0 uzh2πrdr. Thus, we get

pb = − jωρleff
(

1 − 2
αrh

J1(αrh)
J0(αrh)−λαJ1(αrh)

)

Vzh

πr2
h

. (19)

We divide pb by the atmospheric pressure Pa to get the
nondimensional pressure Φb on the edge of the hole. Also,
we obtain the volume flow rate (Vzh = Vr + Vz) through the
hole by summing the volume flow rate (Vr = 2πrhhaũr) in the
radial direction evaluated at rh and the axial volume flow from
above the hole (Vz = πr2

huz). These substitutions give

Φb = δ1

(

uz +
2ha

rh
ũr

)

where

δ1 =
−jωρleff

Pa

(

1 − 2
αrh

J1(αrh)
J0(αrh)−λαJ1(αrh)

) . (20)

Substituting Ũr from (6) in ũr = roωŨr, we get

ũr = −roω

Γ

∂Φ

∂R
. (21)

We first substitute the pressure gradient ∂Φ/∂R|R=ri
given

by (14), evaluated at the edge of the hole in (21), to get

ũr|ri
(R) = −jroω√

jΓ

{

AI1(
√

jΓRi)−BK1(
√

jΓRi)
}

.

(22)
Next, we substitute the coefficients A and B to get

ũr|ri
= jroω(ΦRi

+ ǫo)δ2

where

δ2 =− 1√
jΓ

[

K1(
√

jΓ)I1(
√

jΓRi) − I1(
√

jΓ)K1(
√

jΓRi)

I0(
√

jΓRi)K1(
√

jΓ) + (K0

√
jΓRi)I1(

√
jΓ)

]

.

(23)

Finally, we substitute for ũr|ri
in (20) and obtain the

frequency-dependent pressure boundary condition on the edge
of the hole as

Φb = δ1

[

uz +
2ha

ri
jroω(ΦRi

+ ǫo)δ2

]

. (24)

In (24), we can substitute ΦRi
= Φb, which turns out to be

a reasonable assumption based on the values of pressure gradi-
ents in the radial and z-directions observed in our simulations.
We find that the radial pressure gradient is at least one order
of magnitude smaller than the vertical gradient, making the

relative pressure variation in the radial direction very small. In
fact, the pressure difference between the edge of the hole and
the center at the hole opening is between 2% and 4% in all
simulated cases. Now, solving for Φb, we get

Φb =
δ1(1 + 2ro

ri

δ2)

1 − j 2haroω
ri

δ1δ2

uz. (25)

The parameter δ1 depends on the perforation geometry and
takes into account the frequency-dependent inertial effects
based on the first-order slip flow through the holes. The second
parameter δ2 depends on the geometry of the annular squeeze-
film region and also takes into account the frequency-dependent
compressibility and inertial effects based on the first-order slip
flow through the air gap. Substituting ΦRi

= Φb in (14), we get
the normalized complex force offered by the pressure cell in the
annular region as

Fsq = 2π

Ro
∫

Ri

Φ(R)RdR. (26)

Evaluating the above integration over the annular region, we
get the complex force due to the squeeze-film Fsq = Fsq1 +
Fsq2 given by (27) and (28), shown at the bottom of the page.

Equations (27) and (28) give the squeeze-film force in the
annular region of the air-gap due to the small harmonic os-
cillations of the plate and due to the backpressure caused by
the flow through the hole, respectively. Note that for a thin
perforated plate and large holes (more venting), the pressure
drop through the hole Φb is negligible, and the boundary con-
dition approaches the ambient pressure (as one would expect).
In that case, the contribution of (28) becomes negligible, and
(27) alone can accurately predict squeeze-film damping. Next,
the force acting just above the hole is obtained as

Fh =
[(

πR2
i

)

Φb

]

ejτ . (29)

The net force on a pressure cell is obtained by adding the
forces given by (27)–(29) as

Fnet = Fsq1 + Fsq2 + Fh. (30)

Finally, we have the damping force and the combined stiff-
ness and inertia force offered by the pressure cell as

Fdamp. = {ℑ(Fnet)}Par2
o

Fstiff.+inr. = {ℜ(Fnet)}Par2
o (31)

Fsq1 =πǫo

[

2Ri√
jΓ

[

I1(
√

jΓ)K1(
√

jΓRi) − I1(
√

jΓRi)K1(
√

jΓ)
]

[

I0(
√

jΓRi)K1(
√

jΓ) + K0(
√

jΓRi)I1(
√

jΓ)
] −

(

1 − R2
i

)

]

ejτ (27)

Fsq2 =πΦb

[

2Ri√
jΓ

[

I1(
√

jΓ)K1(
√

jΓRi) − I1(
√

jΓRi)K1(
√

jΓ)
]

[

I0(
√

jΓRi)K1(
√

jΓ) + K0(
√

jΓRi)I1(
√

jΓ)
]

]

ejτ (28)
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TABLE I
EQUIVALENCE BETWEEN GEOMETRIC VARIABLES OF

ANALYTICAL AND NUMERICAL MODELS

where ℑ and ℜ represent the imaginary and real parts of their
complex arguments, respectively. The phase angle between the
imparted velocity and the force response is given as

θ = arctan
ℑ(Fnet)

ℜ(Fnet)
. (32)

The efficacy of this analytical model is assessed by com-
paring the analytical results with the numerical simulations
using the 3-D Navier–Stokes solver ANSYS-CFX. In the next
section, we briefly discuss the numerical model developed in
ANSYS-CFX.

V. NUMERICAL MODEL AND SIMULATIONS

Generally, perforations are present in staggered and non-
staggered (matrix) configurations. This gives rise to a hexag-
onal squeeze-film region in the staggered hole configuration
and a square squeeze-film region in the nonstaggered hole
configuration (in the x−y plane). In addition, square etch
hole geometries are very common (in the z-direction). In the
analytical model, the squeeze-film region and the perforations
are assumed to be circular with equivalent radii, as shown
in Table I. This simplifies the analytical procedure and gives
closed-form solutions. However, in the numerical simulations
performed using ANSYS-CFX, the fluid cells are modeled with
the actual geometry (i.e., a hexagonal or a square cell with a
square hole).

ANSYS-CFX makes use of the finite volume method. Fig. 4
illustrates a typical fluid volume modeled using half-symmetry.
The entire fluid domain is discretized using a hexahedral mesh
comprising 15 000 to 30 000 elements for different geometries.
A fine mesh is used in the intermediate region above the hole
and adjacent to the solid walls. A mesh density of more than
15 elements/µm3 ensures mesh independent analysis, giving a
converged solution. The pressure symmetry boundary condition
(∂p/∂n = 0) is applied on the hexagonal periphery.

Losses at the exit of the hole are neglected, and the ambient
pressure (i.e., zero relative pressure, p = 0) is applied at the free
end of the hole. The flow is assumed to be isothermal, and slip

Fig. 4. Hexagonal cell with a square hole (only half-volume) meshed using
hexahedral elements for simulations in ANSYS-CFX for ha = 2 µm, s =
4 µm, and l = 10 µm.

Fig. 5. Steady-state force response to a harmonic velocity applied to the fluid
surface in the hexagonal cell simulated in ANSYS-CFX.

boundary conditions are used on the solid walls. A harmonic
velocity with a small amplitude of oscillations (ǫo = 0.075 ×
ha), comprising 80 time steps over one cycle of oscillation, is
applied normal to the top fluid surface, and transient analysis
is performed in each case. We simulated the system response
until it reached a steady state. To ensure that the steady state
was indeed reached, we computed the response for a few cycles
and compared the phase in the current cycle with that in the
previous cycle by computing (θn − θn−1)/θn and restricting
this value to less than 1% to declare convergence. We found that
because of the fine time discretization used, convergence was
reached within two to ten cycles for all frequencies, with higher
frequencies requiring a larger number of cycles. The average
pressure acting on the oscillating plate is then extracted, and
the net force is obtained by multiplying the average pressure by
the area of the plate. Fig. 5 shows a steady-state force response
to the imparted harmonic velocity at 1-MHz frequency for a
cell with a 2-µm air gap and an 8-µm-wide × 10-µm-deep
perforation. The phase shift between the velocity and the force
is calculated as θ = 2πf∆t, where ∆t is the time lag or lead
between the velocity and the force, and f is the frequency of
oscillations. The pressure distributions for the case of hexag-
onal and square perforated cells are shown in Fig. 6. The
primary focus of this study is to examine the behavior of
the analytical model that includes compressibility and inertial
effects of the fluid and takes into account the loss through the
holes. A total of about 500 numerical simulations are carried
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Fig. 6. Pressure profiles in perforated hexagonal and square cells simulated in the 3-D Navier–Stokes solver ANSYS-CFX.

TABLE II
DIMENSIONS AND SIGNIFICANT GEOMETRIC RATIOS OF THE PERFORATED

CELLS MODELED FOR SIMULATIONS IN ANSYS-CFX

out on 36 different geometries of hexagonal cells. For each
geometry, 10–15 frequency points between 5 kHz and 50 MHz
are simulated. The geometries and simulation parameters are
summarized in Table II.

The analytical model is based on the frequency-domain form
of equations that directly give the frequency response (ampli-
tude of the force), whereas the numerical results are obtained
by performing transient analysis at discrete frequencies. In
the following sections, we examine the performance of the
analytical model by comparing the analytical results with the
numerical results over a wide range of frequencies. The results
of the comparison are followed by a brief discussion.

VI. RESULTS AND DISCUSSION

A. Inertial Effects and Loss Through the Hole

In our previous work [29], we presented a 2-D analytical
squeeze-film damping model incorporating compressibility. In
that model, the losses due to the flow through the holes were
neglected, and the ambient pressure boundary condition was
used on the hole. Moreover, the inertial effects were not mod-
eled. These effects can be significant at high frequencies and for
large air-gap heights. Thus, the model was applicable for rela-
tively larger perforations and for low Reynolds number regime

Fig. 7. Frequency response (amplitude) of the squeeze-film model in compar-
ison with the results without inertia and loss through the holes (i.e., Φb = 0)
and the numerically simulated model in ANSYS-CFX (×) for ξo = 20 µm,
ha = 4 µm, s = 8 µm (perforation ratio of 18.5%), and l = 20 µm.

(Re < 1). The motivation for this work is derived from the need
to overcome these limitations and develop an improved model.
Therefore, we first examine the response of this model, which
includes the loss through the hole and inertial effects. For this
purpose, we choose a perforation geometry having a 4-µm air-
gap (ha), an 8-µm hole size (s), and a 20-µm length of the
hole (l). Fig. 7 shows the frequency response results obtained
using the analytical model under different assumptions. First,
the ambient pressure boundary condition Φb = 0 is set on
the upper edge of the hole (i.e., the loss through the hole is
neglected), and inertial effects are also suppressed by setting
the flow rate coefficient Qpr = 1 (i.e., setting Γ = σ) in the ex-
pression for forces. The frequency response resembling that of
a first-order system, consisting of a spring and a damper, shown
by a dash-dot line is obtained in this case. Next, the inertial
effects in the air-gap are included (i.e., by resetting Γ), but the
ambient pressure boundary condition Φb = 0 is still retained.
In this case, the inertial effect grows with the frequency of
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Fig. 8. Comparison of the net force (solid line) and damping force (dashed line) obtained using analytical formulas with those obtained from ANSYS-CFX
(× indicates net force, and ◦ indicates damping force) for fixed perforation pitch, ξo = 20 µm, but varying hole geometry and air gap. (a) Size of the hole
s = 8 µm (corresponding perforation ratio of 18.5%), ha = 2 and 4 µm, and l = 1, 10, and 20 µm. (b) Size of the hole s = 10 µm (corresponding perforation
ratio of 29%), ha = 2 and 4 µm, and l = 1, 10, and 20 µm.

oscillations and so does the compressibility effect. The results
indicated by a dotted line show a resonance peak, implying
that the system behaves as a second-order spring–mass–damper
system. Finally, the ambient pressure boundary condition is
applied on the lower edge of the hole; thereby, Φb gets a finite
value corresponding to the loss through the hole, and results of
a full 3-D flow are obtained, as shown by the solid line. The
results obtained using the numerical model are also plotted for
comparison. The offset in the frequency response indicated in

Fig. 7 corresponds to the loss through the hole. The onset of
inertial effects is seen from 100 kHz onward, with the solid
and dotted lines gradually deviating upward, leading to the first
resonance.

B. Comparison of Analytical and Numerical Results

Next, we compare the behavior of the analytical model with
the numerical model for different perforation ratios, air-gap
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TABLE III
RELATIVE ERRORS IN ANALYTICAL RESONANCE FREQUENCIES, DAMPING FORCE, AND NET FORCE w.r.t. THE NUMERICAL RESULTS FOR VARIOUS

GEOMETRIES. THE ERROR IS ESTIMATED OVER TWO FREQUENCY REGIMES: L INDICATES THE LINEAR AND MODERATELY NONLINEAR REGION

BEFORE THE RESONANCE (f < 0.8fn), AND NL INDICATES THE STRONGLY NONLINEAR REGION

BEYOND THE RESONANCE (f > 0.8fn), AROUND THE RESONANCE PEAK

heights, and forcing frequencies. A perforated cell of pitch
ξo = 20 µm is selected. Perforation sizes of s = 8 µm and
s = 10 µm give the perforation ratios of 18.5% and 29%, re-
spectively. These, along with two air-gap heights ha (i.e., 2 and
4 µm) and three perforation lengths l (i.e., 1, 10, and 20 µm)
give 12 combinations. The frequency response curves are
shown in Fig. 8(a) and (b). The frequency response amplitude
(i.e., the net force) and the damping force due to the squeeze
film are very accurately predicted up to a frequency f = 0.8fn

(where fn is the first resonance frequency) with less than 20%
error for long hole lengths (l = 10 and 20 µm) and less than
30% error for short hole lengths (l = 1). The damping force
reaches its peak at the resonance and rapidly decreases beyond
the resonance, showing a good agreement with the numerically
obtained damping force. However, beyond 0.8fn, the frequency
response amplitude is overestimated using the analytical model,
and in most cases, the error is as high as 80%. This could be
due to the fact that the analytical model neglects the convective
inertial term. Resonance frequencies predicted by the analytical
model and those obtained by interpolating the numerical results
are listed in Table III, along with the percentage error. The
resonance frequency decreases with the increase in the length
of the holes, which is expected (Fig. 8(a) and (b), left to right)
due to the increased mass of air in the long holes. Furthermore,
when the air-gap increases from 2 to 4 µm, compressibility
drops, and the mass of air increases, lowering the resonance
frequencies.

In Fig. 9, we study the effect of perforation size s on the
nature of the frequency response. In this case, the perforation
length is kept constant at 20 µm. Four air-gap heights (i.e., 0.5,
1, 2, and 4 µm) and three perforation sizes (i.e., 4, 8, and 10 µm)
are considered, giving 12 different geometries. In the case of
4-µm perforations, compressibility predominates, and no visi-
ble resonance peak is seen for all the air-gap heights. However,
in the case of 8- and 10-µm perforation sizes, the resonance

peak is seen for all air-gap values except for the 0.5-µm air-
gap. As the frequency of oscillations enters the megahertz
regime, the pressure response obtained analytically lies above
the response obtained numerically. It should be noted that the
nonlinear inertial term ur(∂ur/∂r) is neglected while deriving
analytical equations for both the squeeze-film and pipe flows.
In particular, beyond the resonance frequency, the contribution
of the nonlinear inertial term may not be negligible. The effect
is even more pronounced for higher perforation lengths due
to the fact that the analytical inertial effect through the pipe
is underestimated in the analytical formulas. At even higher
frequencies, i.e., beyond 20 MHz, the disagreement between the
analytical and numerical results is even more, and sometimes,
the numerical results drastically fluctuate. At velocities corre-
sponding to these frequencies, one should expect other unmod-
eled effects such as lateral resonances in the air-gap, etc. The
onset of such effects can be detected by a term obtained by the
product of the Reynolds number and the squeeze number, i.e.,
Regσ = 12((roω)2/c2) (substituting Pa = ρc2, where c is the
isothermal sound speed). Since roω is used to normalize the
radial velocity ur, this ratio is directly useful in predicting
the radial flow velocity getting close to acoustically complex
phenomena. The term Regσ is independent of the air-gap
height and varies with the square of the oscillation frequency.
We find that around 20 MHz, the comparison between the
analytical and numerical models breaks down. At 10-MHz
frequency, the ratio (roω)/c is close to 2. In actuality, at such
high frequencies, the acoustic wavelengths become comparable
to the pitch of the pressure cell and the perforation length.
The acoustic effects in the lateral direction and in the hole
are likely to show up at these frequencies. These effects are
not captured by the analytical model. We also point out that
at such frequencies, the isothermal flow assumption becomes
questionable. At 20 MHz, the time period of oscillation is 50 ns,
and the time taken for heat propagation from the center of a
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Fig. 9. Comparison of the frequency response curves obtained using analytical formulas and ANSYS-CFX (◦,×, ∗) for different air-gap heights and the size of
the holes (the pitch of the holes ξo = 20 µm, and the length of the holes l = 20 µm).

2-µm-thick squeeze film to the solid structural surface (i.e.,
to travel 1 µm) is about 15 ns (calculated using the velocity
of heat propagation in air, i.e., v =

√
4πfκ, where f is the

frequency, and κ is the diffusivity of air) [34]. Thus, the two
timescales are comparable, and the isothermal flow assumption
is no longer valid. Therefore, although the analytical results
are in good agreement with the numerical results from the
ANSYS-CFX simulations until 20-MHz frequency, we recom-
mend using the analytical model only with caution beyond the
first resonance peak.

C. Comparison of Compressibility and Inertial Effects in a

2-D Model

In Fig. 10, we make a comparison of the frequency re-
sponse curves obtained using the analytical formulas for four
different air-gap heights (i.e., 0.5, 1, 2, and 4 µm). For low
frequencies, the response amplitude linearly rises with the
frequency of oscillation. This is obviously due to the fact that
at low frequencies, the flow is predominantly viscous, which
is easily identifiable because both the Reynolds number Reg

and the squeeze number σ are low (≪ 1). With the increase
in frequency, the inertia and compressibility of air in the air-
gap continuously build up, and for different values of the air-
gap height, the nature of the response curve considerably varies

Fig. 10. Comparison of the analytically obtained frequency responses of a
2-D model (i.e., Φb = 0) for different air-gap heights (the pitch of the holes
ξo = 20 µm, and the size of the hole s = 8 µm). Two points are marked on
each response curve, where σ = 1 and Reg = 1. Different shades of gray are
used to delineate regions where one or the other effect has a significant effect
on force calculations.
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with frequency. The contribution of compressibility and inertia
depends on the geometry of the cell and the frequency of
oscillations. Since Reg and σ linearly vary with frequency, the
question is which number rises faster with frequency. This is
purely a function of geometry. For a given pitch of the holes
and the hole diameter, air-gap ha is the most critical parameter
affecting inertia and compressibility. As the air-gap height
increases, the inertial contribution, and hence the Reynolds
number (∝ h2

a), starts to increase, whereas the compressibility
effect (∝ 1/h2

a) starts to decrease. We propose to use the
ratio of the Reynolds number to the squeeze number as a
characteristic number to capture the relative effect of inertia
and compressibility. Let γ = (Reg/σ). For hole size s = 8 µm
and pitch of the holes ξo = 20 µm, γ = 1 for ha = 1.34 µm.
When γ < 1, compressibility dominates. On the other hand,
if γ > 1, Reg rises faster, which means that inertial effects
dominate throughout over compressibility. This is clearly seen
from the set of response curves for four different air-gap heights
in Fig. 10. For a given geometry, the Reynolds number and the
squeeze number are indicative of the frequency at which the
inertial and compressibility effects start to dominate over
the viscous effects. Since the ratio γ eliminates frequency,
the effect of geometry is well brought out by this ratio. It is ob-
served that γ varies as the fourth power of ha, and hence, from
ha = 0.5 to 4µm, the ratio goes up by more than three orders
of magnitude, switching the behavior from predominantly com-
pressible to mildly compressible and then inertial. This should
explain the rapid change from a first-order to a second-order
frequency response in Fig. 10. The shaded regions indicate
the regimes dominated by the damping, compressibility, and
inertial effects.

VII. CONCLUSION

A compact squeeze-film model was developed for a perfo-
rated cell that includes compressibility, inertia, and gas rarefac-
tion effects. The analytical results obtained were compared with
the numerical simulations carried out using the finite volume
method in ANSYS-CFX. The analytical frequency response
and the damping force up to a frequency f = 0.8fn (where fn

is the first resonance frequency) match within 20% accuracy
for high-aspect-ratio perforations and 30% accuracy for low-
aspect-ratio perforations. A large error for thinner perforations
(smaller hole lengths) suggests that the treatment of orifice-
like flow with pipe flow (as done here) requires a further
refinement to handle this limiting case. The first resonance
was predicted within 21% error depending on the length of
the holes. The results clearly show that with the inclusion of
inertia and compressibility, the analytical model does very well
in predicting the response. However, this model is inadequate
for response prediction beyond f = 0.8fn (i.e., around the first
resonance frequency) because of the inherent limitations of the
fluid flow assumptions made in the derivation of the governing
equations. At very high frequencies, the pitch and length of the
holes become comparable to the acoustic wavelengths, inviting
complex interactions that are not accounted for in this model.
Finally, it should be noted that the model presented here is best
suited for applications with closed air-gap borders.
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