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We examine the singularly perturbed variational problem

E ° (Á) =

Z
° ¡ 1(1 ¡ jrÁj2)2 + ° jrrÁj2

in the plane. As ° ! 0, this functional favours jrÁj = 1 and penalizes singularities
where jrrÁj concentrates. Our main result is a compactness theorem: if fE ° (Á ° )g° #0

is uniformly bounded, then frÁ ° g° #0 is compact in L2 . Thus, in the limit ° ! 0, Á
solves the eikonal equation jrÁj = 1 almost everywhere. Our analysis uses èntropy
relations’ and the d̀iv-curl lemma,’ adopting Tartar’ s approach to the interaction of
linear di® erential equations and nonlinear algebraic relations.

1. Motivation, statement of the result and idea of the proof

We consider the singularly perturbed functional

E ° (Á) = °

Z

«

jrrÁj2 +
1

°

Z

«

(1 ¡ jrÁj2)2 (1.1)

as ° # 0. It arises as a model problem in connection with several physical applica-
tions, including smectic liquid crystals [2], thin  lm blisters [8, 17] and convective
pattern formation [7]. Physically, equation (1.1) can be viewed as a simple Landau
theory, in which the order parameter is a curl-free vector  eld rÁ which prefers to
be of norm 1.

The functional analysis of (1.1) is still poorly understood, despite considerable
attention. A natural goal is to  nd the `asymptotic energy’ as ° # 0, represented by
the ¡ -limit of fE ° g ° #0 (see, for instance, [6]). Aviles and Giga’s [2] conjecture for
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the ¡ -limit is

E0(Á) =

8
<

:

1

3

Z

D(ã)

j[rÁ]j3ds if jrÁj = 1 a.e.;

+1 otherwise;

where D(Á) is a suitably de ned `defect set’ of Á (at which rÁ is discontinuous),
[rÁ] is the jump in rÁ, and ds is arclength. To con rm this conjecture, one would
have to show (roughly speaking) the following three assertions.

(a) The ¡ -limit is in nite unless jrÁj = 1 almost everywhere. Thus only solutions
of the eikonal equation are admissible for the asymptotic functional.

(b) The proposed integrand 1
3
j[rÁ]j3 is correct. Aviles and Giga derived this for-

mula by assuming that E ° prefers `locally one-dimensional’ transition layers,
with rÁ varying rapidly only in the direction normal to the defect set.

(c) The asymptotic energy lives only on a suitably de ned one-dimensional defect
set D(Á). Thus, to leading order in ° , lower-dimensional singularities carry
no energy.

All the analysis to date has been restricted to the case when space is two dimen-
sional. Point (a) is demonstrated in the present paper. Point (b) is substantially
con rmed by the work of Jin and Kohn [9, 10] and Aviles and Giga [3]. Point (c)
is basically open. After this work was done, but before it was submitted for pub-
lication, we learned of related progress by Ambrosio et al . [1]. They also demon-
strate (a), using a method entirely di¬erent from ours, and they show by example
that Á can be surprisingly complex and still have  nite asymptotic energy (in par-
ticular, rÁ need not have bounded variation).

Our functional (1.1) is an obvious generalization to gradient  elds of the scalar
problem considered by Modica and Mortola [12{14],

~E° (u) = °

Z

«

jruj2 +
1

°

Z

«

(1 ¡ u2)2: (1.2)

Let us brie®y review the compactness result associated with (1.2). The precise
statement is: if, for a sequence fu ° g ° #0, the energies f ~E° (u ° )g ° #0 are uniformly
bounded, then fu° g is relatively compact in L2( « ). The essence of the argument is
the inequality

1
2 °

Z

«

jru ° j2 +
1

2 °

Z

«

(1 ¡ u2
° )2 >

Z

«

jru ° jj1 ¡ u2
° j

=

Z

«

jr© (u ° )j; (1.3)

where © (s) = s(1 ¡ 1
3 s2). The estimate implies the boundedness of fr© (u ° )g ° #0 in

L1( « ), which provides su¯ cient compactness. It is obvious that the above argument
does not generalize to (1.1); there is no analogue of (1.3), since there is no trans-
formation © such that D[ © (rÁ ° )] = (1 ¡ jrÁ ° j2) D2 Á ° . The di¬erence may also be
seen as follows. For (1.2), the favoured values of u form a discrete set f¡ 1; 1g, while
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for (1.1), the favoured values of f = rÁ form a continuum fjf j2 = 1g. As a result,
the fact that r £ f = 0, which has no analogue for (1.2), is essential for proving
compactness in the context of (1.1). We will have to investigate the combined e¬ect
of the linear di¬erential equation r £ f = 0 and the nonlinear relation jf j2 = 1.

Proposition 1.1. Let « » R2 be open and bounded. Let the sequences f ° ¸ g ¸ "1 »
(0; 1) and fÁ ¸ g ¸ "1 » H2( « ) be such that

° ¸
¸ "1¡ ¡ ¡ ! 0 and fE ° ¸ (Á ¸ )g ¸ "1 is bounded:

Then
frÁ ¸ ģ "1 » L2( « ) is relatively compact:

Actually, we prove a bit more than proposition 1.1. To state the stronger result,
we prefer to work with the divergence-free vector  elds m ¸ = R rÁ ¸ , where R
denotes rotation by 1

2 º , that is,

R

³
z1

z2

´
=

³
¡ z2

z1

´
:

This shift of perspective entails no loss of generality (our method seems intrinsically
limited to two space dimensions). Moreover, it highlights the analogy between (1.1)
and the micromagnetic energy of an isotropic thin  lm, where m is only approxi-
mately divergence free, but jmj = 1 exactly. In truth, we  rst found the arguments
behind proposition 1.2 while exploring the micromagnetics of thin  lms. This paper
focuses on (1.1) instead of micromagnetics, because that is the more familiar and
widely studied problem. Our stronger result is as follows.

Proposition 1.2. Let « » R2 be open and bounded. Let the sequence fm ¸ g ¸ "1 »
H1( « )2 be such that

r ¢ m ¸ = 0 a.e. in « ; (1.4)

k1 ¡ jm ¸ j2kL2( « )
¸ "1¡ ¡ ¡ ! 0; (1.5)

fkrm ¸ kL2( « )k1 ¡ jm ¸ j2kL2( « )ģ "1 is bounded: (1.6)

Then
fm ¸ g ¸ "1 » L2( « ) is relatively compact: (1.7)

The fact that this is a non-trivial issue becomes apparent by the following argu-
ment. Assume that (1.7) is true. Then there exists an m 2 L2( « ) such that, for a
subsequence,

m ¸
¸ "1¡ ¡ ¡ ! m in L2( « ):

Property (1.4) is conserved in the limit in a weak sense,

r ¢ m = 0 in a distributional sense on « ; (1.8)

whereas (1.5) sharpens into

jmj2 = 1 a.e. in « : (1.9)
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On the level of L2( « )-functions, the combination of the linear partial di¬erential
equation (1.8) and the nonlinear relation (1.9) is not enough to ensure compactness
in L2( « ). On the level of di¬erentiable functions, it is very rigid. (This can be easily
seen by going back to the original description m = R rÁ in which (1.8) is auto-
matically ful lled and (1.9) turns into the eikonal equation jrÁj2 = 1.) Hence in
our compactness proof we will have to combine the linear partial di¬erential equa-
tion (1.4), the increasing penalization of jmj2 6= 1 through (1.5), and the (fading)
control of D m through (1.6).

Let us sketch the basic idea of the proof of proposition 1.2. For this, we reconsider
an m which satis es both the linear partial di¬erential equation (1.8) and the
nonlinear relation (1.9). Because of (1.9), we can write

m =

³
cos ³

sin ³

´

with a function ³ so that (1.8) turns into

@1(cos ³ ) + @2(sin ³ ) = 0: (1.10)

It is enlightening to think of (1.10) as a scalar conservation law for the quantity
s ’ cos ³ which depends on time t ’ x1 and a single spatial variable y ’ x2,

@ts + @yf (s) = 0: (1.11)

As a scalar conservation law (1.11), equation (1.10) would be highly nonlinear.
As can be seen by the method of characteristics, equation (1.11) with a nonlinear
®ux function f does not admit di¬erentiable solutions to the Cauchy problem for
most smooth initial data. On the other hand, there generically are in nitely many
distributional solutions to the Cauchy problem. The notion of entropy solution
has been introduced; the Cauchy problem is well posed in this framework (see, for
instance, [11]).

What is the notion of an entropy solution? If the pair of nonlinear functions ( ² ; q)
satis es q0 = ² 0f 0 (a so-called entropy entropy-®ux pair) and if s is a di¬erentiable
solution of (1.11), then

@t ² (s) + @yq(s) = 0: (1.12)

But if f is nonlinear and s is only a distributional solution of (1.11), then (1.12)
is generically not satis ed|even in a distributional sense. An entropy solution s
of (1.11) is de ned as a distributional solution of (1.11) with the property that

@t ² (s) + @yq(s) 6 0

in a distributional sense for all entropy entropy-®ux pairs (² ; q) such that ² is
convex. Even if ² is not convex, we have, for an entropy solution, that

@t ² (s) + @yq(s) is a measure:

By a lemma of Murat [16], this implies that if fs ¸ g ¸ "1 is a sequence of uniformly
bounded entropy solutions, then

f@t ² (ş ) + @yq(s ¸ )g ¸ "1 is compact in H¡1:
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The latter allows for a judicious application of Murat and Tartar’s div-curl lemma
(a special case of compensated compactness, see [15,18]). Tartar used this method
in [18] to derive restrictions on the Young measure generated by fm ¸ g ¸ "1 . In partic-
ular, he showed that if f is su¯ ciently nonlinear, then the set of uniformly bounded
entropy solutions is compact. The scope of Tartar’s analysis is much more general,
however, than this single application. What the paper [18] really explores is how
linear partial di¬erential equations (like (1.8)) and nonlinear relations (like (1.9)),
taken together, restrict and sometimes rule out oscillations. Tartar’s method is
perfectly suited to our situation.

In the  rst part of x 2 (lemmas 2.2 and 2.3), we will identify all (nonlinear) func-
tions © of m with the property that © (m) satis es a certain linear partial di¬erential
equation, provided m satis es the linear partial di¬erential equation (1.8) and the
nonlinear relation (1.9). More precisely, we will identify all © such that

if m is di¬erentiable with r ¢ m = 0 and jmj2 = 1, then r ¢ [© (m)] = 0:

This follows a concept of Tartar and mimics the tool of entropy and entropy-®ux
pairs ( ² ; q). In the second part of x 2 (lemma 2.6), we will show that the class of
entropies is rich enough for our purposes. This doesn’t come as a surprise, since
the set of all entropy and entropy-®ux pairs ( ² ; q) is rich enough for a scalar con-
servation law in one space dimension (1.11). In the  rst part of x 3, we will show
that the control expressed in (1.6) is strong enough to ensure that, for our sequence
fm ¸ g ¸ "1 ,

fr ¢ [ © (m ¸ )]g ¸ "0 is compact in H¡1 for above © s:

Then, in the second part of x 3, we will apply Tartar’s programme.

2. Entropies

Definition 2.1. A © 2 C 1
0 (R2)2 is called an entropy if, for all z,

z ¢ D © (z) R z = 0; © (0) = 0; D © (0) = 0; (2.1)

where D © i;j = @© i=@xj denotes the Jacobian of © and R the rotation by 1
2
º , that

is,

R

³
z1

z2

´
=

³
¡ z2

z1

´
:

Lemma 2.2. Let © 2 C 1
0 (R2)2 be an entropy. Then there exists a ª 2 C 1

0 (R2)2

such that, for all z 2 R2,

D © (z) + 2 ª (z) « z = ¬ id for some ¬ ; (2.2)

where id denotes the 2 £ 2 identity matrix.

Proof of lemma 2.2. Componentwise, equation (2.2) is equivalent to the three equa-
tions

© 1;1(z) + 2ª 1(z)z1 = © 2;2(z) + 2 ª 2(z)z2 (2.3)

and
© 1;2(z) + 2ª 1(z)z2 = 0; © 2;1(z) + 2 ª 2(z)z1 = 0: (2.4)
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By continuity, equation (2.3) is equivalent to (2.3) multiplied with z1z2, that is,

z1z2 © 1;1(z) + 2z2
1z2 ª 1(z) = z1z2 © 2;2(z) + 2z1z2

2 ª 2(z):

Hence the conjunction of (2.3) and (2.4) is equivalent to the conjunction of

z1z2 © 1;1(z) ¡ z2
1 © 1;2(z) = z1z2 © 2;2(z) ¡ z2

2 © 2;1(z) (2.5)

and (2.4). But (2.5) is just (2.1) written in a componentwise fashion and (2.4) can
be satis ed by choosing

ª 1(z) = ¡ 1

2z2
© 1;2(z) and ª 2(z) = ¡ 1

2z1
© 2;1(z):

We observe that, by de nition, we have D © (0) = 0, which ensures ª 2 C 1
0 (R2)2.

Lemma 2.3. Let © 2 C 1
0 (R2)2 and ª 2 C 1

0 (R2)2 satisfy (2.2). Let m 2 H1( « )2

satisfy

r ¢ m = 0 a.e. in « :

Then

r ¢ [© (m)] = ª (m) ¢ r(1 ¡ jmj2) a.e. in « :

Proof of lemma 2.3. According to lemma 2.2, we have D © (m) = ¡ 2ª (m)«m+ ¬ id
and therefore

r ¢ [ © (m)] = tr(D © (m)rm)

= ¡ 2ª (m) ¢ (rm)Tm + ¬ r ¢ m

= ¡ ª (m) ¢ rjmj2

= ª (m) ¢ r(1 ¡ jmj2):

Lemma 2.4. There is a one-to-one correspondence between entropies © 2 C 1
0 (R2)2

and functions ’ 2 C 1
0 (R2) with ’(0) = 0 via

© (z) = ’(z)z + (r’(z) ¢ R z) R z: (2.6)

Proof of lemma 2.4. Let ’ 2 C 1
0 (R2) with ’(0) = 0 be given and © de ned

via (2.6). Obviously, © (0) = 0. We have

D © (z) = z « r’(z) + ’(z) id + R z « (D2 ’(z) R z ¡ R r’(z)) + (r’(z) ¢ R z) R

and therefore D © (0) = 0 and

z ¢ D © (z) R z = jzj2r’(z) ¢ R z + (r’(z) ¢ R z)(z ¢ R R z) = 0:

On the other hand, let © 2 C 1
0 (R2)2 be an entropy. Since © (0) = 0 and D © (0) = 0,

jzj2’(z) = © (z) ¢ z (2.7)
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de nes a ’ 2 C 1
0 (R2) with ’(0) = 0. Di¬erentiating the identity (2.7) in the

direction R z yields

jzj2r’(z) R z = z ¢ D © (z) ¢ R z + © (z) ¢ R z

= © (z) ¢ R z by (2.1): (2.8)

Hence

jzj2 © (z) = ( © (z) ¢ z)z + ( © (z) ¢ R z) R z

= jzj2’(z)z + jzj2(r’(z) ¢ R z) R z by (2.7), (2.8)

= jzj2(’(z)z + (r’(z) ¢ R z) R z):

By continuity, this implies (2.6).

Lemma 2.5. Fix an e 2 S1, the set of unit vectors in R2. Then

© (z) =

(
jzj2e for z ¢ e > 0;

0 for z ¢ e 6 0
(2.9)

is a generalized entropy in the sense that there exists a sequence f © ¸ g ¸ "1 of en-
tropies in C 1

0 (R2)2 such that

f © ¸ (z)g ¸ "1 is bounded uniformly for bounded z; (2.10)

© ¸ (z)
¸ "1¡ ¡ ¡ ! © (z) for all z: (2.11)

Proof of lemma 2.5. Consider the function ’,

’(z) =

(
z ¢ e for z ¢ e > 0;

0 for z ¢ e 6 0

and the map ¹ given by

¹ (z) =

(
e for z ¢ e > 0;

0 for z ¢ e 6 0:

Observe that ¹ is the gradient of ’ wherever the latter is di¬erentiable. Obviously,
there exists a sequence f’ ¸ g ¸ "1 in C 1

0 (R2) with ’ ¸ (0) = 0 such that

f(’ ¸ (z); r’ ¸ (z))g ¸ "1 is bounded uniformly for bounded z; (2.12)

(’ ¸ (z); r’ ¸ (z))
¸ "1¡ ¡ ¡ ! (’(z); ¹ (z)) for all z: (2.13)

According to lemma 2.4,

© ¸ (z) = ’ ¸ (z)z + (r’ ¸ (z) ¢ R z) R z
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is an entropy. Equation (2.12) implies (2.10) and, according to (2.13),

© ¸ (z)
¸ "1¡ ¡ ¡ ! ’(z)z + ( ¹ (z) ¢ R z) R z

=

(
(z ¢ e)z + (e ¢ R z) R z for z ¢ e > 0;

0 for z ¢ e 6 0;

=

(
jzj2e for z ¢ e > 0;

0 for z ¢ e 6 0;

which turns into (2.11).

Lemma 2.6. Let · be a probability measure on R2 supported on S1. Suppose it has
the property

Z
© ¢ R ~© d · =

Z
© d · ¢

Z
R ~© d · for all entropies © ; ~© :

Then · is a Dirac measure.

Proof of lemma 2.6. According to lemma 2.5, we are allowed to use the generalized
entropies of the form (2.9). As · is supported on S1, this yields

e ¢R ~e· (fz ¢e > 0g\fz ¢ ~e > 0g) = e ¢R ~e· (fz ¢e > 0g) · (fz ¢ ~e > 0g) for all e; ~e 2 S1

or

· (fz ¢ e > 0g \ fz ¢ ~e > 0g) = · (fz ¢ e > 0g) · (fz ¢ ~e > 0g)

for all ~e 2 S1 ¡ fe; ¡ eg and all e 2 S1:

Sending ~e to e yields

· (fz ¢ e > 0g) 6 · (fz ¢ e > 0g) · (fz ¢ e > 0g) for all e 2 S1

or

· (fz ¢ e > 0g) = 0 or · (fz ¢ e > 0g) > 1 for all e 2 S1:

As · is a probability measure, this implies

supp · » fz ¢ e 6 0g or supp · » fz ¢ e > 0g for all e 2 S1:

As the measure · is concentrated on S1, this forces it to be concentrated on a single
point on S1.

3. Compensated compactness and Young measures

Proof of the propositions. We may focus on proposition 1.2, since, as explained
in x 1, it implies proposition 1.1.

The  rst step is to show that, for any entropy © 2 C 1
0 (R2)2,

fr ¢ [ © (m ¸ )]g ¸ "1 is compact in H¡1( « ): (3.1)
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According to (1.4) and lemmas 2.2, 2.3, there exists a ª 2 C 1
0 (R2)2 such that

r ¢ [© (m ¸ )] = ª (m ¸ ) ¢ r(1 ¡ jm ¸ j2) a.e. in « : (3.2)

Since ª is bounded and according to (1.5), f(1 ¡ jm ¸ j2) ª (m ¸ )g ¸ "1 converges to
zero in L2( « ). As a consequence, fr ¢ [(1 ¡ jm ¸ j2) ª (m ¸ )]g ¸ "1 converges to zero in
H¡1( « ). Therefore, equation (3.1) will follow from the assertion that

fr ¢ [© (m ¸ ) ¡ (1 ¡ jm ¸ j2) ª (m ¸ )]ģ "1 is compact in H¡1( « ); (3.3)

which we show now. Thanks to (3.2), we have

r ¢ [ © (m ¸ ) ¡ (1 ¡ jm ¸ j2) ª (m ¸ )] = ¡ r ¢ [ ª (m ¸ )](1 ¡ jm ¸ j2) a.e. in « : (3.4)

We observe that, since © and ª are bounded and according to (1.5),

fj © (m ¸ ) ¡ (1 ¡ jm ¸ j2) ª (m ¸ )j2g ¸ "1 is uniformly integrable: (3.5)

Since D ª is bounded, and according to (1.6),

fr ¢ [ª (m ¸ )](1 ¡ jm ¸ j2)g ¸ "1 is bounded in L1( « ): (3.6)

A variation of a lemma by Murat [16] (see also [18, lemma 28]) now shows that in
the presence of (3.5) and (3.6), the identity (3.4) implies (3.3). (Recall that this in
turn implies (3.1).) For the convenience of the reader, we formulate and prove the
lemma.

Lemma 3.1. Let « » RN be open and bounded. Let the sequence ff̧ ģ "1 »
L2( « )N satisfy

fr ¢ f̧ g ¸ "1 is bounded in L1( « ); (3.7)

fjf̧ j2ģ "1 is uniformly integrable on « : (3.8)

Then

fr ¢ f̧ ģ "1 is compact in H¡1( « ):

Proof of lemma 3.1. We have to show that, for any sequence f’ ¸ g ¸ "1 » H1
0 ( « )

with

’ ¸
w
* 0 in H1( « ); (3.9)

we have Z

«

’ ¸ r ¢ f ¸ ! 0: (3.10)

According to Rellich, equation (3.9) implies strong convergence of f’ ¸ g ¸ "1 in
L2( « ) to zero, which entails convergence in measure, that is,

L N (fj’ ¸ j > ¯ g) ! 0 (3.11)

for any  xed ¯ > 0. We split ’ ¸ into

’ ¸ = ’(1)
¸ + ’(2)

¸ ;
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where

’(1)
¸ =

8
><

>:

¡ ¯ on f’ ¸ < ¡ ¯ g;

’ ¸ on fj’ ¸ j 6 ¯ g;

¯ on f’ ¸ > ¯ g:

Our construction is such that ’
(1)
¸ ; ’

(2)
¸ 2 H1

0 ( « ) and

j’(1)
¸ j 6 ¯ on « ;

r’(2)
¸ = 0 a.e. on fj’ ¸ j > ¯ g;

r’(2)
¸ = r’ ¸ a.e. on fj’ ¸ j < ¯ g:

9
>>=

>>;
(3.12)

Now, Z

«

’ ¸ r ¢ f̧ =

Z

«

’(1)
¸ r ¢ f ¸ ¡

Z

«

f̧ ¢ r’(2)
¸ ;

so that by (3.12),


Z

«

’ ¸ r ¢ f̧

6 ¯

Z

«

jr ¢ f̧ j +

³Z

fj’ ¸ j> ¯ g
jf ¸ j2

Z

«

jr’ ¸ j2
1́=2

:

We observe that (3.9) in particular implies the boundedness of
»Z

«

jr’ ¸ j2
¼

¸ "1
:

Hence (3.8) and (3.11) yield

lim sup
¸ "1


Z

«

’ ¸ r ¢ f̧

6 ¯ lim sup
¸ "1

Z

«

jr ¢ f̧ j:

Since ¯ > 0 was arbitrary, we obtain (3.10) as desired from (3.7).

In the second step, we apply the tools of Young measures and compensated
compactness in the spirit of Tartar [18]. According to Young’s theory of generalized
functions (also called Young measures), there exists a non-negative Borel measure
· x such that, for a subsequence,

Z

«

Z
± (z; x) d · x(z) dx = lim

¸ "1

Z

«

± (m ¸ (x); x) dx for all ± 2 C 1
0 (R2 £ « ); (3.13)

with the understanding that the function

« 3 x 7!
Z

± (z; x) d · x(z)

is integrable for any ± 2 C 1
0 (R2 £ « ) (see [4, 5,18]). The family f · xgx 2 « is called

the Young measure associated to the subsequence fm ¸ g ¸ "1 . According to (1.5),
fjm ¸ j2g ¸ "1 is uniformly integrable. Therefore, equation (3.13) can be improved to

Z

«

Z
± (z; x) d · x(z) dx = lim

¸ "1

Z

«

± (m ¸ (x); x) dx; (3.14)
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for all ± 2 C 1 (R2 £ R2) with sup j ± (z; x)j=(1 + jzj2) < 1. By choosing ± = ± (x)
in (3.14), we see that Z

d · x = 1 for a.e. x 2 « : (3.15)

Besides (3.13), the Young measure also satis es

Z

«

Z
± (z; x) d · (z) dx 6 lim sup

¸ "1

Z

«

± (m ¸ (x); x) dx

for all non-negative ± 2 C 1 (R2 £ R2): (3.16)

By choosing ± (z) = (1 ¡ jzj2)2 in (3.16), we see that (1.5) implies

supp · x » S1 for a.e. x 2 « : (3.17)

Let © , ~© be two entropies. According to our  rst step,

fr ¢ [© (m ¸ )]; r £ [R ~© (m ¸ )] = r ¢ [ ~© (m ¸ )]g ¸ "1 are compact in H¡1( « ):

Therefore, by the div-curl lemma of Murat and Tartar [15,18], the weak* limit of
the product of © (m ¸ ) and R ~© (m ¸ ) in measures is the product of the weak limits in
L2( « ) of © (m ¸ ) and R ~© (m ¸ ), respectively. According to (3.13), these weak limits
can be expressed in terms of the Young measure f · xgx2 « ; hence, on the level of
the Young measure, we obtain the commutation relation

Z
© ¢ R ~© d · x =

³Z
© d · x

´
¢
³Z

R ~© d · x

´
for a.e. x 2 « :

Using this relation and (3.15), (3.17), we apply lemma 2.6 to conclude that

· x is a Dirac measure for a.e. x 2 « :

This entails
Z

jzj2 d · x(z) = jm(x)j2 where m(x) =

Z
z d · x(z) for all x 2 « ; (3.18)

where, according to (3.14), m is the weak* limit of fm ¸ g ¸ "1 in measures. As a
consequence of (1.5), fjm ¸ j2g ¸ "1 is uniformly integrable, so that m is the weak
limit of fm ¸ ģ "1 in L2( « ). According to (3.18) and (3.14) for ± (z; x) = jzj2, we
have

kmkL2( « ) = lim
¸ "1

km ¸ kL2( « ):

As it is well known, convergence of the norm strengthens weak convergence to
strong convergence in L2( « ), so that

lim
¸ "1

km ¸ ¡ mkL2( « ) = 0:
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