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Background: Early and accurate diagnosis of infection-induced osteomyelitis,

which often involves increased PD-L1 expression, is crucial for better treatment

outcomes. Radiolabeled anti-PD-L1 nuclear imaging allows for sensitive and

non-invasive whole-body assessments of PD-L1 expression. This study aimed to

compare the efficacy of 18F-FDG and an 18F-labeled PD-L1-binding peptide

probe (18F-PD-L1P) in PET imaging of implant-associated Staphylococcus aureus

osteomyelitis (IAOM).

Methods: In this study, we synthesized an anti-PD-L1 probe and compared its

efficacy with 18F-FDG and 18F-PD-L1P in PET imaging of implant-associated

Staphylococcus aureus osteomyelitis (IAOM). The %ID/g ratios (i.e., radioactivity

ratios between the infected and non-infected sides) of both probes were

evaluated for sensitivity and accuracy in post-infected 7-day tibias and post-

infected 21 days, and the intensity of 18F-PD-L1P uptake was compared with

pathological changes measured by PD-L1 immunohistochemistry (IHC).

Results: Compared with 18F-FDG, 18F-PDL1P demonstrated higher %ID/g ratios

for both post-infected 7-day tibias (P=0.001) and post-infected 21 days

(P=0.028). The intensity of 18F-PD-L1P uptake reflected the pathological

changes of osteomyelitic bones. In comparison to 18F-FDG, 18F-PDL1P

provides earlier and more sensitive detection of osteomyelitis caused by

S. aureus.

Conclusion: Our findings suggest that the 18F-PDL1P probe is a promising tool

for the early and accurate detection of osteomyelitis caused by S. aureus.

KEYWORDS

osteomyelitis, PET imaging, PD-L1, implant-associated Staphylococcus aureus
osteomyelitis, 18F-FDG
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1 Introduction

Posttraumatic and postoperative osteomyelitis continue to be

among the most serious complications following bone trauma or

surgery (Odekerken et al., 2014a) Improper treatment of acute

osteomyelitis and recurrent episodes of chronic osteomyelitis can

lead to limb disability and high amputation rates (Gratz et al., 2001;

Conterno and Turchi, 2013). In the early postoperative period,

detecting deep orthopedic implant infections can be challenging,

making early diagnosis critical for effective treatment and implant

survival (Odekerken et al., 2014b). Therefore, having a specific

diagnostic tool to monitor implant infections is imperative.

Currently, the early diagnosis of osteomyelitis poses a

significant challenge. Among various imaging modalities, such as

CT, MRI, labeled leukocyte imaging, and gallium imaging, 18F-

FDG-PET imaging may play a role in confirming or excluding the

diagnosis of peripheral bone osteomyelitis (Makinen et al., 2005;

Termaat et al., 2005; van der Bruggen et al., 2010; Lankinen et al.,

2012; Chatziioannou et al., 2015; Llewellyn et al., 2019). However,
18F-FDG PET has potential limitations as a tool for diagnosing bone

infection. This method relies on the intensive glucose consumption

of mononuclear cells and granulocytes, which can lead to increased
18F-FDG uptake in both bacterial infections and aseptic

inflammatory processes (Koort et al., 2004). Because 18F-FDG

uptake is mediated by metabolism, increased 18F-FDG uptake is

also associated with acute fractures, normally healing bone and

degenerative changes (Koort et al., 2004). Therefore, while 18F-

FDG-PET imaging may aid in the diagnosis of peripheral bone

osteomyelitis, its diagnostic accuracy must be interpreted

with caution.

Some studies have indicated that there is a persistent elevation

of IFN-g in bones of mice infected with S. aureus by days 3 and 14

post-infection, indicating activation of the immune system and

potential bone destruction by these inflammatory factors

(Syedbasha and Egli, 2017; Lin et al., 2021). In response to

infection, increased levels of proinflammatory cytokines such as

IFN-g and TNF-a can upregulate PD-1/PD-L1 expression locally or

systemically (Patil et al., 2018; Curran et al., 2021; Sandker et al.,

2022). Furthermore, the detection of increased PD-1/PD-L1

expression in both animal models of S. aureus osteomyelitis and

human patients with the disease suggests its relevance in the

pathogenesis, and at the cellular level, S. aureus infection has

been demonstrated to induce the expression of PD-1/PD-L1 in

bone marrow macrophages (Li et al., 2023). Nuclear imaging, which

employs a radiolabeled anti-PD-L1 probe, enables non-invasive,

sensitive, and quantitative assessments of PD-L1 expression on a

whole-body scale (Niemeijer et al., 2018; Zhou M. et al., 2022).

Various preclinical studies in onco-immunology have

d emon s t r a t e d t h e f e a s i b i l i t y o f t h i s a pp ro a ch i n

immunocompetent mouse models (Sun et al., 2022). Moreover,

recent clinical studies using a radiolabeled anti-PD-L1 antibody

(Bensch et al., 2018), peptide (Zhou X. et al., 2022) demonstrated

that nuclear imaging using PD-L1 targeting tracers can assess PD-

L1 expression in vivo. However, there have been no studies that

have conducted an in-depth investigation of PD-L1 expression or

imaging in osteomyelitis disease models.
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In this study, we have shown that the expression of PD-L1 is

upregulated in bone tissues infected with Implant-Associated S.

aureus osteomyelitis (IAOM) in mouse models. Furthermore, we

have identified PET imaging with an 18F-labeled PD-L1-Binding

Peptide probe (18F-PDL1P) as a promising technique for the early

detection of bone infections.
2 Results

2.1 Establishment of IAOM mouse model

To establish a mouse model of IAOM, the hind leg was shaved

followed by disinfection with iodine (Figure 1A). A 5-mm incision

was made on the ventral side of the leg (Figure 1B). After the tibia

was exposed, a pinhole was drilled by a 26-gauge syringe needle.

(Figure 1C) Next, a 9-mm ster-ile stainless pin (0.5 mm in diameter)

was inserted into the bone marrow cavity through the canal.(For the

right side’s infected tibia, implants were soaked in 1 ml of S. aureus

solution at 1 × 105 CFU/ml, while the left side’s control received an

equal amount of sterile PBS) (Figure 1D). The incision was then

closed with a 5-0 suture (Figure 1E).
2.2 Radiographic evaluation and
htopathological characteristics of
the bone with IAOM

Radiographic signs of osteomyelitis were not observed in the

uncontaminated control tibia. By day 7 postinfection, there was no

discernible change between the infected side and control side in

terms of bone shape or intramedullary bone mineral density (BMD)

(Figure 2A). However, by day 21 post-infection, the infected tibia of

IAOM mice exhibited an obvious periosteal reaction, altered bone

morphology, increased bone mineral density, and osteolysis around

the infected implant, indicating osteonecrosis. Conversely, the

implanted bone in the uninfected tibia showed no signs of

alteration (Figure 2A). Moreover, by day 21 following surgery, the

radiographic values for the infected tibia were significantly higher

than those for the control tibia (p=0.013) (Figure 2B).

To observe the histopathological changes in infected bone,

hematoxylin and eosin (H&E) staining was performed in the

control and infected tibia on days 21 postoperation. No

significant alterations were detected in the bone morphology or

histology of the control group. However, as the IAOM progressed to

the chronic stage on day 21 post-infection, the infected tibia

exhibited clear signs of bone destruction, including extensive

infiltration of neutrophils in the medullary cavity, the formation

of necrotic abscesses in the medullary cavity, deformity of the entire

tibia, and sequestrum formation (Figure 2C).

In the 3-week follow-up, the severity of radiographic signs of

osteomyelitis (periosteal elevation, cortical thickening, and

osteolysis) was increased in the group of contaminated implants.

When the infection occurred 21 days later, the infected tibia showed

the typical signs of chronic osteomyelitis. Collectively, the above

data demonstrated that the IAOM mouse model showed typical
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radiologic pathological changes of acute and chronic osteomyelitis

along with the time of infection.
2.3 Location of S. aureus in the
bone with IAOM

To confirm the location of S. aureus in infected tibia,

immunohistochemical staining was performed. In the infected

right tibia, colonization of the bone marrow (Figure 3A) and

bone cortex (Figure 3B) by S. aureus was observed at both 7 and

21 days. No colonization of the bone marrow and bone cortex of the

left leg tibia by S. aureus was observed in the non-S. aureus-infected

metal graft (Figure 3A).
2.4 Comparative study of 18F-FDG and
18F-PDL1P micro-PET imaging

PET/CT imaging results revealed a significantly increased

uptake of 18F-PDL1P in the infected bone compared to the

uninfected tibia during the first week post-surgery (Figure 4A),

with no notable increase in 18F-FDG uptake (Figure 4C). In the

subsequent three weeks after surgery, both 18F-PDL1P (Figure 4B)

and 18F-FDG (Figure 4D) showed an increased uptake in the

osteomyelitic tibia when compared to the opposite uninfected

tibia, as demonstrated by PET imaging.

To quantify the 18F-FDG and 18F-PDL1P uptake in both groups

and investigate whether 18F-FDG and18F-PDL1P PET enables

differentiation between control and infected implants, the uptake of

both tracers by the uptake of the bone tissue around the implants was

determined. The PET quantitative data demonstrated that during the

first week after surgery, there was no significant difference in 18F-FDG

PET findings between the right and left tibias. Specifically, the %ID/g of

the left bone was 5.38 ± 1.66, while that of the right bone was 6.9 ± 0.1
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(P=0.117) (Figure 4G). However, as osteomyelitis progressed to the

third week, the uptake of 18F-FDG in the infected bone increased

significantly when compared to the contralateral bones (P<0.001)

(Figure 4H). Notably, the activity of 18F-PDL1P was significantly

higher in the infected region than in the contralateral bones at both

7 (P<0.003) (Figure 4E) and 21 days (P<0.001) (Figure 4F).

We found that compared to 18F-FDG, 18F-PDL1P showed

significantly higher %ID/g ratios in the right (R) and left (L)

tibias at both 7 days (P=0.001) and 21 days (P=0.028) post-

infection (Figure 5).
2.5 Locoregional upregulation of PD-L1 in
Staphylococcus aureus infected bone

To further demonstrate that the accumulation observed in S.

aureus-infected tibias was predominantly PD-L1 specific, we

performed immunohistochemical analysis of the infected tibias.

We observed a significant number of PD-L1-positive cells in

and around the infection foci in the bone marrow after 7 and 21

days of S. aureus infection, but only a few PD-L1-expressing cells

were found in the control site (Figure 6A). On day 7 post-infection

by S. aureus, no PD-L1-positive cells were observed in the bone

cortex (Figure 6B). However, as the infection progressed and

worsened at day 21 following infection, we also discovered an

expression of PD-L1-positive cells in the bone cortex.

The immunohistochemical analyses show that the uptake of
18F-PDL1P in S. aureus-infected bone was PD-L1-mediated.
3 Discussion

In this experimental study, 18F-FDG and 18F-PDL1P for PET

imaging of bone infection were compared.18F-FDG has been

adopted as a tracer in PET imaging of bone infections (Koort
A B D EC

FIGURE 1

Establishment of a mouse model of implant-associated osteomyelitis. (A) skin preparation and disinfection. (B) A midline 5mm incision was made
with a 15-blade scalpel through the skin at the area of mouse’s leg. (C) A unicortical defect was made using the needle of a 26-gauge syringe. (D) A
9-mm sterile stainless pin (0.5mm in diameter) was implanted into the medullary cavity. (E) The incision was closed with 5-0 silk suture.
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et al., 2004; Makinen et al., 2005; Lankinen et al., 2012; Odekerken

et al., 2014a; Chatziioannou et al., 2015), but the applicability of 18F-

PDL1P has not been reported for the same indication. By day 7

postinfection, 18F-FDG revealed a substantial uptake in uninfected

healing-deficient bone and was comparable to infected bone,

according to the vivo PET imaging. This led to a false-positive

result because it was impossible to discern between infected and

uninfected bone. However, during this same time, 18F-PDL1P

proved useful for distinguishing between infected and uninfected

bone. By day 21 postinfection, compared to bones with healing

defects, bones with persistent osteomyelitis showed considerably

higher uptake of both 18F-FDG and 18F-PDL1P, according to in vivo

PET imaging. Furthermore, compared to 18F-FDG, 18F-PDL1P had

a greater rate of increased uptake. The results of our experimental

design are consistent with earlier study (Odekerken et al., 2014b) in

that the third postoperative week was the earliest time at which it

was possible to distinguish between 18F-FDG uptake from

uninfected healing-deficient bone and infected bone.
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Staphylococcus aureus remains by far the more common pathogen

in osteomyelitis (Chen et al., 2022; Zhang et al., 2022). Clinical data in

Nanfang hospital shows that Staphylococcus aureus covers 15% of the

pathogenic bacteria in osteomyelitis. (Staphylococcus aureus covers

15% of the pathogenic bacteria in all surgical site infections

(Saadatian-Elahi et al., 2008)). So Staphylococcus aureus has the

characteristics of stable infection and tissue characteristics close to

clinicopathological features (Hidaka, 1985; Liu et al., 2022). Both

stainless steel and titanium alloys are the most commonly used

materials in orthopedics. There is no significant difference between

stainless steel and titanium (Metsemakers et al., 2016), stainless steel

implant as infection vectors was used in this study. A well-liked animal

model for studying osteomyelitis is the IAOM model of tibial

osteomyelitis (Koort et al., 2004; Sun et al., 2022). The model’s great

reproducibility in the induction of infection was confirmed by

bacteriology. On conventional radiographs and CT scans, as well as

histopathologically, the generated bone infection resembled chronic

human post-traumatic osteomyelitis. In the current study, the ID/g
A

B C

FIGURE 2

Radiographic and histopathological evidence of bone destruction in infected tibia. Representative radiographic images of tibia bones from control
and implant-associated osteomyelitis (IAOM) mice (A). Quantification of bone destruction using a radiographic scoring method (B). Histopathological
analysis of tibia in control and infected mice (C). ns, no statistical difference between the two groups at the same time point (n = 4 per group).
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ratios between the infected and contralateral bones ranged from 1.22 to

1.68 for 18F-FDG and from 2.18 to 2.38 for 18F-PDL1P, where bacterial

osteomyelitis of the mouse tibia was microbiologically verified.

Additional studies are necessary to address the following issues: (1)

the lack of investigation into the correlation between bacterial load,

bacterial activity, and imaging, which could be an essential area for

future exploration and may become a focus of our future research

direction; and (2) the validation of the diagnostic potential of 18F-

PDL1P for osteomyelitis using IAOM, as suggested by the findings of

this preclinical study, necessitates confirmation through

experimentation involving human subjects.

The delicate balancing act between efficient antimicrobial immune

defenses and immune-mediated tissue damage appears to be regulated

by the PD-1:PD-L1 pathway, which is thought to be a major factor in

how an infection will progress (Dyck and Mills, 2017; Qin et al., 2019;

Wang et al., 2021; Sandker et al., 2022). Notably, PET imaging of PD-

L1 expression has shown to be a reliable predictor of response to

immunotherapy and well-correlated with immunohistochemistry

(Bensch et al., 2018; Vento et al., 2019; Kelly et al., 2021).Therefore,

PET imaging of osteomyelitic using anti-PD-L1P probes is a promising

imaging modality. Given that cytokine-induced inflammation can

cause a rapid and transient increase in PD-L1 expression levels

(Sandker et al., 2022), PD-L1 targeting peptides with shorter

circulation times may provide an advantage. With the aid of nuclear

imaging, a more strategic design of studies involving immune

checkpoint inhibition to treat chronic infectious illnesses complicated

by immune dysfunction is now possible. This imaging modality can

help assess potential therapeutic synergy between PD-L1 blocking and

current antimicrobial immune-activating medications, such as

prednisone, TNF-alpha antagonists, and IL-6 blockers, by

monitoring changes in PD-L1 expression levels.

Taken together, our findings indicate that18F-FDG and 18F-

PDL1P accumulated in S. aureus osteomyelitis. 18F-PDL1P in
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contrast to18F-FDG, provides earlier and more sensitive detection

of osteomyelitis caused by S. aureus. 18F-PDL1P was shown to be a

potentially effective tracer for the detection of acute osteomyelitic

and chronic osteomyelitic with higher T/N(target to nontarget

ratio) than 18F-FDG.Further studies are needed to clarify the

value of 18F-PDL1P PET for clinical purposes. Furthermore, our

results indicate that 18F-PDL1P PET may provide a tool in human

clinical diagnostics and for the evaluation of antimicrobial strategies

in animal models of orthopedic implant infection.
4 Methods

4.1 Staphylococcus aureus strains and
pathogenic challenge

S. aureus was isolated from a patient with chronic osteomyelitis,

and methicillin-sensitive S. aureus was identified using PHOENIX

100 (Becton, Dickinson Microbiology Systems, USA). A frozen stock

of S. aureus strains was routinely grown on tryptic soy broth (TSB)

with shaking at 180 rpm at 37°C for 16 h and collected by

centrifugation at 3,000 rpm for 10min. The bacterial pellets were

washed and resuspended in phosphate-buffered saline (PBS). The

concentration of S. aureus was adjusted to an optical density (OD) of

0.5 at 600 nm, approximately equal to 1 × 108 CFU/ml, and further

adjusted to 1 × 105 CFU/ml for soaking implants for IAOM mice.
4.2 Implant-associated S. aureus
osteomyelitis mice model

Protocols for animal experiments were approved by the

Animal Care and Use Committee at Nanfang Hospital, Southern
A B

FIGURE 3

Bacterial colonization of tibial tissue in IAOM mice. Immunohistochemistry images of S. aureus invading and propagating in canaliculi of murine
tibiae (A) and bone cortex (B). (n = 2 per group). Scale bar =20mm.
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Medical University. Male C57BL/6 mice aged 10 to 12 weeks were

housed in a facility with a 12-h light/dark cycle, 24 ± 2°C room

temperature, and provided with ad libitum access to water and

food. The left and right legs of the mice were separately assigned to

a self-control group and an IAOM group. Prior to surgery, mice

were anesthetized by intraperitoneal injection of tribromoethanol

(125 mg/kg of body weight). Implants were soaked in 1 ml of S.

aureus solution at 1 × 105 CFU/ml for IAOM mice, while an equal
Frontiers in Cellular and Infection Microbiology 06
volume of sterile PBS was used for the controls. After the hind leg

was shaved and disinfected with iodine, a 5-mm incision was

made on the ventral side of the leg. The tibia was then exposed,

and a pinhole was drilled using a 26-gauge syringe needle. Next, a

9-mm sterile stainless pin (0.5 mm in diameter) was inserted into

the bone marrow cavity through the canal. The incision was closed

with a 5-0 suture. Both tibiae were collected on days 7 and 21 after

the operation for further analysis.
A B

D

E F

G H

C

FIGURE 4
18F-PDL1P PET maximal intensity projection (MIP) images of the lower body were taken on post-infection days 7 (A) and 21 (B). 18F-FDG PET MIP
images of the lower body were taken on post-infection days 7 (C) and 21 (D). Intake value of 18F-PDL1P PET of the post infection on 7 days (E) and
21 days (F). Intake value of 18F-FDG PET of the post infection on 7 days (G) and 21 days (H). The right infected tibia (red arrow) and the left
uninfected tibia (white arrow) are shown. ns, no statistical difference between the two groups at the same time point.
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4.3 Radiosynthesis

[18F]Fluoride was created by bombarding a high pressure

[18O]H2O target with 18 MeV proton beams using a PET trace

biomedical cyclotron (PET 800, General Electric, Boston, MA,

USA). Radioactivity was measured using a Capintec CAPRAC-R

dosage calibrator (NJ, USA). [18F]FDG was produced with a

specific radioactivity of >76 GBq/mol and a radiochemical

purity of >98% using a fully automated FDG synthesis module

(IBA). For radiosynthesis of 18F-PDL1P, the method described

previously was used (Tang et al., 2021; Sun et al., 2022), with

manual execution.
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4.4 PET/CT imaging of IAOM mouse model

Comparative 18F-FDG and 18F-PDL1P PET/CT imaging was

performed at 1 and 3 weeks after a 4-hour fasting period prior to

tracer injection. Mice were anesthetized and placed in a micro-PET

scanner (Siemens, Erlangen, Germany) in the prone position,

followed by tail vein injection of a range of 7.4 MBq to 11.1 MBq

of 18 F-FDG and 18F-PDL1P. Three-dimensional ordered-subset

expectation maximum (OSEM) algorithm (Siemens, Erlangen,

Germany) was used for image reconstruction with attenuation

correction and for anatomical reference with CT data. Images and

regions of interest (ROIs) were generated using Inevon Research
A B

FIGURE 6

Immunohistochemistry for PD-L1 expression of Staphylococcus aureus-infected and vehicle control implanted bone marrow (A) and bone (B).
Representative images of immunohistochemistry for PD-L1 in bone and bone marrow (n = 2 per group). Scale bar = 20 mm.
FIGURE 5

Comparison of 18F-FDG and 18F-PDL1P uptake rates on infected and uninfected Sides at 7 and 21 Days Post-Infection, R/L(radioactivity ratios
between the right infected and left non-infected sides).
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Workplace 4.1 software (Siemens, Erlangen, Germany). The

standardized circular ROI (radius 3.8 mm) of the right operated

tibia and the corresponding region of the left contralateral tibia were

quantitatively analyzed for 18F-FDG and 18F-PDL1P uptake,

expressed as mean %ID/g. The mean %ID/g was calculated as the

mean radioactivity of the ROI divided by the relative injected dose

of radioactivity per kilogram of body weight.
4.5 Radiographic evaluation and
histological analysis

Quantitative evaluation of the IAOM was performed using a

modified scale based on previously reported radiographic

parameters (Smeltzer et al., 1997). These parameters include

periosteal elevation, architectural deformation, widening of the

bone shaft, production of new bone, and deformation of soft

tissue, which were evaluated as radiographic indicators of disease.

Each parameter was scored between 0 and 4, with a score of 4

indicating the most severe evidence of illness. The same researcher

(Y.M.), who was blinded to the infection status of each mouse,

scored each radiograph. The total score for each sample was

calculated as the sum of the scores for the five parameters.

Following infection on day 21, mice were sedated and intracardially

given 4% paraformaldehyde. Proximal and middle bone segments of

the harvested tibias were preserved in 4% paraformaldehyde overnight

at 4°C. The samples were then demineralized in 10% EDTA for ten

days, processed, and paraffin-embedded. Subsequently, 4 mm coronal

sections were cut and stained with hematoxylin-eosin (H&E)
4.6 Immunohistochemistry

After deparaffinization and rehydration, antigen retrieval for

immunohistochemical analysis was carried out by incubating the

section in a protease K solution (1 mg/ml) at 37°C for 15 min.

Endogenous peroxidase activity was then quenched in 3% H2O2 for

15 min. Sections were treated with the rabbit anti-S antibody after

being blocked for 1 hour at room temperature with 10% goat serum.

Sections were then incubated withmouse anti-PD-L1 antibody (catalog

no. MH68942; Abmart, Shanghai, China) or S. aureus antibody

(catalog no. ab20920; Abcam) for 1 hour at room temperature.

Finally, sections were incubated with avidin-conjugated horseradish

peroxidase (HRP) complex in accordance with the manufacturer’s

protocol (Vectastain ABC HRP kit; Vector Laboratories, USA). In the

end, sections’ peroxidase activities were discovered using a kit for 3,3’-

diaminobenzidine (DAB) substrate (Vector Laboratories).
4.7 Statistical analysis

The standard deviation (SD) and mean were used to express the

data. Statistical analysis was performed using SPSS version 22.0

(IBM Corp, Armonk, NY, USA) to assess the significance of

differences between two datasets. A p-value less than 0.05 was

considered statistically significant.
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5 Conclusions

In this work, we find that the expression of PD-L1 was increased

in the infected bone in mouse models. And PET using an anti-PD-

L1 probe is a promising imaging modality for early bone infections.
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