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Abstract. Two distinct and paralel research communities have
been working along the lines of the Model-Based Diagnosis ap-
proach: the FDI community and the DX community that have
evolved in thefields of Automatic Control and Artificial Intelligence,
respectively. This paper clarifies and links the concepts that under-
lie the FDI analytical redundancy approach and the DX logical ap-
proach. Theformal match of the two approachesis demonstrated and
the proof of their equivalenceis provided under variousassumptions.

1 Introduction

Diagnosisis an active research topic which can be approached from
different perspectives according to the type of knowledge available.
The so-called Model-Based Diagnosis (MBD) approach rests on the
use of an explicit model of the system to be diagnosed. Two dis-
tinct and parallel research communities have been using the MBD
approach. The Fault Detection and Isolation (FDI) community uses
techniques from control theory and statistical analysis. It has now
reached a mature state and a number of very good surveys exist in
thisfield [9, 6, 8]. The DX community emerged more recently, with
foundations in the fields of Computer Science and Artificial Intelli-
gence[11, 5, 7].

The goals of the IMALAIA group are to agree upon a common
FDI/DX terminology, to identify similarities and complementarities
in the FDI and DX methods, and to contribute towards a unifying
framework, thus taking advantage of the synergy of techniquesfrom
the two communities.

Thispaper clarifiesthelink between parity equationsor analytical
redundancy relations (ARR for short) and conflicts by introducing
the notion of potential conflicts or ARR supports. The forma match
of the two approachesis thus shown. The FDI and DX approaches
used for fault localization are then analyzed from the two perspec-
tives. The exoneration and no-compensation assumptionswhich are
implicit in FDI are made clear and the theoretical proof of equiv-
alence of the two approachesis included, according to adopted as-
sumptions. For the sake of clarity, the study is carried out in a pure
consistency-based framework, i.e. without fault models.

The examplethat hasbeen chosento support the comparative anal -
ysis throughout the paper is the well-known system from [3] com-
posed of three multipliers M1, M2, M3 and two adders A1, A2 (see
Figure 1). This choice and the fact that the system is assumed to op-
erate in an ideal non-noisy and non-disturbed environment has been
made on purpose to focus on the main features of each approach,
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without being overburdened neither with modeling details, nor with
detection criteria. Let us emphasizethat this discrete static example
has been chosenfor sakeof clarity, but that the conclusionsstemming
from the comparison are quite general. In particular both approaches
can deal with continuous dynamic systems by basing the methods
on differential or recurrent models. On the other side, the problems
related to temporal diagnosis [1] involve many open issues in both
approachesand are only evoked in the final discussion.

Figure 1. The system

The paper is organized as follows. Sections 2 and 3 present the
FDI analytical redundancy approach and the DX logical approach,
respectively. Section 4 proposes a unified representation and proves
the equivalence of thetwo approaches. This proof is given under spe-
cific assumptions corresponding to two classical caseswhich arethe
cases by default assumed in FDI and DX respectively. The general
case and a more thorough analysis can be found in the long paper
[2]. Finally, Section 5 discussesthe results and outlines several inter-
esting directions for future investigation.

2 Redundancy-based diagnosis: the FDI approach

The behaviora model BM of a system is derived from its structure,
which shows the links between its components (structural model),
and the behavior model of each component.

Definition 2.1 The system model SM is defined as the behavioral
model BM, i.e. the set of relations defining the system behavior, to-
gether with the observation model OM, i.e. the set of relations be-
tween the variables X of the system and the observed variables O
acquired by the sensors.

Example: Elementary componentsaretheaddersAl, A2, themultipliersM1,

M2, M3together with the set of sensors. The system model SM ishencegiven
by the following:
BM:

: RMl:x=axc RM2:y=bx d
RM3:z=cx e RAL: f=x+y RA2:g=y+z
OM: RSa a= agps RShb: b =bghs RSc ¢ = cops
RSd:d=dohs RSee=eps RSfEf=fops RS 9= dobs



Definition 2.2 A diagnosis problemis defined by the system model
SM, a set of observations OBS assigning values to observed vari-
ables, and a set of faults F 2.

Example: OBS = {aghs = 2, bohs = 2, Cobs = 3, dobs = 3, €obs = 2, fobs
=10, gobs = 12}. The set of singlefaultsis SF = {Fa1, FA2, FM1, FM2
Fm3)} and theset of faultsis F = 2SF,

Definition 2.3 The systemstructureis defined through a binary appli-
cations: SM x V — {0,1}, where V = X | J O isthe set of variables
and s(rel,v) = 1if and only if vappearsin relation rel.

Definition 2.4 An analytical redundancyrelation (ARR) isarelation
entailed by SM (and the components whose behavior model is used
by this entailment are said to be involved in the ARR) which contains
only observed variables, and which can therefore be evaluated from
OBS. Itisnotedr = O, wherer is called the residual of the ARR. For
a given OBS, the instantiation of the residual is noted val(r,OBS),
abbreviated asval(r) when not ambiguous. Thus, val(r,OBS)=0if the
observations satisfy the ARR.

ARRSs can be obtained from the system model by eliminating the
unknown variables. This problem can be formalized in a graph the-
oretical framework, which comes down to the well-known problem
of finding a complete matching w.r.t. the unknown variables X in the
bipartite graph whoseincidencematrix isthematrix associatedto the
application s. In this system structure matrix representation, a com-
plete matching appears as a selection of one and only one entry per
column, corresponding to an unknown variable, and per row, corre-
sponding to a SM relation.

Example: A complete matching leadsto the following ARRs:

ARR1:r1 = Owherer1 = fops—aghs X Cobs—bobs X dobs

ARR2: 12 = Owherer = gobs—Pobs X dobs—Cobs X €obs

If we assume that the sensors are not faulty, the ARRS can be rewritten as:
ARRL: f-(axc+bxd=0 ARR2 g-(bxd+cxe=0

Let uscall the ARRsthat are obtained from a given compl ete match-
ing elementary ARRs. Given a set of elementary ARRS, additional
redundancy relations can be obtained by combining the elementary
ones.

Example: A third redundancy relation ARR3: f—g—ax c+cx e=0 can
be obtained. The componentsinvolvedin ARR3 are A1, A2, M1, M3. Notice
that it is not the union of the componentsinvolvedin ARR1 (A1, M1, M2)
andin ARR2 (A2, M2, M3).

Besides analytical redundancy relations, a fundamental concept in
the FDI approachis that of fault signature.

Definition 2.5 Given aset R = {ARRy, ..., ARRy} of n ARRs and
aset F={Fy, ...,Fn} of mfaults, the signature of afault Fj is given
by the binary vector FSj = [sy;, ..., sy] T in which s;j is given by:

(ARR;, Fj) = sj = 1if some componentsinvolved in Fj are in-
volved in ARR;

~ §j = O otherwise.

The interpretation of some s;j being O is that the occurrence of the
fault Fj does not affect ARR;, meaning that val(rj) = 0. Theinterpre-
tation of some s;j being equal to 1 isthat the occurrence of the fault
Fj is expected to affect ARR;, meaning that val(rj) is now expected
to be different from 0.

Definition 2.6 Given aset R of n ARRs, the signatures of a set F of
m faults all put together constitute the so-called signature matrix.

2 In order to facilitate the comparisonwith DX, and without loss of generality,
afault can be seen as a set of faulty components.

In our example, the signature matrix for the set of single faults cor-
responding to componentsA1l, A2, M1, M2 and M3 is given by:

Fa1 | Fa2 | Fm1 | Fm2 | Fms
ARR1 1 0 1 1 0
ARR2 0 1 0 1 1
ARR3 1 1 1 0 1

The case of multiple faults can be dealt with by expanding the num-
ber of columns of the signature matrix, leading to a total number of
2M-1 columnswith m the number of singlefaults, if al the possible
multiple faults are considered. Let F3be amultiple fault correspond-
ing to the occurrence of k single faults Fj1, ..., Fjk, then the entries
of the signature vector of Fjare given by:
§j=0ifgj1=...=5jk=0
§j =1lif A 1< <ksuchthats =1
Example: Extending the matrix above, the 26 additional columns have a
[1, 1, 1] signature, except for Ffa1, M1} Which hasa[1, 0, 1] T signature,
and for F{p2, M3} whichhasa[0, 1, 1] T signature.

The diagnostic sets in the FDI approach are given in terms of
the faults accounted for in the signature matrix. The generation of
the diagnostic setsis based on a column interpretation of the signa-
ture matrix and consistsin comparing the observation signaturewith
the fault signatures. This comparison is stated as a decision-making
problem.

Definition 2.7 The signature of an observation OBSisabinary vector
0S=[0Sy, ..., 0S,]" where OS; = 0iff val(rj,OBS) = 0.

The first step (the detection task) is to build the observation signa-
ture, i.e. to decidewhether aresidual valueis zero or not, in the pres-
ence of noises and disturbances. This problem has been thoroughly
investigated within the FDI community. It isgenerally stated asa sta-
tistical decision-making problem, making use of the available noise
and disturbance models.

Example: With OBS asabove, 0S=[1,0, 1]T. Inthecasef =10 and g = 10,
0S=[11,0]Tandinthecasef =10andg=14,0S=11, 1, 1] T.

The second step (the isolation task) isto actually compare the obser-
vation signature with the fault signatures. A solution to this decision-
making problem isto define a consistency criterion asfollows:

Definition 2.8 An observation signature OS = [0Sy, ..., OS,T is
consistent with a fault signature FSj = [syj,...,5y]" if and only if
OS =sjforali.

Definition 2.9 The diagnostic sets are given by the faults whose sig-
natures are consistent with the observation signature.

Example: The diagnostic sets got for the following observation signatures
are;

0S=1[1,0,1]T & Fa1 or Fpq or FiA1, M1}

0S=[1,1,0T < Fu2

0S=[1,1, 1T & any multiple fault except F{A1, M1} and FiA2, M3}

Note that the FDI community generally usesa similarity-based con-
sistency criterion arising from the definition of adistancerather than
the equality-based criterion defined above.

3 Logical-based diagnosis: the DX approach

Reiter [11] proposed a logical theory of diagnosis. This approach,
also referred to as consistency-based diagnosis, was later extended



and formalized in [4]. In the following we refer to the basic defi-
nitions of [11] without considering posterior extensions and refine-
ments. The description of the behavior of the system is component-
oriented and rests on first-order logic.

Definition 3.1 A systemmodel isapair (SD, COMPS) where SD, the
systemdescription, isa set of first-order logic formulaswith equality
and COMPS, the components of the system, is a finite set of con-
stants. SD uses a distinguished predicate AB, interpreted to mean
abnormal. =AB(c) with ¢ belonging to COMPS hence describesthe
case where the component ¢ is behaving correctly.

Example: COMPS={A1,A2, M1, M2, M3}

SD = { ADD(x) A —=AB(x) = Output(x) = Input1(x) + Input2(x),
MULT(x) A =AB(x) = Output(x) = Input1(x) x Input2(x),
ADD(A1), ADD(A2), MULT(M1), MULT(M2), MULT(M3),
Output(M1) = Input1(Al), Output(M2) = Input2(A1),
Output(M2) = Input1(A2), Output(M3) = Input2(A2),
Input2(M1) = Inputl(M3) }

L et us note one point which differs somewhat from the description of
the system in the FDI approach: with the distinguished predicate AB
it is possible to make explicit the fact that aformulain SD describes
the normal behavior of agiven component. Thedescription can easily
be extended to include faulty behaviors.

A diagnosis problem results from the discrepancy between the nor-
mal behavior of asystem as described by the system model and a set
of observations.

Definition 3.2 A set of observations OBS is a set of first-order for-
mulas.

Example: An example of observationsfor our systemis OBS = {Input1(M1)
=2, Input2(M1) = 3, Inputl(M2) = 2, Input2(M2) = 3, Input2(M3) = 2, Out-
put(A1) = 10, Output(A2) = 12}.

Definition 3.3 A diagnosis problemis atriple (SD, COMPS, OBS)
where (SD, COMPS) is a system model and OBS a set of observa-
tions.

A diagnosisisaconjecturethat certain componentsof the systemare
behaving abnormally. This conjecture hasto be consistent with what
is known about the system and with the observations.

Definition 3.4 A diagnosisfor (SD, COMPS, OBS) is a set of com-
ponents A C COMPS such that SD | J OBS | J {AB(c) | c € A}
|J{-AB(c) | c€ COMPS— A} issatisfiable. A minimal diagnosis
isadiagnosisA suchthat VA’ C A, A’ isnot adiagnosis.

Following the principle of parsimony, minimal diagnoses are often
the preferred ones. For the sake of simplicity, we will limit ourselves
to minimal diagnoses. A method based upon the concept of conflict
set has been proposed in [11] to generate minimal diagnosesand is
at the basis of most of implemented DX algorithms.

Definition 3.5 An R-conflict for (SD, COMPS, OBS) is a set of
components C = {c1, ..., ck} C COMPS such that SD | J OBS
|J {—~AB(c) | c € C} isinconsistent. A minimal R-conflict is an R-
conflict which doesnot include any R-conflict.

An R-conflict can be interpreted as follows: one at least of the com-
ponentsin the R-conflict is faulty in order to account for the obser-
vations.

Example: The system with the observations as seen above has the follow-
ing minimal R-conflicts: {A1, M1, M2} and {A1, A2, M1, M3} dueto the
abnormal value of 10 for f. In the case f = 10 and g = 10, the two minimal

R-conflicts are: {A1, M1, M2} and {A2, M2, M3}. Inthe casef = 10and g
= 14, therearethree minimal R-conflicts: {A1, M1, M2}, {A2, M2, M3} and
{A1, A2, M1, M3}.

Using these minimal R-conflicts, it is possible to give a characteri-
zation of minimal diagnoses which provides a basis for computing
them [11].

Proposition 3.1A isaminimal diagnosisfor (SD, COMPS, OBY) if
andonly if A isaminimal hitting set® for the collection of (minimal)
R-conflictsfor (SD, COMPS, OBS).

Example: With f = 10 and g = 12, there are four minimal diagnosesgiven by
the minimal hitting setsfor {{A1, M1, M2}, {A1, A2, M1, M3}} which are:
Al={Al1}, A2 ={M1}, A3 ={A2, M2}, Ad={M2, M3}. Withf =10
and g = 10, there are five minimal diagnosesgiven by the minimal hitting sets
for {{A1, M1, M2}, {A2, M2, M3}} which are: Al = {M2}, A2 = {Al,
A2}, A3={A1, M3}, Ad={A2,M1}, A5={M1,M3}. Withf =10andg
= 14, there are eight minimal diagnoses given by the minimal hitting sets for
{{A1,M1, M2}, {A2, M2, M3}, {A1,A2,M1, M3} } whichare: A1={A1,
A2}, A2={A1, M2}, A3={A1, M3}, Ad={A2, M1}, A5={A2, M2},
A6={M1, M2}, A7={M1, M3}, A8={M2, M3}.

4 Unified framework for DX and FDI approaches
4.1 ARRsvs R-conflicts

In both approaches, diagnosisis triggered when discrepancies occur
between the modeled (correct) behavior and the observations (OBS).
In the ARR framework, discrepancies come from ARRs which are
not satisfied by OBS. In DX, discrepancies allow the identification
of R-conflicts, where an R-conflict is a set of components the cor-
rectness of which supports a discrepancy. An anal ogous concept can
be definedin FDI.

Definition 4.1 The support of an ARR is the set of componentsin-
volved in this ARR, i.e. columns of the signature matrix with anon
zero element in the row corresponding to this ARR. It is also called
apotential R-conflict. Thisnameis justified by the following result.

Proposition 4.1Let OBS be a set of observationsfor asystem mod-
eled by SM (resp. SD). Thereis an identity between the set of mini-
mal R-conflictsfor OBS and the set of minimal potential R-conflicts
associated to the ARRswhich are not satisfied by OBS (proof in [2]).

Example: The potential R-conflicts are: C1 = {A1, M1, M2} (support of
ARR1), C2 = {A2, M2, M3} (support of ARR2) and C3 = {A1, A2, M1,
M3} (support of ARR3). With f = 10 and g = 12, ARR1 and ARR3 are not
satisfied, which givesrise to the minimal R-conflicts C1 and C3. With f =10
andg =10, ARR1 and ARR2 are not satisfied, which givesriseto the minimal
R-conflicts C1 and C2. With f = 10and g = 14, ARR1, ARR2 and ARR3 are
not satisfied, which givesrise to the minima R-conflicts C1, C2 and C3.

Let us now analyze the relationship between potential R-conflicts
and R-conflicts. From the computational point of view, the main dif-
ference between the FDI and DX approachesis that in FDI most of
the work is doneoff-line. Using just the knowledge of observed vari-
ables, i.e. sensor locations, modeling knowledgeis compiled: ARRs
are obtained by combining model constraints and eliminating unob-
served variables. Theonly thing that hasto bedone on-line, i.e. when
agiven OBSisacquired, is to compute the falsity value (w.r.t. OBS)
of each ARR and to compare the observation signature obtained with
the fault signatures. In terms of R-conflicts, this meansthat potential

3 A hitting set for a collection of setsis a set that intersects any set of the
collection.



R-conflicts are compiled and that, for any OBS, R-conflicts are ex-
actly those potential R-conflicts which are supports of those ARRs
which are not satisfied by OBS.

4.2 The matrix framework

The FDI approach uses the signature matrix crossing ARRs in rows
and sets of componentsin columns. It was shown in section 2 that,
given an observation OBS, diagnosisis achieved by identifying those
columns which are identical (or closest w.r.t. a distance function) to
the observation signature column.

In the DX approach, it has been seen in section 3 that minimal
diagnoses are obtained as minimal hitting sets of the collection of
(OBS-) R-conflicts. From proposition 4.1 above, such R-conflictscan
be viewed as the supports of those ARRs which are not satisfied by
OBS, i.e. by looking at the corresponding set of rows I. A minimal
hitting set of the collection of R-conflictsis then aminimal set J of
singleton columns such that each of the rows of | intersects at least
one column of J(i.e. hasanon zero element in this column).

It is thus quite natura to adopt this matrix framework as a for-
mal basis on which to compare the two approaches. The following
notations are used:

e Let R={ARR; /i =1...n} bethe set of ARRs and COMPS
={Cj /j=1...m} the set of components of the system. FS =
[Sjli=1...n,j = 1...m is the signature matrix. The ji column of
FSis the signature of afault in Cj and is noted FS;. For J = {jy,
ok } € {1,...m}, let usnote Cythe subset {C; /| € J}, and 55
the element of the extended matrix FSat linei and column J.

¢ Any observation OBS splitsthe set R into two subsets:

— the subset Rig g Of ARRst isinconsistent with, i.e. Rfgge =
{ARR; =(rj = 0) / val(r;,OBS) # 0}.

— the subset Riyye = ARR — Rfg s Of ARRSIt is consistent with,
i.e. Rirye = {ARR; =(rj = 0) / val(r;,OBS) = 0}.

OBS is thus described through its signature OS, which is the bi-
nary column vector defined by: for ali=1...n, OS = 1if ARR;
€ Rigeeand OS; = 0if ARR; € Ryrye -

The FDI theory comparesthe observation signatureto the fault signa-
tures whereas DX considers separately each line corresponding to an
ARR in Ry, isolating R-conflicts before searching for a common
explanation. In the following, these approaches are called column
view and line view respectively.

4.3 Exoneration and no-compensation assumptions

The originality and the power of both the FDI and DX approaches
result from the fact that they are based only on the correct behavior
of the components: no model of faulty behavior is needed. Never-
theless, different assumptions concerning the manifestations of the
faults through observationsare adopted by default by each approach,
leading to different computations of the diagnoses, which explains
the different results obtained on the example. These assumptions
concern: 1) the manifestations of the faults through observationsand
2) the case of simultaneous faults and of their interaction.

In addition to the obvious fact that a fault cannot affect an ARR
in which it is not involved, which is the direct form of the reasoning
usedin DX, theideaused in FDI isthat afault necessarily manifests
itself by affecting the ARRsin whichit isinvolved, causing them not
to be satisfied by any given OBS. Hence not only, asin DX, is any

column involved in anot satisfied row afault candidate, but also any
column involved in a satisfied ARR is implicitly exonerated (satis-
fied rows are thus also used in the reasoning). In fact this result is
not sound but rests on an exoneration assumption which is implic-
itly made in the FDI approach and hasto be considered explicitly in
order to compare the FDI approach with the DX approach.

Definition 4.2 (ARR-based exoneration assumption) A set of faulty
components necessarily shows its faulty behavior, i.e. causes any
ARR in which it is involved not to be satisfied by any given OBS.
Or, equivaently, given OBS, any set of components involved in a
satisfied ARR is exonerated, i.e. each component of its support is
considered to be behaving correctly.

Note that this exoneration assumption is made up of 1) asingle fault
exoneration assumption (each individual component showsits faulty
behavior) and 2) a no-compensation assumption (the individua ef-
fects of faulty components never compensate each other).

From the matrix viewpoint, the fact that ARR; exonerates Cj will
appear as usud (cf. section 2) in FS assjj = 1, whereas we have cho-
sento represent the fact that Cj isin the support of ARR; but that the
exoneration is not assumed by sj; = X. The elements of FS can thus
take their valuesin {0,1}, {0,X} or {0,X,1}. The semantics of sjj =
X ist afault in G can explain why ARR is not satisfied, but ARR;
may happen to be satisfied even when Cj is faulty. The semantics
of 5j = 1is afault in Cj forces ARR; not to be satisfied (hence if
ARR; is satisfied then Cj is not faulty - which explains the term " ex-
oneration”). The generalized use of an exoneration assumption for
each component will be called the exoneration and no-compensation
case (exo/no-comp) and corresponds to the assumption by default in
the FDI approach, while the total lack of exoneration will be called
the no-exoneration and compensation case (no-exo/comp) and corre-
spondsto the assumption by default in the DX approach.

4.4  Equivalence in the exo/no-comp case

In this case, fault signatures involve only 0 and 1. As seen in sec-
tion 2, the signature of the column Cj of the extended matrix is
given by the following fault interaction law which expressesthe no-
compensation assumption:

Si3=sup{sjj/j € J} for the order 0 <1 (Flenc)

Let Support(ARR;) = {C3/ 3= 1} and Scope(Cj) = {ARR;/ 53=
1}. The column view searchesfor a perfect match of afault signature
with the observation signature. A set Cjisadiagnosisif and only if:
Rralse = Scope(C)). (CVenc)

Inthelineview, the diagnosesare subsets C jof COMPS suchthat:
Vi (ARR€ Rigse = 3j€ J, Cj € Support(ARRy)) A (LVenc)
Vi (ARRj € Ryrye= V] € J, Gj € COMPS — Support(ARR))

Due to(Flenc) this is equivalent to: Vi (ARRj € Rfge & Cj
€ Support(ARR;)) which is itself equivalent to (CVenc), which
proves the equivalence of the column and line views.

Example: Withf = 10and g = 12, i.e. observationsignature[1, 0, 1] T, there
are 2 minimal single fault diagnoses{A1} and {M1} and one superset diag-

nosis{A1, M1} (the componentsA2, M2 and M3 are exonerated as members
of the support of the satisfied ARR2). With f = 10 and g = 10, i.e. observa-
tion signature [1, 1, 0] T, the only diagnosisis {M2} (the components A1,

A2, M1 and M3 are exonerated as members of the support of the satisfied

ARRB3). Withf =10and g = 14, i.e. observationsignature[1, 1, 1] T, thereare
8 minimal double fault diagnoses (those found in section 3) and 16 superset

diagnoses (exoneration plays no role here).



4.5 Equivalence in the no-exo/comp case

In this case, whichisthe common onein DX, fault signaturesinvolve
only 0 and X, and X matchesboth 0 and 1. From the semantics of X
seenin 4.3, it results that columns of the extended matrix are built
according to the following rule: a multiple fault can explain that a
given ARR is not satisfied if and only if at least one of its faults can
explain it, i.e. several faults never produce more than the combina-
tion of their separate effects; on the other hand, it is admitted that a
faulty component does not necessarily affect an ARR in which it is
involved (single fault no-exoneration) and that several faults may al-
way's compensate each other (compensation), resulting in a satisfied
ARR. Thefault interaction law can thus be stated as:
Sy=sup{sij | j € J} for the order 0 <X (FInec)

Let WeakSupport(ARR;) = {Cj| 55 # 0} and WeakScope(C ) =
{ARR; | 537 0}.

In the column view, Cjis adiagnosisif and only if:
Rfaise © WeakScope(Cj)

In the line view the diagnoses are the sets C j such that:
Vi (ARR; € Rigse = 3 € J, Cj € WeakSupport(ARRy))  (LVnec)

Due to (FInec), this trandates to: Vi (ARR; € Rfge = Cj
€ WeskSupport(ARR;)) which in turn is the same as Rigse
C WeskScope(C)), i.e. (CVnec). This proves the equivalence of di-
agnoses.

(CVnec)

Example: The extended signature matrix is obtained from the usual one (see
section 2) by replacing each 1 by X. With f =10 and g = 12, i.e. observation
signature [1, 0, 1]T, there are 4 minimal diagnoses: the 2 single fault diag-
noses {A1} and {M1} and the 2 double fault diagnoses{A2, M2} and {M2,
M3}, and 22 superset diagnoses. With f = 10 and g = 10, i.e. observation
signature[1, 1, 0] T, thereare 5 minimal diagnoses: the single fault diagnosis
{M2} and the 4 doublefault diagnoses{A1, A2}, {Al, M3}, {A2, M1} and
{M1, M3}, and 20 superset diagnoses. With f =10andg= 14, i.e. observation
signature[1, 1, 1], theresults are the same that in 4.4.

4.6 Equivalence in the general case

It is now simple to provide an extension of the framework which
allows three-valued fault signatures, involving 0, X and 1. In this
case, exoneration appliesto some componentsw.r.t. some ARRS, but
not to all. Equivalence can be proved in the same way as above [2].

5 Conclusion and prospects

Thefirst goal of FDI wasfault detection and associated decision pro-
cedures. Its main interest was to offer sophisticated techniques so
as to combine observations such as observers and filters. DX, on
the other hand, aimed at localization by recognizing subsets of the
system description that conflicted with the observation. Our study
proves that a significant part of the two theories fits into a common
framework which allows a precise comparison. When they adopt the
same hypotheseswith respect to how faults manifest themselves, FDI
and DX views agree on diagnoses. This opens the possibility of a
fruitful cooperation between these two diagnostic approaches, get-
ting the best from each one: compiling modeling knowledge under
ARRs form according to sensor locations before any observation has
been made, which is the main advantage of the FDI approach and,
thanks to explicit correctness assumptions, computing at the same
time potential R-conflicts (supports of ARRs) to give rise, given
an OBS, to R-conflicts on which the diagnoses generation is based,
which isthe main advantage of the DX approach.

It is important to notice that the equival ence between the two ap-
proaches is obtained either by importing in DX the ARR-based ex-
oneration (enc) assumption implicitly used in FDI or by importing
in FDI the no-exoneration (nec) assumption used by default in DX.
But another way to express exoneration has been introduced in DX,
at the component model level, by assuming that, if the correct behav-
ior model of acomponent is satisfied by OBS, then this component
behavescorrectly in the context given by OBS, i.e. by modeling com-
ponents behavior with bi-conditionals [10]. In [2] this model-based
exoneration (mbe), which is proved to be weaker than (enc) in the
single fault case, is thoroughly compared with (enc). An anaog of
the proposition 4.1, which relates minimal alibis, i.e. defined Horn
AB-clausesentailed by SD | | OBS, with supports of ARRs satisfied
by OBS, alows one to prove that any FDI diagnosiswith (enc) isa
DX diagnosiswith (mbe) when SD | J OBSisHorn (but the converse
isfase). Then the comparisonis made between (mbe) and what turns
out to be the closest assumption in the FDI framework, i.e. fault ex-
oneration and multiple fault compensation (ec): most of the time the
diagnosesobtained areidentical (thisisthe casefor the example) but
thisis not awaystrue.

Some points need future investigation. Thereis presently no equiv-
alentin DX of the notion of noise and disturbance. Conversely, in the
consistency-based extended framework, DX makes a systematic use
of fault models, whose counterpart in FDI can be found in assump-
tions about the additive or multiplicative deviations which model
the faults. Fault models have been left out of the framework of the
present paper. The conclusions of this work remain valid in case
of temporal sequence of observations when the faults do not evolve
along time. Such a sequence only provides more observation signa-
tures or more conflicts, allowing diagnosesto be refined by reasoning
on each snapshot of the system (state-based approach). Conversely,
theincremental diagnosisproblem (i.e. when faults occur and evolve
along time) is still open on each side: dealing with dynamic resid-
uals and temporal signatures on one side and with simulation-based
approach ([12]) on the other side. Further studies are needed to inte-
grate these aspects, which would be beneficia to both communities.
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