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Abstract. This paper analyses inflation forecasting power of artificial neural networks 
with alternative univariate time series models for Turkey. The forecasting accuracy of the 
models is compared in terms of both static and dynamic forecasts for the period between 
1982:1 and 2009:12. We find that at earlier forecast horizons conventional models, es-
pecially ARFIMA and ARIMA, provide better one-step ahead forecasting performance. 
However, unobserved components model turns out to be the best performer in terms of 
dynamic forecasts. The superiority of the unobserved components model suggests that 
inflation in Turkey has time varying pattern and conventional models are not able to track 
underlying trend of inflation in the long run.

Keywords: inflation forecasting, neural networks, unobserved components model.

Reference to this paper should be made as follows: Çatık, A. N.; Karaçuka, M. 2012.  
A comparative analysis of alternative univariate time series models in forecasting Turkish 
inflation, Journal of Business Economics and Management 13(2): 275–293.

JEL Classification: C45, C53, E31, E37.

1. Introduction

The stability of prices, as an important indicator of overall economic performance is 
one of the main objectives of monetary policy. Turkish economy has a long history of 
instable macroeconomic performance, especially the persistence of high inflation rates, 
which lasted for almost five decades. During this long period, many stability programs, 
mostly backed by the IMF, could not be implemented thoroughly, and failed to achieve 
the desired outcome, economic and price stability. After the collapse of IMF-supported 
program in February 2001, Turkey faced a financial turmoil, followed by a destructive 
overall economic crisis. Consuming all other options, Central Bank of The Republic of 
Turkey (CBRT) announced to implement new policies that focus on monetary target-
ing and at the same time on the future inflation. The meaning of this policy was an 
“implicit” inflation targeting, and in 2005 the CBRT started to implement “explicit” 
inflation targeting policy, assuming that the conditions of success were available. 
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Although, inflation targeting was started on a trial and error basis of the central banks 
in New Zealand, Canada, England and Sweden with little academic and theoretical 
background, its popularity has let a growing academic effort to analyze the effective-
ness and overall macroeconomic effects of these policies. The main characteristics of 
inflation targeting policy are described by Mishkin (2000) as; the public announcement 
of a well defined numerical target for inflation; a commitment to price stability as the 
primary goal of monetary policy; an information inclusive strategy for deciding the 
setting of policy instruments; increased transparency of the monetary policy strategy; 
and increased accountability of the central bank for attaining its inflation objectives. 
While predicting future values of price changes accurately is essential for inflation tar-
geting policy, and also for the credibility of monetary policy, there is no consensus on a 
superior methodology. The reason is that the behavior of price movements is complex, 
volatile and nonlinear in a wide range. The empirical literature on forecasting inflation 
rates suggest that there is no single methodology that can outperform others in a case 
independent context. The recent advance in the applicability of nonlinear models has 
changed the path of the discussion mainly on the comparison of linear and nonlinear 
models to describe the behavior of time series. Among others, artificial neural network 
models (ANNs) have emerged as a powerful statistical modeling technique for nonlinear 
modeling of time series and applied into various case studies (Gonzalez 2000; Tkacz 
2001; Zhang et al. 1998). Although these models have numerous advantages such as let-
ting more general and flexible formations that can approximate any continuous measur-
able function with arbitrarily desired accuracy level (Cybenko 1989; Hornik et al. 1989; 
Hornik 1993; Koutroumanidisa et al. 2011), the theoretical superiority of ANNs to the 
linear models is not yet to be justified in forecasting performances (Moshiri, Cameron 
2000; Clements et al. 2004)1. 
Even though a long historical experience with high inflation levels in Turkey, the topic 
seems to be neglected given its impact on social and economic structure until recently. 
Domaç (2004) estimates various univariate and multivariate linear time series models 
to understand dynamics of inflation in Turkey using monthly data covering the period 
1990-01–2002-12. In this study he estimates mark-up models, monetary models, and the 
Phillips curve along with the simple univariate autoregressive model. He finds that the 
mark up models have the best in-sample performance, whereas the Phillips curve and the 
money gap models turn out to be better in terms of out-of-sample forecasting accuracy. 
Önder (2004) compares the forecasting performance of the Phillips curve with autoregres-
sive intregrated moving average (ARIMA), vector autoregression, vector error correction 
and a random walk model in Turkey for the period between 1987 and 2001. She finds 
that Phillips curve provides better forecasting accuracy than the other alternative models. 
In this study we evaluate inflation forecasting accuracy of alternative univariate time 
series models, i.e. random walk, ARIMA (Autoregressive Integrated Moving Average), 
ARFIMA (Autoregressive Fractionally Integrated Moving Average), FIGARCH (Frac-

1 Some studies find evidence in favour of neural network models (see for example Binner et al. 2004; 
Nakamura 2005; Panda, Narasimhan 2007) whereas the others not (Faraway, Chatfield 1998; Stock, 
Watson 1998; Heravi et al. 2004).
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tionally Integrated GARCH), unobserved components models (UCM) and ANNs. We 
find that when the static forecasts are taken into consideration, ARFIMA and ARIMA 
models produce better forecasts than UCM and ANN models at earlier forecast hori-
zons. However, in terms of dynamic forecasts UCM and ANN models turn out to have 
better forecasting accuracy than the other models. 
The rest of the paper is organized as follows. First, the basic descriptive properties of the 
inflation data are presented in Section 2, followed by a brief description of the methodolo-
gies used in the study in Section 3. Empirical findings of the study are presented in Sec-
tion 4. Finally some conclusions and policy proposals are put forward in the last section. 

2. Data 

This paper uses monthly seasonally adjusted Turkish CPI (Consumer Price Indices) 
data collected from International Financial Statistics (IFS) online database covering the 
period 1982:01–2009:122. Inflation (pt) is defined as month on month changes in the 
natural log of CPI (see Figure 1). 
Before proceeding, we summarize distribution and time series properties of the inflation 
(see Table A1 and Figure A1). Skewness and kurtosis coefficients of inflation are higher 
than that of the standard normal distribution and Jarque-Bera statistic, which has the 
critical value of 5.99 at 5% significance level, indicates that pt is not normally distrib-
uted. The same descriptive statistics computed for the period after 2003 suggest that 
inflation follows relatively stable pattern after the implementation of inflation targeting 
strategy. Density function and Quantile-Quantile (QQ) plot are further supportive of 
this fact. ADF unit root test implies the stationarity of inflation. Partial autocorrelation 
function indicates existence of positive autocorrelation especially at first, fourth, fifth 
and twelfth lags. The estimated spectral density function which is defined as a smoothed 
function of the sample autocorrelations shows that pt is stationary, but autocorrelated. 

2 Series available on IFS database is not originally seasonally adjusted. In order to obtain adjusted CPI 
series we employ Tramo-Seats method.

Fig. 1. CPI inflation in Turkey: 1982:02–2009:12
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3. Forecasting models

3.1. Artificial neural network models
In recent years artificial neural network models have become a popular tool in the 
forecasts of financial and macroeconomic time series3. ANNs are nonlinear models that 
can be used to explain relations which may be difficult to model with linear constant 
parameter models (Gonzalez 2000). It contains interconnected group of artificial neu-
rons just as the structure of the human brain that helps to learn the pattern of the data. 

In contrast to conventional model-based methodologies, ANNs do not require a priori 
assumptions about the relationship. Due to its nonlinear structure, they can be approxi-
mated into any continuous functions and they are known as universal approximation 
(Hornik et al. 1989; Hill et al. 1994). In spite of these advantages, forecasting with 
ANNs is not an easy task since there is no consensus about determining the parameters 
of the models, such as architecture, size of training and validation sets, and the type of 
activation function. In most studies those factors, playing vital role in the success of 
ANNs, are rather determined through successive experiments (Zhang et al. 1998; Panda, 
Narasimhan 2007). 

As far as their architecture is concerned, ANNs can be divided into two categories: 
Feedback (recurrent) and feed-forward neural networks. Feed-forward ANNs work only 
one direction from inputs to output, whereas feedback ANNs are also able to move into 
both directions. Feedback ANNs are not suitable for time series forecasting, since they 
require twice times higher number of parameters than the feed-forward ANNs. Hence 
we use fully connected feed-forward network with one hidden layer which is the most 
popular ANN models for time series forecasting applications (Tkacz 2001; Nakamura 
2005). ANN model used in this study can be formulated as4 

 
1 0

1 0
ˆ + −

= =

 
p = d + d ϕ p + ϕ + e  
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where d0 is a bias vector { , 0,1, , }d =k k r  is a vector of weights from the hidden to 
output nodes and { , 0,1, , ; 1,2, , }ϕ = =ik i p k    are weights from the input to hidden 
nodes , in our case they are parameters of current and lagged values of inflation. p is 
the number of input nodes, r is the number of hidden nodes, f is a nonlinear activation 
function by which information transmitted to the next neuron. Given the availability of 
various activation functions, such as linear, hyperbolic tangent and logistic, we used the 
most preferred the logistic sigmoidal function ( ) 1 1 ,−λ= +f x e  following the previous 
literature (Tkacz 2001; Panda, Narasimhan 2007; Binner et al. 2004). In this framework 
ANN model in (1) can be conceived as a nonlinear autoregressive (AR) model. 

3 See Zhang et al. (1998) for detailed literature survey on forecasting with ANN. 
4 See Figure A2 in Appendix for the general architecture of the feed-forward neural network model.
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3.2. Linear time series models
In order to evaluate forecasting performance of ANNs, we consider three univariate time 
series models. The first model is the following first order random walk (RW) without 
drift model of inflation, 

 1 1−p = r p +t t tu , (2)

where r1 is autoregressive parameter to be estimated and ut is i.i.d. error term. By add-
ing a constant and moving average term to RW model, Equation (2) can be converted 
into ARIMA (p, d, q) model as follows:

 
0

1 1
− −

= =
p = + f p + θ e +∑ ∑

p q

t j t i j t i t
j j

c u . (3)

Where, p, d and q are integers referring the order of the autoregressive, integrated and 
moving average parts respectively. Time series properties of inflation in the previous 
section suggest that inflation data may also exhibit long-memory properties: autocor-
relation and spectral density functions decay slowly but there is no indication for non-
stationarity. Therefore, in addition to ARMA (p, d, q) model above we also use the 
long-memory ARFIMA model in forecasting inflation. The ARFIMA (p, d, q) model 
for pt is written as,

 ( )(1 ) ( ) ( ) , 1,..., .F − p −m = Q e =d
t t tL L L t T  (4)

Where F(L) and Q(L) refer to autoregressive and moving average polynomials respec-
tively. (1 – L)d is the fractional difference parameter. The stationarity of pt depends on 
the value of d. ARFIMA(p,d,q) process is said to be covariance stationary if d < 0.5. In 
that case autocovariance function decays hyperbolically. The process is long memory 
stationary if 0 < d < 0.5. For –0.5 < d < 0 the process is known as intermediate memory, 
and when d ≥ 0.5 the process is said to be nonstationary. 

The descriptive analysis of pt also implies that the distribution of inflation shows non-
gaussian behavior, it is right skewed and has fat tails. In order to account for this type 
of asymmetry, one solution is modeling pt with GARCH-type models with a skewed 
density function. For this purpose, we employed Fractionally Integrated GARCH (FI-
GARCH) model introduced by Baillie et al. (1996). This model allows us to analyze 
the dynamic adjustments of both the conditional mean and the conditional variance of 
inflation over time. Following Lambert and Laurent (2000) non-normality of inflation 
is considered by employing skewed-student density function instead of normal density 
in the maximum likelihood estimates.

The mean equation of the FIGARCH is identical to ARIMA specification in (3). Ad-
ditionally, the conditional variance equation of the model is formulated as follows, 

 
21 ( ) [(1 ( )) (1 ( ))(1 ) ]−b = + −b − −a − evd

t tL h w L L L , (5)

where dv is a fractional parameter of the variance equation ranging from 0 to 1 and a 
and b are the respective ARCH and GARCH parameters satisfying a, b < 1 condition. 
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The functional form of FIGARCH model presented in (3) and (5) is very flexible5. For 
dv = 0 the specification collapses into conventional GARCH model, whereas for dv = 
1 model becomes an Integrated GARCH. The process is reduces to ARFIMA model 
when ht a constant. 
In addition to autoregressive time series models, we also consider a univariate unob-
served components model (UCM) of inflation, also known as local level model, having 
the following state space form (Harvey 1989; Commandeur, Koopman 2007),
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Where mt is time varying unobserved level, et and ht are i.i.d. disturbances of meas-
urement and transition equations. This model allows us to decompose inflation in two 
parts as level mt long run component and irregular components et and ht. The second 
equation in (6) known as transition equation indicates that unobserved level of inflation 
is time varying and assumed to follow first order random walk process over time. The 
ratio between variances of the level and irregular components 2 2/h es s  is called signal 
to noise ratio. After maximum likelihood estimation of the parameter level mt is obtained 
through a Kalman filter. This process is also known as smoothing or signal extraction. 

4. Empirical results
4.1. Model estimations
In this section, the models defined in the previous section are estimated. First we start 
from the neural network model. The estimation of the ANNs includes two steps. Train-
ing stage involves an iterative procedure where optimum hidden node and output node 
weights are adjusted by means of neural network algorithm. After the training, the 
model can be used to produce fitted or forecasted values. The sample period up to 
2007:12 is accepted as the training set for ANN model, the remaining 24 observations 
are reserved to testing set. 
We use backpropagation techniques with an adaptive learning rate algorithm to train 
the model to specified level of convergence. As a standard procedure, pt is mapped 
linearly into the range 0 and 1 to adjust for the logistic activation function6. Our model 
is trained until the mean square error, the mean squared error between the actual and 
the fitted values of the output of the ANN, lies below the convergence criterion. As 
previously stated, determining the number of input and output nodes of the network is 
very important to produce good forecasts. We conduct estimations to find out whether 
a change in the number of input and output nodes makes any effect on the training per-
formance. For this purpose RMSE values obtained from the training set of the models 
that contain different combinations of input and hidden nodes are reported in Table 1. 

5 For detailed information on the estimation of FIGARCH model see Chung (1999).
6 In order to obtain the data on normalized inflation normpt , we use the following conventional formula 

(Mehrotra et al. 1996; Panda, Narasimhan 2007) norm min max min( ) / ( )p = p − p p − pt t t t t . minpt  and maxpt  
denote minimum and maximum values of inflation respectively. 
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RMSE values decrease with the increase in the number of input and hidden nodes used 
in the estimation. RMSE is minimized when the model is estimated with 10 and 11 input 
nodes. Hence we retain the ANN model with 11 and 4 hidden nodes as a best performer 
in training to use for the out of sample forecast comparison. 

Table 1. Training performance of the alternative ANN specifications 

Number of 
Input Nodes

Number of 
Hidden Nodes

RMSE Number of 
Input Nodes

Number of 
Hidden Nodes

RMSE

1 1 0.0833 7 1 0.0430

1 2 0.0641 7 2 0.0425

1 3 0.0649 7 3 0.0424

1 4 0.0649 7 4 0.0398
      
2 1 0.0441 8 1 0.0429

2 2 0.0436 8 2 0.0424

2 3 0.0447 8 3 0.0411

2 4 0.0447 8 4 0.0396

  0.0443   0.0415

3 1 0.0559 9 1 0.0427

3 2 0.0544 9 2 0.0424

3 3 0.0541 9 3 0.0412

3 4 0.0447 9 4 0.0412
      
4 1 0.0544 10 1 0.0426

4 2 0.0529 10 2 0.0412

4 3 0.0447 10 3 0.0400

4 4 0.0447 10 4 0.0387
      
5 1 0.0447 11 1 0.0425

5 2 0.0447 11 2 0.0424

5 3 0.0428 11 3 0.0400

5 4 0.0424 11 4 0.0387
      
6 1 0.0429 12 1 0.0436

6 2 0.0424 12 2 0.0436

6 3 0.0424 12 3 0.0413

6 4 0.0388 12 4 0.0412

Note: RMSE calculations are based on the normalized values of the output variable
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After the ANN, we estimate RW and ARIMA models. We do not employ Box and 
Jenkins (1976) approach in the modeling. From the forecasting point of view it may 
be disadvantageous to select p and q arbitrarily large. A higher order model will pro-
duce lower error give the best fit in sample, but when the model is used for out of 
sample forecasting purpose, it is likely to produce worse forecast than the lower order 
model, since the mean square error of the forecasts errors will not affected by only 
the stationary variance of the model but also by errors arising from the estimation of 
the parameters of the model (Brockwell, Davis 2002). Therefore we estimate different 
combinations of ARIMA models with maximum lag order for p = 15 and q = 2 to over-
come this problem. ARIMA (8, 0, 0) is found to be the best model selected by Akaike 
Information Criterion (See Table 2)7. The sum of autoregressive parameters is obtained 
as 0.834 confirming the persistent behavior of inflation over the investigation period. 
Diagnostic tests reported in Table 2 show that the model suffers from non-normality. 
They also present some evidence for the first order ARCH effect, indicating that the 
variance of the error term is not constant over time. However we do not find any sign 
of autocorrelation in the residuals.

Table 2. Maximum likelihood estimation of ARIMA (8, 0 ,0) model: 1982(2)–2009(12) 

 Coefficient S. E.

c0 –0.036 (0.639)
f1 0.450 (0.054)
f2 0.092 (0.060)
f3 –0.071 (0.060)
f4 0.018 (0.059)
f5 0.177 (0.059)
f6 0.011 (0.060)
f7 0.047 (0.060)
f8 0.110 (0.054)
Log-Likelihood –692.510
AIC 4.194
s2 3.667
Descriptive Statistics for Residuals
Normality test c2(2) 30.090 [0.0000]
ARCH test F(1.324) 3.559 [0.0601]
Autocorrelation test c2(28) 32.146 [0.2686]

Note: *, ** and *** indicate significant at 10, 5 and 1% respectively. Numbers in brackets represents 
the probabilities of residual tests

7 An automated ARIMA model selection procedure written in RATS is used to obtain AIC for all 
combinations of ARIMA models. 
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The maximum likelihood estimation of the ARFIMA is shown in Table 3. As compared 
to RW and ARIMA models persistence of inflation remains low, however the model pro-
vides similar fit to the data in terms of log-likelihood and Akaike information criteria. 
The estimated long memory conditional mean parameter d is 0.334 and significantly 
different from zero. Since the parameter lies in the range 0 < d < 0.5, one can say that 
inflation in Turkey follows a long memory stationary process.

Table 3. Maximum likelihood estimation of ARFIMA (1, d, 0) model: 1982(2)–2009(12) 

 Coefficient S.E.

d 0.334 (0.059)

F1 0.635 (0.061)

Log-Likelihood –698.424  

AIC 4.188  

s2 3.805  

Descriptive Statistics for Residuals

Normality test c2(2) 57.39 [0.0000]

ARCH test F(1.331) 0.42479 [0.5150]

Autocorrelation test c2(28) 43.628 [0.1247]

Note: *, ** and *** indicate significant at 10, 5 and 1% respectively. Numbers in brackets represents 
the probabilities of residual tests

We also estimate FIGARCH model explained above with maximum likelihood method 
based on Skewed Student distribution, with 2.9092 degrees of freedom. On general, the 
parameter estimates of the FIGARCH are found to be significant and corroborate the 
existence of long memory effects as in the ARFIMA model. The inclusion of conditional 
heteroscedasticity in the residuals improves fit of the model as evidenced by AIC and 
log-likelihood values (see Table 4). The model also yields a very high and significant 
fractional difference parameter dv with 0.775, suggesting that conditional variance of 
the inflation is characterized by a near integrated GARCH process. The estimated pa-
rameter of the skewed student distribution y known as the asymmetry parameter within 
the range of –1 < y < 1 is found to be positive and significant supporting right skewed 
characteristics of the data. Another distribution parameter of the distribution v also 
confirms heavy-tailed characteristics of the inflation8. 
Finally we estimate unobserved components model of inflation based on (6).  
The results of the estimated state vector by maximum likelihood are presented in Ta-
ble 5. Local level model of inflation passed all diagnostic tests except for normality of 
the residuals. However cumulative sum of squared residuals (CUSUM) suggest that 

8 For detailed information on the functional form of skewed student distribution see Lambert and 
Laurent (2000).
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the model is stable (see Figure A3). The parameter of the unobserved level of inflation 
is found to be significant, suggesting that underlying level of inflation follows time 
varying pattern that can be modeled through the first order random walk process (see 
Figure 2). Estimated state vector shows that inflation has an increasing trend with about 
0.94% on monthly basis. 

Table 4. Maximum likelihood estimate of ARMA-FIGARCH model: 1982(2)–2009(12)

 Coefficient S. E.

Constant (Mean Eq.) 3.334*** (0.478)
f1 0.784*** (0.051)
Constant (Variance Eq.) 4.880*** (0.793)

dv 0.775*** (0.207)
a1 0.676*** (0.022)
b1 0.290*** (0.040)
y 0.226* (0.119)
d 2.909*** (0.352)
Log-Likelihood –572.813  
AIC 3.46754  
Skewness (Y) 2.89347  
Kurtosis (Y) 26.18608  

Note: *, ** and *** indicate significant at 10, 5 and 1% respectively. The robust standard errors are 
given in parentheses. The model is estimated with maximum likelihood method based on Skewed Stu-
dent distribution, with 2.9092 degrees of freedom

Table 5. Univariate unobserved components model of inflation: 1982(2)–2009(12)

Hyperparameters Parameter  (q-ratio)

Level 
2
hs 0.269 (0.086)

Irregular 
2
es 3.112 (1.000)

Estimated coefficients of the final state vector Coefficient t-values
Level mt 0.947 (0.019)
Diagnostic Statistics Coefficient  p-values
R2 0.342  
Q 11.362 (0.07) 
Normality 88.460 (0.00) 
H 0.894  

Notes: R2 is the coefficient of determination, Q is Box-Ljung serial correlation statistic, based on the 
first 12 residual autocorrelations and tested against a chi-square distribution with six degrees of free-
dom. H is a basic non-parametric test of heteroscedasticity, is a two-sided F test centered around unity. 
A low value indicates a decrease in the variance over time. The critical values for this test at the 5% 
level are 0.56 and 1.77
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4.2. Evaluating forecasting accuracy
The forecasting accuracy of alternative models is compared in terms of both static and 
dynamic forecasts. A Static (one-step-ahead) forecast uses the actual values for lagged 
dependent variables to compute forecasted values of dependent variable. Therefore this 
technique is more convenient for short term forecasting purpose. On the other hand, a 
dynamic forecast (multi-step ahead) has ability to produce long term projected values 
in which forecasted values are generated through an iterative procedure, i.e. forecasted 
values computed in the earlier periods are used as independent variables (Diebold 2007; 
Makridakis et al. 1998). Out of sample forecasted values of inflation are computed for 
each of the models in static and dynamic context. Besides, to account for the impact 
of change in forecasting path on the accuracy of alternative models we consider differ-
ent starting points for each forecasting horizon (See Table 6). Hence we allowed each 
forecasting to end. All estimations are conducted using the sample period up to 2007:12 
(training set for ANN model), the remaining 24 observations are reserved to compare 
out of sample forecasting accuracy (testing set for ANN model). 
In order to evaluate the forecasting accuracy of the models, we consider several evalua-
tion criterions. First we compute Mean Absolute Error (MAE) and Root-Mean Squared 
Error (RMSE) as follows: 

 

2

1

ˆ( )+

= +
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h
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 1
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h
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where p̂t  and pt  represents forecasted and actual values of inflation respectively; h 

Fig. 2. Level and irregular components of inflation
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denotes forecast horizon h = 6, 12, 18, 24. In addition, scale invariant Theil inequal-
ity statistics (Theil) is also computed to evaluate forecasting performance (Pindyck, 
Rubinfeld 1998).
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Theil statictics is always between zero and one, where zero corresponds to perfect fit. 
Theil inequality statistics can be decomposed into three parts by following two steps. 
First, mean squared forecast error is divided into three parts:

 ( )2 2
ˆ ˆˆ ˆ( ) / ( / ) ( ) 2(1 )p pp pp − p = p − p + − + −∑ ∑t t th h s s r s s , (10)

where ˆ /p∑ t h , p , p̂s , ps  denote the means and standard deviations of p̂t  and p  , and 
r represents the correlation between actual and forecasted values. Dividing each part of 
(8) by the mean squared error itself results in the following decomposition of the Theil 
inequality statistics,
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The first term is the bias proportion, which shows contribution of the difference in 
means between the forecasted and actual series to the Theil inequality. The second term 
is known as the variance proportion, it measures the difference in variance between 
actual and forecasted values. The last term, the covariance proportion shows remain-
ing unsystematic errors in the forecast. Forecasts are considered as good when the 
bias proportions are found relatively small compared to covariance proportions. Theil 
inequality statistics should be mostly explained by the covariance proportions (Pindyck, 
Rubinfeld 1998).
The criterions described above are computed with different horizons to evaluate out-
of-sample forecasting accuracy of the alternative models. The findings show that linear 
models have the lowest RMSE values at shorter forecast horizon, however as forecast 
horizon gets longer ANN and UCM performs better. Forecasting accuracy statistics are 
illustrated in Table 6. Random walk without drift model is the worst performer in terms 
of both static and dynamic forecasts, since it presents highest value of RMSE, MAE and 
Theil-Inequality statistics at each forecasting horizons. When the one-step ahead fore-
casts are considered, ARFIMA model turns out be the best performer according to MAE 
and RMSE criterions (see Figure 3). ARIMA and FIGARCH models are also provide 
better fit than UCM and ANN at six months. However the performance of UCM has 
improved considerably with the increase in forecasting horizons, it becomes the second 
best model after the ARFIMA for the horizons longer than six months.
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The superiority of UCM is more pronounced in terms of dynamic forecasts. The sta-
tistics of ANN is very close to that of UCM model up to 18 months. Hence ANN 
turns out to be the second best model in terms of tracking inflation. In autoregressive 
models the bias proportion accounts for more than 50 percentage of Theil inequality 
indicating the presence of systematic error between actual and forecasted values. This 
also corroborates the evidence on the lower quality of forecasts produced by the other 
statistics. Overall, the UCM provides superior long-term forecasts compared to the other 
techniques.

5. Conclusions

The stability of prices, as an important indicator of overall economic performance is 
one of the main objectives of monetary policy. In recent years, inflation targeting, has 
been implemented by most of the central banks around the world, as a policy tool of 
maintaining price stability. However, maintaining price stability over a period requires 
forward-looking approaches due to the lags and dynamic structure of price movements. 
Therefore, predicting and forecasting inflation has emerged as a crucial factor to be 
placed in monetary policy decisions for almost every monetary decision making pro-
cess. In this paper we evaluate inflation forecasting accuracy of alternative time series 
models. For this purpose, static and dynamic forecasts are produced and the accuracies 
are compared by RMSE, MAE and Theil inequality measures. Static forecast uses the 

Fig. 3. Out of sample one-step forecasts and RMSE values of the alternative models

I. One-step ahead forecasts
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II. RMSE values

–3.00

–2.00

–1.00

0.00

1.00

2.00

3.00

4.00

2
0

0
8

:0
1

2
0

0
8

:0
2

2
0

0
8

:0
3

2
0

0
8

:0
4

2
0

0
8

:0
5

2
0

0
8

:0
6

2
0

0
8

:0
7

2
0

0
8

:0
8

2
0

0
8

:0
9

2
0

0
8

:1
0

2
0

0
8

:1
1

2
0

0
8

:1
2

2
0

0
9

:0
2

2
0

0
9

:0
3

2
0

0
9

:0
4

2
0

0
9

:0
5

2
0

0
9

:0
6

2
0

0
9

:0
7

2
0

0
9

:0
8

2
0

0
9

:0
9

2
0

0
9

:1
0

2
0

0
9

:1
1

2
0

0
9

:1
2

Actual Random Walk ARIMA ANN UCM

0.00

0.50

1.00

1.50

2.00

2.50

2
0
0
8
:0

1

2
0
0
8
:0

2

2
0
0
8
:0

3

2
0
0
8
:0

4

2
0
0
8
:0

5

2
0
0
8
:0

6

2
0
0
8
:0

7

2
0
0
8
:0

8

2
0
0
8
:0

9

2
0
0
8
:1

0

2
0
0
8
:1

1

2
0
0
8
:1

2

2
0
0
9
:0

1

2
0
0
9
:0

2

2
0
0
9
:0

3

2
0
0
9
:0

4

2
0
0
9
:0

5

2
0
0
9
:0

6

2
0
0
9
:0

7

2
0
0
9
:0

8

2
0
0
9
:0

9

2
0
0
9
:1

0

2
0
0
9
:1

1

2
0
0
9
:1

2

ANN UCM ARFIMARandom Walk ARIMA

2
0

0
9

:0
1

A. N. Çatık, M. Karaçuka. A comparative analysis of alternative univariate time series models ...



289

actual values in forecasting, and likely to produce more accurate results for short term 
forecasting. However, a dynamic forecast employs iterated forecast values and more 
convenient for long term projections. 
We find that at earlier forecast horizons conventional autoregressive models, especially 
ARIMA and ARFIMA, provide better forecasting performance. However when the ho-
rizon gets longer, UCM turns out to be the best performer. The accuracy of ANN model 
has improved considerably with an increase in the forecast horizon. The superiority of 
UCM over the alternative models suggests that inflation in Turkey has a time varying 
pattern and linear models fail to track underlying level of inflation.
These findings indicate that the superiority of the models depends on the forecasting 
horizon. Inflation targeting policies require long term predictability of price changes, 
policy makers can consider UCM and ANN models as serious candidates that are able 
to better track the future values of inflation than the conventional autoregressive models. 
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APPENDIX

Fig. A1. The distribution and time series properties of pt

Fig. A2. Feedforward neural network model of inflation
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Table A1. The descriptive statistics for pt

Whole Period After 2003

 Mean 3.048 0.703

 Median 2.877 0.713

 Maximum 27.004 4.316

 Minimum –2.647 –2.647

 Std. Dev. 2.542 1.171

 Skewness 2.893 0.273

 Kurtosis 26.186 4.236

 Jarque-Bera 7971.366 6.391

 Probability 0.000 0.041

 Sum 1021.165 59.028

 Sum Sq. Dev. 2157.651 113.908

 Observations 335 84

ADF –9.680 –6.159

(0.000) (0.000)

Note: The critical values for ADF test are − 3.98, − 3.42, and − 3.13 at 1%, 5%, and 10% significance 
level respectively

Fig. A3. Residuals of the unobserved components model
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