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A Comparative Analysis of 
Community Detection Algorithms 
on Artificial Networks
Zhao Yang, René Algesheimer & Claudio J. Tessone

Many community detection algorithms have been developed to uncover the mesoscopic properties 

of complex networks. However how good an algorithm is, in terms of accuracy and computing time, 
remains still open. Testing algorithms on real-world network has certain restrictions which made their 
insights potentially biased: the networks are usually small, and the underlying communities are not 
defined objectively. In this study, we employ the Lancichinetti-Fortunato-Radicchi benchmark graph 
to test eight state-of-the-art algorithms. We quantify the accuracy using complementary measures 

and algorithms’ computing time. Based on simple network properties and the aforementioned results, 
we provide guidelines that help to choose the most adequate community detection algorithm for a 
given network. Moreover, these rules allow uncovering limitations in the use of specific algorithms 
given macroscopic network properties. Our contribution is threefold: firstly, we provide actual 
techniques to determine which is the most suited algorithm in most circumstances based on observable 
properties of the network under consideration. Secondly, we use the mixing parameter as an easily 
measurable indicator of finding the ranges of reliability of the different algorithms. Finally, we study 
the dependency with network size focusing on both the algorithm’s predicting power and the effective 
computing time.

Relationships between constituents of complex systems (be it in nature, society, or technological applications) 
can be represented in terms of networks. In this portrayal, the elements composing the system are described as 
nodes and their interactions as links. At the global level, the topology of these interactions – far from being triv-
ial – is in itself of complex nature1,2. Importantly, these networks further display some level of organisation at an 
intermediate scale. At this mesoscopic level, it is possible to identify groups of nodes that are heavily connected 
among themselves, but sparsely connected to the rest of the network. �ese interconnected groups are o�en 
characterised as communities, or in other contexts modules, and occur in a wide variety of networked systems3,4.

Detecting communities has grown into a fundamental, and highly relevant problem in network science with 
multiple applications. First, it allows to unveil the existence of a non-trivial internal network organisation at 
coarse grain level. �is allows further to infer special relationships between the nodes that may not be easily 
accessible from direct empirical tests5. Second, it helps to better understand the properties of dynamic processes 
taking place in a network. As paradigmatic examples, spreading processes of epidemics and innovation are con-
siderably a�ected by the community structure of the graph6.

Taking into account its importance, it is not surprising that many community detection methods have been 
developed, using tools and techniques from variegated disciplines such as statistical physics, biology, applied 
mathematics, computer science, and sociology. All these methods aim at improving the identi�cation of mean-
ingful communities, while keeping as low as possible the computational complexity of the underlying algorithm. 
Clearly, these algorithms are based on slightly di�erent de�nitions of community, and therefore the results are not 
always directly comparable. Further, in most real-world applications, a ground truth – i.e. a unique identi�cation 
of nodes to communities – is simply non-existent, which makes it even more di�cult to assess the reliability of 
the community detection procedures. To address these shortcomings and test the algorithms’ reliability, di�erent 
benchmarks have been developed.

Essentially, testing a community detection algorithm implies analysing computer-generated or real-world 
networks with a well de�ned community structure (a known ground truth) in order to obtain the community 
decomposition. One of the most used techniques is the GN benchmark (for Girvan & Newman3), which is a 
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special case of the planted l–partition model7 with a prior speci�cation of the number of nodes (128) and equally 
sized communities (4). When the expected number of links joining a node to others in di�erent groups is smaller 
than 8, the four groups are strongly de�ned communities. In these conditions, a well functioning detection algo-
rithm should be able to identify the communities in reasonable time. Di�erent community detection algorithms 
can be compared based on their performances on the GN benchmark, which has already been done by Danon 
et al.8. However, there are several drawbacks to the GN benchmark: All nodes have the same expected degree, 
communities are separated in the same way, and the network is of an unrealistic small size.

It is a well established fact that most real complex networks are characterised by largely heterogeneous degree 
distributions1,2,9 and heterogeneous community sizes10–12. For this reason, the GN benchmark cannot be consid-
ered as a good proxy for a real network. By consequence, in a newer stream of research5,13, the authors proposed 
an alternative benchmark, which is usually referred to as LFR (for Lancichinetti, Fortunato & Radicchi). �is 
method introduces power-law distributions of degree and community size to the graphs to generalise the GN 
benchmark. �e performances of most existing community detection algorithms are good on the GN benchmark. 
In contrast, the LFR benchmark presents a harder test for algorithms and makes it easier to unveil their limita-
tions. It has been shown that the mixing parameter, which is de�ned as

µ =
∑

∑

k

k (1)

i i
ext

i i
tot

is the most in�uential parameter in the LFR benchmark graphs14. Here ki
ext and ki

tot stand for the external degree 
of node i, i.e. the number of edges connecting it to others that belong to di�erent communities, and the total 
degree of said node. Although it would be possible to de�ne a mixing parameter for each node, it is assumed that 
µ is a global property and is the same for every node in the LFR benchmark. �e reason here is to be consistent 
with the standard hypotheses of the planted l-partition model15.

According to the de�nition of community in a strong sense, each node should have more connections within 
the community than with the rest of the graph16. �erefore, for µ >  1/2 communities in the strong sense disap-
pear. However, it is worth to mention that Lancichinetti and Fortunato15 found a weaker condition for community 
detection which can be applied to any version of the planted l-partition model: µ < −N n N( )/c

max , where N is 
the total number of nodes, and nc

max is the size of the largest community. In our study, although we stick to the 
strong de�nition of communities, we have also taken the general condition of µ into consideration (see Table 1).

In the following, we brie�y review studies comparing community detection algorithms in chronological 
order5,8,13–15,17,18 to highlight the research interests shi�. In one of the early studies in comparing community 
detection algorithms, Danon et al. had tested ten algorithms on the GN benchmark78 and collected estimates of 
how time complexity scales with network observables. However, the authors were not able to compare the actual 
computational e�ort as a result of the small sizes of graphs. Later on, Lancichinetti et al. had employed the LFR 
benchmark to measure the accuracy of two algorithms on undirected unweighted networks without overlapping 
communities5 and two algorithms on directed weighted networks with overlapping communities13. Concurrently, 
the authors tested twelve di�erent algorithms on the GN and LFR benchmarks, and random graphs. For the tests 
on the LFR benchmark, the authors had considered various parameters, including undirected unweighted graphs 
with non-overlapping communities, directed unweighted graphs with non-overlapping communities, undirected 
weighted graphs with non-overlapping communities, and undirected unweighted graphs with overlapping com-
munities15. Orman and Labatut later tested �ve community detection algorithms on the LFR benchmark14. �ey 
measured the accuracy of algorithms and studied the properties of the LFR benchmark graphs. Later, Peel applied 
two algorithms on both weighted and unweighted networks with 100 nodes and examined the performance of 
algorithms developed for weighted networks against those for unweighted ones for di�erent parts of the problem 
space17. Recently, Hric et al. compared the accuracy of eleven di�erent algorithms on both the LFR benchmark 
and a collection of real world graphs with sizes vary from 34 to 5189809 nodes18. Overall, as an extension of the 
GN benchmark, the LFR has drawn a lot of attention: Early, researchers employed small arti�cial and/or real 
world networks as benchmarks (e.g. the GN benchmark and the Zachary’s karate club network); while nowadays 
people shi�ed towards the use of large stylised large arti�cial or real world networks with some kind of ground 
truth obtained from metadata information (e.g. the LFR benchmark and the DBLP collaboration network19). 
However, as of today, a detailed study of the dependency with the network size is missing as most of the existing 

Parameter Value

Number of nodes N 233 ~ 31948

Maximum degree 0.1N

Maximum community size 0.1N

Average degree 20

Degree distribution exponent − 2

Community size distribution exponent − 1

Mixing coe�cient µ [0.03, 0.75]

Table 1.  Parameters of LFR benchmark graphs. To deal with possible discrepancies in the network 
properties, we have randomly generated 100 network for every set of parameters. Due to the slow computing 
speed, Spinglass and Edge betweenness algorithms have been tested only on small networks with N ≤  1000.
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studies include a few, selected, set of values of the number of nodes and the mixing parameter, and do not con-
sider the real computing time needed to perform the analysis.

In this paper, we evaluate eight di�erent state-of-the-art community detection algorithms available in the 
“igraph” package20, which is a widely used collection of network analysis tools in R, Python, C and C+ + , on the 
LFR benchmark for undirected, unweighted graphs with non-overlapping communities. Details of the algorithms 
can be found in the methods section. Our contribution is threefold: First and foremost, we provide actual tech-
niques to determine which is the most suited algorithm in most circumstances based on observable properties 
of the network under consideration. Secondly, we use the mixing parameter as an easily measurable indicator of 
�nding the ranges of reliability of the di�erent algorithms. Finally, we systematically study the dependency with 
network size focusing on both the algorithm’s predicting power and the e�ective computing time.

Results
In this section, we compare the results of community detection algorithms in terms of accuracy and computing 
time. �e former is de�ned as a measure of similarity between the modular structure generated by the LFR 
benchmark   (see Methods Section) and the partition identi�ed by the respective community detection algo-
rithms  . �e latter is the real computing time needed to perform the community detection. �is section is 
organised as follows: First, by employing the LFR generative model, we unveil the relationship between the mix-
ing parameter and the accuracy of the community detection algorithms. Accuracy is measured in two di�erent, 
complementary ways: �e normalised mutual information8, and the ratio between the number of detected com-
munities and the number of communities given by the LFR generating model. �en, we measure the computing 
time of community detection algorithms and show the relationship between the mixing parameter and the com-
puting time. We then present the mixing parameter as computed from the communities detected by the di�erent 
algorithms as a function of the input mixing parameter. Last, we present the comparisons of community detection 
algorithms in terms of accuracy and computing time as a function of network sizes.

The role of the network mixing parameter on accuracy and computing time. First, we study the 
accuracy of the community detection algorithms as a function of the mixing parameter µ. To measure the accu-
racy we have employed the normalised mutual information, i.e., NMI. �is is a measure borrowed from informa-
tion theory which has been regularly used in papers comparing community detection algorithms13.

De�ning a confusion matrix N, where the rows correspond to the ‘real’ communities, and the columns cor-
respond to the ‘found’ communities. �e element of N, Nij, is the number of nodes in the real community i that 
appear in the j-th detected community. �e normalised mutual information is then8
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where the number of communities given by the LFR model is denoted by C and the number of communities 
detected by the algorithm is denoted by C. �e sum over the i-th row of N is denoted 

◦
N i  and the sum over the 

j-th column is denoted 
◦

N j. If the estimated communities are identical to the real ones, I ( , )   equals to 1. If the 
partition found by the algorithm is totally independent from the real partition, I ( , )   vanishes.

As pointed out in ref. 21, the mutual information can be normalised in di�erent ways. �ese di�erent normali-
sation methods are sensitive to di�erent partition properties and have di�erent theoretical properties21–23. To get a 
better overview of the accuracy, we have calculated the NMI by using all these �ve di�erent de�nitions (cf. SI). We 
conclude that in the current study di�erent normalisation procedures provide qualitatively similar behaviours. 
Just for the sake of brevity, and consistently with Danon et al.8, we report in this section only Isum (i.e. normal-
isation by the arithmetic mean). �e results of the other NMIs are shown in the “Supplementary Information”.

�e results are shown in Fig. 1. Each panel presents the accuracy of a given community detection algorithm 
and is subdivided into two plots: �e lower axis depict the average value of NMI and the upper ones contain the 
standard deviation of the measures when repeated over 100 di�erent network realisations. Most of the algorithms 
can uncover well the communities when the mixing parameter µ is small, as it is apparent from the large values of 
I in the limit µ →  0. �e accuracy of algorithms decreases, then, with increasing values of both network size  
and µ. Di�erent algorithms behave di�erently: the accuracy of Fastgreedy algorithm decreases monotonically, in 
a smooth fashion and has a very small standard deviation along all the range (Panel (a), Fig. 1). Whereas that of 
Leading eigenvector algorithm falls rapidly even with small value of µ (Panel (c), Fig. 1). All the other algorithms 
display abrupt changes of behaviour: their performances remain relatively stable before a turning point where the 
NMI drops very fast as a function of µ. �e changes of behaviour are usually around µ =  1/2, which corresponds 
to the strong de�nition of community16. Interestingly, Label propagation and Edge betweenness algorithms have 
turning points smaller than said value; while Infomap, Multilevel, Walktrap, and Spinglass algorithms have turn-
ing points greater than µ =  1/2. We have also noticed that for the Infomap algorithm the normalised mutual 
information has a point of discontinuous behaviour at around µ ≅ .0 55. On the other hand, for Label propaga-
tion, I vanishes around µ ≅ .0 5 falling in a continuous fashion. �is supports the conjecture that Infomap dis-
plays a �rst order phase transition as a function of the mixing parameter, while Label propagation algorithm may 
have a second order one. Nonetheless, we have not performed an exhaustive analysis on the matter to systemati-
cally analyse the existence (or not) of critical points. Further studies concerning the properties of these points are 
de�nitely needed.

Network size also plays the role here that a larger network size will lead to loss of accuracy at a lower value 
of µ. For small enough networks (N ≤  1000), Infomap, Multilevel, Walktrap, and Spinglass outperform the 
other algorithms with higher values of I and very small standard deviations, which shows the repeatability of 
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the partitions detected. Besides, the turning point for accuracy is a�er µ =  1/2. For larger networks (N >  1000), 
Infomap, Multilevel and Walktrap algorithms have relatively better accuracies and smaller standard deviations. 

Figure 1. (Lower row) �e mean value of normalised mutual information depending on the mixing parameter 
μ. (upper row) �e standard deviation of the NMI as a function of µ. Di�erent colours refer to di�erent 
number of nodes: red (N =  233), green (N =  482), blue (N =  1000), black (N =  3583), cyan (N =  8916), and 
purple (N =  22186). Please notice that the vertical axis on the sub�gures might have di�erent scale ranges. �e 
vertical red line corresponds to the strong de�nition of community, i.e. µ =  0.5. �e horizontal black dotted line 
corresponds to the theoretical maximum, I =  1. �e other parameters are described in Table 1.
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Label propagation algorithm has much larger standard deviations such that its outputs are not stable. Due to the 
long computing time, Spinglass and Edge betweenness algorithms are too slow to be applied on large networks.

Second, we study how well the community detection algorithms reproduce the number of communities. To do 
so, we compute the ratio C C/  as a function of the mixing parameter. C is the average number of detected com-
munities delivered by the di�erent algorithms when repeated over 100 di�erent network realisations. C is the 
average real number of communities provided by the LFR benchmark on the same 100 networks. If =C C/ 1, the 
community detection algorithms are able to estimate correctly the number of communities. It is important to 
remark that this parameter has to be analysed together with the normalised mutual information because the dis-
tribution of community sizes is very heterogeneous. With respect to the networks generated by the LFR model, 
for small network sizes the real number of communities is stable for all values of µ, while for larger network sizes 
(N > 1000), C grows up to µ .⪆ 0 2 and then it saturates.

�e results for the ratio C C/  as a function of the mixing parameter are shown in Fig. 2 on a log-linear scale for 
all the panels. �e Fastgreedy algorithm constantly underestimates the number of communities, and the results 
worsen with increasing network size and µ (Panel (a), Fig. 2). For µ ⪅ 0.55, the Infomap algorithm delivers the 
correct number of communities of small networks ⪅N( 1000), and overestimates it for larger ones. For µ .⪆ 0 55, 
this algorithm fails to detect any community at all for small networks and all nodes are partitioned into a single 
community (Panel (b), Fig. 2). �e leading eigenvector algorithm slightly overestimates the number of commu-
nities of small networks and the prediction worsens with increasing µ. Moreover, it underestimates the number 
of communities in large networks and even the behaviour do not change monotonically with µ (Panel (c), Fig. 2). 
�e Label propagation algorithm is able to deliver the correct number of communities with small values of µ 
regardless of the network size. However, in the range µ. .⪅ ⪅0 3 0 6, it underestimates the number of communities 
and the prediction worsens with increasing network size and µ. For µ .⪆ 0 6, this algorithm fails to detect any 
community and all nodes are placed into the same community (Panel (d), Fig. 2). It is apparent that the Mutilevel 
algorithm constantly underestimates the number of communities and such behaviour worsens with increasing 
network size and µ (Panel (e), Fig. 2). In Fig. 2, Panel (f), for µ ⪅  0.4, the Walktrap algorithm delivers the correct 
number of communities regardless of network sizes, although the change of behaviour at which the prediction is 
correct depends on system size. For µ ⪆  0.4, this algorithm behaves di�erently depending on network size: it 
slightly underestimates the number of communities of small networks and signi�cantly overestimates it for large 
ones. For µ .⪅ 0 6, the Spinglass algorithm constantly overestimates the number of communities, and its predic-
tion worsens with network size. When µ .⪆ 0 6, it fails and tends to put nodes into a few giant communities  
(Panel (g), Fig. 2). �e Edge betweenness algorithm is able to deliver the correct number of communities for 

µ .⪅ 0 4 regardless of network size. It overestimates C for µ .⪆ 0 4 and the accuracy of the prediction worsens with 
increasing network size (Panel (h), Fig. 2). Overall, for µ⪅ 1/2, Infomap, Leading eigenvector, Multilevel, 
Spinglass, and Edge betweenness algorithms are able to deliver a reasonable estimator of the number of commu-
nities for small networks, while the number of communities obtained by Label propagation and Walktrap algo-
rithms are relatively close to the real value regardless of network size. For µ⪆ 1/2, all the algorithms are much 
worse at detecting the correct number of communities, and among all the algorithms, Multilevel, Walktrap, and 
Spinglass algorithms have better outputs when the network sizes are small.

�ird, we turn to the real computing time of the algorithms. �is measure is usually represented in theoretical 
estimations as a function of the number of nodes and edges. However, the real computing time may be also 
a�ected by the structure of the network. Given the number of nodes and a �xed average degree, we illustrate the 
computing time as a function of the mixing parameter. �e results are shown in Fig. 3 on log-linear scale. Each 
panel presents the computing time of a given community detection algorithm and it is subdivided in two plots: 
the lower one depicts the average computing time, while the upper sub-panel contains the standard deviation of 
the computing time when repeated over 100 di�erent network realisations. Some algorithms barely depend on the 
mixing parameter. �is is not the case for Multilevel, Spinglass, and Edge betweenness algorithms (Panel (e,g,h), 
Fig. 3). �ere is a slight dependency for Infomap algorithm that cannot be disregarded (Panel (b), Fig. 3). �e 
decrease of computing time for Infomap, Leading eigenvector, and Label propagation algorithms (Panel (b–d), 
Fig. 3) are accompanied with the signi�cant worsening of NMI and C C/  in Figs 1 and 2. Among all the algo-
rithms, Label propagation and Multilevel algorithms are much faster than the others (Panel (d,e), Fig. 3), while 
Spinglass and Edge betweenness are the slowest ones (Panel (g,h), Fig. 3).

The observed mixing parameter. Unlike the number of nodes in a network, the exact value of the mixing 
parameter of a graph is unobservable if ground truth is unavailable for the community assignment of nodes. In 
this section, we study the mixing parameter delivered by the community detection algorithms µ as a function of 
the mixing parameter µ (see Eq. 1). �e results of the di�erent algorithms are shown in the di�erent panels of 
Fig. 4. Each panel is subdivided in two plots: the lower has the average computed value of µ, while the upper 
sub-panel contains the standard deviation of the measures when repeated over 100 di�erent network realisations. 
All algorithms have a linear (identity) relationship between µ and µ except for the Leading eigenvector algorithm, 
which overshoots the results (Panel (c), Fig. 4). Most of the algorithms display a turning point where the estima-
tion of µ breaks down. For the Fastgreedy, Multilevel, Walktrap, Spinglass, and Edge betweenness algorithms,  

µ changes in a smooth fashion (Panel (a,e–h), Fig. 4). For the Infomap and Label propagation algorithms, the 
estimated mixing parameter µ has a steep change at around µ ≅ .0 55 and µ ≅ .0 5, separately (Panel (b,d), Fig. 4).

Overall, the mixing parameter obtained by the algorithms µ �ts well with the real mixing parameter at small 
value of µ, but it di�ers from the real value with increasing µ. For certain algorithms, the estimation fails com-
pletely for larger values of µ (Infomap, Label propagation), and for the others it is either overestimated (Edge 
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betweenness) or slightly underestimated (Fastgreedy, Walktrap, Spinglass). Remarkably, in the Multilevel algo-
rithm, the estimation is very accurate for values as large as µ =  0.75 for all network sizes analysed.

The role of network size. So far we have only discussed the role of the mixing parameter µ to the accuracy 
and the computing time of community detection algorithms. Now, as an important ingredient, we consider the 

Figure 2. �e mean value of the estimated number of communities delivered by di�erent algorithms over 
the real number of communities given by the LFR benchmark, i.e., C C/ , dependent on the mixing parameter 
µ on a log-linear scale. Di�erent colours refer to di�erent number of nodes: red (N =  233), green (N =  482), blue 
(N =  1000), black (N =  3583), cyan (N =  8916), and purple (N =  22186). Please notice that the vertical axis might 
have di�erent scale ranges. �e vertical red line corresponds to the strong de�nition of community where µ =  0.5 
and the horizontal green line represents the case that =C C. �e other parameters are described in Table 1.
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e�ect of network size. In our de�nition of the benchmark graphs, with a �xed average degree, network size can be 
represented as the number of nodes in the network. �e results are shown in Fig. 5 on a linear-log scale. Each of 
them presents the accuracy of a given community detection algorithms and is subdivided in two plots: one for the 

Figure 3. (Lower row) �e mean value of the computing time of the community detection algorithms (in 
seconds) dependent on the mixing parameter μ on a log-linear scale. (upper row) �e standard deviation of 
the measures on a log-linear scale. Di�erent colours refer to di�erent number of nodes: red (N =  233), green 
(N =  482), blue (N =  1000), black (N =  3583), cyan (N =  8916), and purple (N =  22186). Please notice that 
the vertical axis might have di�erent scale ranges. �e vertical red line corresponds to the strong de�nition of 
community where µ =  0.5. �e other parameters are described in Table 1.
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computed value of NMI and the upped sub-panel contains the standard deviation of the measures when repeated 
over 100 di�erent network realisations. Most of the algorithms can well uncover the communities when µ .⪅ 0 2. 
In this case, the detecting abilities of Fastgreedy, Infomap, Label propagation, Multilevel, Walktrap, Spinglass and 

Figure 4. (Lower row) �e mean value of the mixing parameter estimated by the community detection 
algorithms µ dependent on the mixing parameter μ. (upper row) �e standard deviation of µ dependent on µ. 
Di�erent colours refer to di�erent number of nodes: red (N =  233), green (N =  482), blue (N =  1000), black 
(N =  3583), cyan (N =  8916), and purple (N =  22186). Please notice that the vertical axis on the sub�gures might 
have di�erent scale ranges. �e vertical red line corresponds to the strong de�nition of community where 
µ =  0.5. �e green line y =  x corresponds to the case which µ µ= . �e other parameters are described in Table 1.
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Figure 5. (Lower row) �e mean value of normalised mutual information dependent on the number of nodes 
N in the benchmark graphs on a linear-log scale. (upper row) �e standard deviation of the normalised mutual 
information dependent on N on a linear-log scale. Di�erent colours refer to di�erent values of the mixing 
parameter: red (µ =  0.03), green (µ =  0.18), blue (µ =  0.33), black (µ =  0.48), cyan (µ =  0.63), and purple (µ =  0.75). 
Please notice that the vertical axis on the sub�gures might have di�erent scale ranges. �e horizontal black dotted 
line corresponds to I =  1. Due to the computing speed, Spinglass and Edge betweenness algorithms have been 
tested only on networks with N ≤  1000, and Infomap algorithm has been tested on networks with N ≤  22186. �e 
other parameters are described in Table 1.
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Edge betweenness algorithms are independent of network size (Panel (a,b,d–h), Fig. 5). For Leading eigenvector, 
the accuracies decrease smoothly with network size (Panel (c), Fig. 5). For very large µ .⪆ 0 75, most of the algo-
rithms fail to detect the community structure except for the Walktrap and Edge betweenness algorithms and the 
accuracy barely depends on network size. In the intermediate region of µ, NMI is usually decreasing with network 
size and µ.

Finally, we present the computing time as a function of the network size. �e results are represented in Fig. 6 
on a log-log scale. Each panel presents the computing time of a given community detection algorithms and is sub-
divided in two plots: one for the measured value of computing time in second and the upped sub-panel contains 
the standard deviation of the measures when repeated over di�erent network realisations. In the log-log scale, 
there is a signi�cant linear correlation between the computing time and the network size. To further compare the 
computing speed of every algorithm, we have �tted the curves according to the exponential function T ∝  Nα. �e 
�tted α together with the corresponding adjusted R-squared values are listed in Table 2. Only algorithms with 
small α can be applied to large networks. Overall, Label propagation algorithm is the method that scales best on 
network size; at the same time, Leading eigenvector, and Multilevel algorithms also have reasonable computation 
speeds on large networks. Fastgreedy, Infomap, Walktrap, and Spinglass algorithms scale much worse than the 
previous ones, and Edge betweenness algorithm is only suitable for small networks (with an almost cubic relation 
between network size and computing time).

Discussion
Traditionally, the aim of community detection in graphs has been to identify the modules by only using the infor-
mation encoded in the graph topology4. In this study we have performed a comparative analysis of the accuracy 
and computing time of eight di�erent community detection algorithms available in the “igraph” package. Each 
algorithm has been tested on a set of LFR benchmark graphs5,13. �e size of the benchmark graphs varies from 
approximately 200 to 32,000 nodes. With a �xed average degree, we have changed the structure of networks by 
using di�erent values of the mixing parameter µ.

In this study, the limited network sizes considered here pose no challenge for modern day computers in terms 
of Random-Access Memory (RAM). �erefore, the memory consumption is not analysed here. However, it is 
worth mentioning that the maximal memory consumption could be crucial for larger scale networks: if one algo-
rithm is implemented in a way that it needs more memory for the optimal calculation, then it can easily happen 
that the process slows down for large networks due to low available RAM, or it switches to a suboptimal imple-
mentation, which needs less memory. A previous study showed24 that (theoretically) many community detection 
methods have minimum memory consumption needs that scale linearly with the size of the graph  +m n(2 2 ), 
where m is the number of edges and n is the number of nodes. In practice, many of them need at least 

+m n(2 3 )  in case of unweighted undirected graphs and when the Yale sparse matrix format is used24.
Our results indicate that by taking both accuracy and computing time into account, the Multilevel algo-

rithm, which was proposed by Blondel et al.25, outperforms all the other algorithms on the set of benchmarks 
we have examined (although the modularity-based methods are known to su�er from the resolution limit of 
modularity26). We can further apply the results in three aspects: First, since the computing time is not relevant for 
small networks, one should choose algorithms based their accuracies. Among all the algorithms, Infomap, Label 
propagation, Multilevel, Walktrap, Spinglass, and Edge betweenness algorithms are able to successfully uncover 
the structure of small networks when the mixing parameter µ is small. With increasing value of µ, Infomap, 
Label propagation, and Edge betweenness algorithms’ accuracies drop for smaller values of µ than Multilevel, 
Walktrap, and Spinglass algorithms. Second, for large networks, one should �rst choose algorithms which are able 
to detect the organisation of nodes in a reasonable time. In this sense, Infomap, Label propagation, Multilevel, 
and Walktrap algorithms are the a priori choices. A�er that, by taking the accuracy into account, Multilevel is 
superior to the other algorithms as it displays a performance drop for a larger value of the mixing parameter µ. 
Importantly, the exact value of the mixing parameter of a graph is usually unobservable. To get a rough idea about 
the value of µ, one may employ either the Spinglass or the Multilevel algorithm. Limited by the computing time 
required, Spinglass algorithm cannot be applied on large networks.

Based on the previous results, and taking into account both factors, accuracy and computing time, it is possi-
ble to suggest under which situations to use each algorithm depending sorely on topological properties of the 
network under study. Our recommendations for the use of community detection algorithms are summarised in 
Fig. 7. In the �rst region, µ .⪅ 0 5 and the network size is small, ⪅N 1000. �ere, most of the communities detec-
tion algorithms tested give accurate results (and the computing time is a�ordable): Infomap, Label propagation, 
Multilevel, Walktrap, Spinglass, and Edge betweenness can all be used in a trustworthy fashion. A second region 
has a relatively larger value of µ µ. .⪅ ⪅(0 5 0 6), and equally small sizes of network ⪅N 1000. �ere, it is possible 
to use Multilevel, Walktrap, and Spinglass algorithms. A third region encompasses again smaller values of mixing 
parameter µ .⪅( 0 5) but an intermediate number of nodes ⪅ ⪅N(1000 6000). In this region, the best choices are 
Infomap, label propagation, Multilevel, and Walktrap algorithms. With increasing number of nodes in the net-
works ⪅ ⪅N(6000 32000), Infomap and Multilevel algorithm are very likely to provide the wrong number of 
communities and therefore they are no longer suitable in the fourth region. �e last region has the highest 
requirement for the community detection algorithms. None of the algorithms performs very well in this region 
but the Multilevel algorithm outperforms all the others.

Besides, we illustrate the suggestion for the adaptive use of the methods for community detection process in a 
simpli�ed �ow diagram (see Fig. 8). With any given network, one should �rst employ either Spinglass algorithm 
or Multilevel algorithm in order to obtain an estimate of the value of the mixing parameter µ. Notice that the 
former one can only be used for small networks ⪅N( 1000) due to the prohibitive computing time for larger net-
work sizes. Second, one can choose a suitable method according to the values of N and µ to conduct the 
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community detection such that both the accuracy and the computing time are acceptable. �ird, as we have 
already shown, in certain situations, there might exist large standard deviations of NMI, i.e., the community 
detection algorithms are not stable and therefore not reliable. �us, the value of µ must be recalculated to get an 

Figure 6. (Lower row) �e mean value of the computing time of the community detection algorithms (in 
seconds) dependent on the number of nodes in the benchmark graphs on a log-log scale. (upper row) �e 
standard deviation of the computing time on a log-log scale. Di�erent colours refer to di�erent values of the 
mixing parameter: red (µ =  0.03), green (µ =  0.18), blue (µ =  0.33), black (µ =  0.48), cyan (µ =  0.63), and purple 
(µ =  0.75). Please notice that the vertical axis might have di�erent scale ranges. Due to the computing speed, 
Spinglass and Edge betweenness algorithms have been tested only on networks with N ≤  1000, and Infomap 
algorithm has been tested on networks with N ≤  22186. �e other parameters are described in Table 1.
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idea of the repeatability of the results and con�rm its validity. In some situations, one might need to repeat the 
detection processes several times or switch to another algorithm to ensure the validity of the community detec-
tion results.

Our suggestions have to be applied in conjunction with the concomitant research questions. As a pure appli-
cation of the recommendations could bias the results. Once a researcher has decided to use a speci�c community 
detection algorithm, it is of crucial importance for her to keep in mind the limitations and the expected validity 
of the output of the community detection algorithm chosen. It is noteworthy that metadata would be helpful for 
evaluating network community detection methods and can be used to improve the analysis and understanding 
of network structure19,27. In real-world networks where metadata is available, researchers should also take into 
account the research question, the properties of the network, the interpretation and meaning of the communities 
while choosing the community detection algorithms. Di�erent research questions together with the metadata 
might lead to di�erent de�nitions of community, and further change the ground truth of the network.

Compared to previous works on benchmarking community detection algorithms, our study has many obvious 
advantages: First, we have considered networks which contain a wide spectrum of number of nodes and mixing 
parameters. Second, the algorithms we have tested are integrated in a cross-platform package which has been 
widely used in academic research in network science and related �elds. �ird, we have used the LFR benchmark 

Fastgreedy Infomap Leading eigenvector Label propagation

α 2.048 [0.006] 1.421 [0.009] 1.123 [0.005] 0.959 [0.005]

R2 0.956 0.933 0.951 0.947

Multilevel Walktrap Spinglass Edge betweenness

α 1.126 [0.003] 2.04 [0.002] 1.282 [0.013] () 2.915 [0.005]

R2 0.957 0.962 0.867 0.884

Table 2.  Indexes of the exponential function T ∝ Nα with the corresponding adjusted R-squared values. 
�e standard errors are listed in brackets. All the results are statistically signi�cant at the signi�cance level of 
0.05. Spinglass and Edge betweenness algorithms have been tested only on small networks with N ≤  1000, there 
might be some biases in the indexes of these two methods.

Figure 7. Recommendation for the choice of adaptable community detection algorithms. �e x-axis is the 
mixing parameter µ and the y-axis is the number of nodes N. �e y-axis is on a log scale for better visualisation. 
�e coordinates of certain important points are: A(0.48, 1000), B(0.6, 1000), C(0.48, 6192), D(0.36, 31948), and 
E(0.42, 31948). In di�erent regions we would like to recommend di�erent algorithms, which are represented 
by di�erent abbreviations: IM is the Infomap algorithm, LP is the Label propagation algorithm, ML is the 
Multilevel algorithm, WT is the Walktrap algorithm, SG is the Spinglass algorithm, and EB represents the Edge 
betweenness algorithm.
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graphs which have shown more realistic properties than the earlier computer-generated networks such as the GN 
benchmark.

�ere are also some limitations in our work: Although the LFR benchmark has generalised the previous GN 
benchmark by introducing power-law distributions of degree and community size, more realistic properties are 
still needed. We have mainly focused on testing the e�ects of the mixing parameter and the number of nodes. 
Other properties, such as the average degree, the degree distribution exponent, and the community distribution 
exponent may also play a role in the comparison of algorithms.

In the end, we stress that detecting the community structure of networks is an important issue in network 
science. For “igraph” package users, we have provided a guideline on choosing the suitable community detection 
methods. However, based on our results, existing community detection algorithms still need to be improved to 
better uncover the ground truth of networks.

Methods
In this section, we �rst describe in detail the procedure to obtain the benchmark networks used, then enumerate 
the community detection algorithms employed.

When comparing community detection algorithms, we can use either real or arti�cial network whose com-
munity structure is already known, which is usually termed as ground truth. Among the former, the celebrated 
Zachary’s karate club28 or the network of American college football teams3 have been extensively used. Among 
the latter, the ones used more pervasively are the GN3 and LFR13 benchmarks. However, obtaining real networks 
to which a ground truth can be associated is not only di�cult, but also costly in economic terms and time. Due 
to the complexity of data collection and costs, real world benchmarks usually consist of small-sized networks. 
Further, since it is not possible to control all the di�erent features of a real network (e.g. average degree, degree 
distribution, community sizes, etc.), the algorithms can only be tested – if resorting in this kind of graphs – on 
very speci�c cases with a limited set of features. In addition, the communities of real world networks are not 
always de�ned objectively or, in the best case, they rarely have a unique community decomposition. On the other 
hand, arti�cially generated networks can overcome most of these limitations. Given an arbitrary set of meso- or 
macroscopic properties, it is possible to generate randomly an ensemble of networks that respect them, in what 
is usually called generative models. However, as one of the most popular generative models, GN benchmark 
su�ers from the fact that it does not show a realistic topology of the real network5,29 and it has very small network 
size. A recent strand of the literature on benchmark graphs tried to improve the quality of arti�cial networks by 
de�ning more realistic generative models: Lancichinetti et al. extended the GN benchmark by introducing power 
law degree and community size distributions5. Bagrow had employed the Barabási-Albert model9 rather than 
the con�guration model30 to build up the benchmark graph31. Orman and Labatut proposed to use evolutionary 
preferential attachment model32 for more realistic properties33.

Figure 8. Suggestion for the community detection process. Small networks are those with number of nodes 
less than 1000, and small µ corresponds to µ .⪅ 0 5. To be noticed that in the case that N ≥  1000 and µ .⪅ 0 5, 
Infomap and Multilevel algorithms are no longer suitable choices if N ≥  6000.
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�e �rst step to generate the LFR benchmark graph is to construct a network composed of N nodes, with 

average degree k̂, maximum degree kmax and a power-law degree distribution with exponent α by using the con-
�guration model. Once this step is �nished, each node has a de�ned total degree. �en, given a power-law distri-
bution of community sizes with exponent β, a set of community sizes is drawn (between arbitrarily chosen 
minimum and maximum values of community sizes that act as additional parameters). Nodes are then sequen-
tially assigned to these communities. �e mixing parameter µ, which represents the fraction of edges a node has 
with nodes belonging to other communities with respect to its total degree, is the most relevant value in terms of 
the community structure. To conclude the generative algorithm, edges are rewired in order to �t the mixing 
parameter, while preserving the degree sequence. �is is achieved keeping �xed total degree of a node, the value 
of external degree is modi�ed so that the ratio of external degree over the total degree is close to the de�ned mix-
ing parameter. �e LFR model was initially proposed to generate undirected unweighted networks with mutually 
exclusive communities, and was extended to generate weighted and/or directed networks, with or without over-
lapping communities. In this study, we focus on the undirected unweighted networks with non-overlapping com-
munities since most of the existing community detection algorithms are designed for this type of networks. �e 
parameter values used in our computer-generated graphs are indicated in Table 1.

In this paper, we have evaluated the most widely used, state-of-the-art community detection algorithms on the 
LFR benchmark graphs. In order to make the results comparable, and reproducible, we use the implementation of 
these algorithms shipped with the widely used “igraph” so�ware package (Version 0.7.1)20. Here is the list of algo-
rithms we have considered. For notation purposes when giving the computational complexity of the algorithms, 
the networks have N nodes and E edges.

Edge betweenness. �is algorithm was introduced by Girvan & Newman3. To �nd which edges in a net-
work exist most frequently between other pairs of nodes, the authors generalised Freeman’s betweenness  
centrality34 to edges betweenness. The edges connecting communities are then expected to have high edge 
betweenness. �e underlying community structure of the network will be much clear a�er removing edges with 
high edge betweenness. For the removal of each edge, the calculation of edge betweenness is E N( ) ; therefore, 
this algorithm’s time complexity is  E N( )2 3.

Fastgreedy. �is algorithm was proposed by Clauset et al.12. It is a greedy community analysis algorithm that 
optimises the modularity score. �is method starts with a totally non-clustered initial assignment, where each 
node forms a singleton community, and then computes the expected improvement of modularity for each pair of 
communities, chooses a community pair that gives the maximum improvement of modularity and merges them 
into a new community. �e above procedure is repeated until no community pairs merge leads to an increase in 
modularity. For sparse, hierarchical, networks the algorithm runs in  N N( log ( ))2 12.

Infomap. �is algorithm was proposed by Rosvall et al.35,36. It �gures out communities by employing random 
walks to analyse the information �ow through a network17. �is algorithm starts with encoding the network into 
modules in a way that maximises the amount of information about the original network. �en it sends the signal 
to a decoder through a channel with limited capacity. �e decoder tries to decode the message and to construct a 
set of possible candidates for the original graph. �e smaller the number of candidates, the more information 
about the original network has been transferred. �is algorithm runs in E( ) 37.

Label propagation. �is algorithm was introduced by Raghavan et al.38. It assumes that each node in the 
network is assigned to the same community as the majority of its neighbours. �is algorithm starts with initialis-
ing a distinct label (community) for each node in the network. �en, the nodes in the network are listed in a 
random sequential order. A�erwards, through the sequence, each node takes the label of the majority of its neigh-
bours. �e above step will stop once each node has the same label as the majority of its neighbours. �e computa-
tional complexity of label propagation algorithm is E( ) 38.

Leading eigenvector. �is algorithm was proposed by Newman39. �e heart of this algorithm is the spectral 
optimisation of modularity by using the eigenvalues and eigenvectors of the modularity matrix. First, the leading 
eigenvector of the modularity matrix is calculated, and then the graph is split into two parts in a way that modu-
larity improvement is maximised based on the leading eigenvector. A�er that, the modularity contribution is 
calculated at each step in the subdivision of a network. It stops once the value of the modularity contribution is 
not positive. Its computational complexity of each graph bipartition is  +N E N( ( )), or  N( )2  on a sparse 
graph40.

Multilevel. �is algorithm was introduced by Blondel et al.25. It is a di�erent greedy approach for optimising 
the modularity with respect to the Fastgreedy method. �is method �rst assigns a di�erent community to each 
node of the network, then a node is moved to the community of one of its neighbours with which it achieves the 
highest positive contribution to modularity. �e above step is repeated for all nodes until no further improvement 
can be achieved. �en each community is considered as a single node on its own and the second step is repeated 
until there is only a single node le� or when the modularity can’t be increased in a single step. �e computational 
complexity of the Multilevel algorithm is  N N( log )40.

Spinglass. �is algorithm was �rst proposed by Reichardt & Bornholdt41. It is based on the Potts model42. �e 
basic principle of the method is that edges should connect nodes of the same spin state (community, in the 
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current context), whereas nodes of di�erent states (belonging to di�erent communities) should be disconnected. 
�erefore, the aim of this algorithm is to �nd the ground state of a spin glass model with a Potts Hamiltonian. 
Simulated annealing43 has been used to minimise the system’s free energy44. In a sparse graph, the computational 
complexity of this algorithm is approximately  .N( )3 2 45.

Walktrap. �is algorithm was proposed by Pon & Latapy46. It is a hierarchical clustering algorithm. �e basic 
idea of this method is that short distance random walks tend to stay in the same community. Starting from a 
totally non-clustered partition, the distances between all adjacent nodes are computed. �en, two adjacent com-
munities are chosen, they are merged into a new one and the distances between communities are updated. �is 
step is repeated (N −  1) times, thus the computational complexity of this algorithm is  E N( )2 . For sparse net-
works the computational complexity is N N( log( ))2 40.

We have employed virtual machines to implement all the computation. For each network size and for each 
algorithm, a virtual machine is created using a pre-de�ned installation that guarantees the same execution envi-
ronment conditions. �e installation is tuned to guarantee that each virtual machine makes use of an entire 
physical node, and, at the same time, that all physical nodes where the virtual machines will be hosted have the 
very same hardware speci�cations. �e workload distribution and collection for the results are commanded by a 
master-slave approach.
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Algorithms on Artificial Networks
Zhao Yang, René Algesheimer & Claudio J. Tessone

Scienti�c Reports 6:30750; doi: 10.1038/srep30750; published online 01 August 2016; updated on 26 June 2017

�is Article contained errors.

Figure 1f incorrectly showed curves for the values N =  233, 279, 335, 402, 482, and 579.

�e correct Figure 1 appears below.

�e Results section contained a typographical error under the subheading “�e role of network size”.

“Most of the algorithms can well uncover the communities when µ ⪆  0.2”.

now reads:

“Most of the algorithms can well uncover the communities when µ ⪅  0.2”.

�e Supplementary Information �le originally published with this Article contained errors in the f panels of 
Supplementary Figures 1, 2, 3, 4, and 5, where these panels incorrectly showed curves for the values N =  233, 279, 
335, 402, 482, and 579.

�ese errors have now been corrected in the PDF and HTML versions of this Article.
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