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Abstract

Two contemporary statistical shape analysis workflows are presented and
compared with respect to analysis of the human right ventricle (RV). The
methods examined include an approach that directly applies proper orthog-
onal decomposition to harmonically mapped surfaces (DM-POD) and an
approach that expands the harmonically mapped surfaces onto spherical
harmonic functions prior to further analysis (SPHARM). The structure of
both workflows is elaborated upon and compared, particularly regarding the
details of several key sub-steps, including the shape parameterization, align-
ment, and statistical decomposition. The performance is evaluated for the
components of each framework at the various analysis stages, as well as for
the output of the complete workflows in terms of the potential to assess right
ventricular function through application to a set of RV endocardial surfaces
with varying levels of pulmonary hypertension. Additionally, DM-POD and
SPHARM are examined with respect to different methods of utilizing the
available phases captured throughout a single cardiac cycle for the patient
set. The DM-POD workflow is quantitatively shown to provide more anatom-
ically consistent representations of the RV, while in general, the features
produced by the two workflows are shown to be distinctly different. Further-
more, both the workflow components and the components (i.e., phases) of
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the cardiac cycle utilized for the shape analysis are quantitatively shown to
significantly affect the pattern analysis of the patient set.

Keywords: statistical shape analysis, harmonic mapping, proper
orthogonal decomposition, right ventricle, classification

1. Introduction

1.1. Clinical Motivation

Cardiac remodeling plays a crucial role in the progression of heart disease
and the outcome of therapies, and therefore, both the static and functioning
appearance of the human heart are thought to provide substantial diagnostic
information relating to any number of cardiovascular diseases [1]. While a
considerable amount of work over the years has focused on the function of
the left ventricle (LV) and its relation to several diseases [2], recent focus has
extended to the right ventricle (RV) as studies have shown a more significant
dependance than previously thought of cardiac health on RV function for
certain diseases, such as pulmonary hypertension (PH) [3] and Tetralogy of
Fallot (TOF) [4]. For instance, PH is a cardio-pulmonary disease with a wide
variety of causes, and therefore treatments, but left untreated PH invariably
alters the size and shape of the RV [3]. Typically, the RV subject to PH
dilates with a variable amount of increased wall thickness or hypertrophy.
Yet, even though untreated PH can be a devastating disease with poor long-
term prognosis (particularly the subset of patients with pulmonary arterial
hypertension, in which the cardiopulmonary abnormality is in the pulmonary
arterial vascular bed), diagnosis is often delayed because the early symptoms
of PH are nonspecific [5]. Additional delay in diagnosis and/or treatment
can result from the limited understanding and available metrics of RV shape
and related functional changes to predict the level of deterioration in heart
function [3]. The RV poses a particular challenge for identifying such metrics,
as the RV anatomy is naturally complex, varies significantly both during
the cardiac cycle and across patient populations, and often becomes even
more complicated with disease. As such, creating sufficient analysis tools
for developing a better clinical understanding of right heart function has
generally remained a significant open challenge to-date [6].

1.2. Technical Background

Developments in medical imaging techniques and computer-aided diag-
nosis (CAD) have made significant contributions to aid physicians in both
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observing the nature of disease-related shape changes in biological struc-
tures and identifying diagnostic relationships between a shape change and a
particular pathology [7]. Statistical shape analysis (in some instances inter-
changeably referred to as geometric morphometrics) is one particular CAD
approach that has been shown to provide promising results for certain appli-
cations [8, 9, 10, 11]. Generally, statistical shape analysis obtains shape-based
representations of a biological structure of interest from available medical
images and then performs statistical analysis on a collection of these repre-
sentations to study the geometrical or kinematic variations. Common aims of
statistical shape analysis are to extract metrics from the given set of medical
images for diagnostic purposes [12, 13, 14, 15, 16] or to obtain fundamental
features to aid with future image processing [17]. In terms of applications
to understanding and diagnosing pathology, statistical shape analysis meth-
ods to-date have been largely focused on components of the brain and heart
and their associated afflictions. Such applications have included analyzing
changes in the shape of the hippocampus and/or the ventricles of the brain
with respect to Alzheimer’s disease [18, 19] and Schizophrenia [12, 13] and
analyzing changes in the shape of the RV with respect to PH [16] and TOF
[14, 15].

A typical statistical shape analysis framework includes several common
steps, with the first being to preprocess the image sets. Preprocessing in-
cludes some combination (not necessarily in this order or including all steps)
of segmentation, establishing base mathematical representations of the shapes,
alignment/registration, and parameterization, which is the critical (and often
most challenging) step in building the necessary correspondence between the
collection of medical shapes [20]. Once a final correspondence is set, standard
pattern recognition methods can be applied to derive the fundamental shape
features that exist within the shape sets, commonly utilizing some variant of
principle component analysis (PCA) [14, 16], and then generate metrics and
classifiers associated with the function and/or pathology of the application
of interest.

There have been a wide variety of specific techniques employed within sta-
tistical shape analysis frameworks depending on specific features, restrictions,
and/or objectives of the particular applications that have been considered.
With respect to the base representation of shape, one straightforward con-
cept that has been used is to define the collection of surface points describing
the shape in a standard Cartesian coordinate system, either in a discrete or
continuous format. For discrete descriptions, a popular method has been
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to use anatomical features as landmarks or fiducial points to represent the
geometric features among a population [8, 21]. However, due to limitations
on the availability of landmarks in many applications, other more mathe-
matically based methods have been introduced to automatically generate
dense collections of semi-landmarks (i.e., surface points not necessarily re-
lated to anatomical features) to represent the shape, with point distribution
models being a popular method within this category [22]. For continuous
descriptions, mesh-based techniques (e.g., point distributions interpolated
with polynomials with compact support) are a common means for shape
representation [23]. Alternatively, global basis functions (i.e., functions with
non-compact support) have also been utilized for representation of shape,
including basis functions such as spherical harmonic functions (SPHARM)
[24] or wavelet functions [25]. Lastly, skeletonization approaches have been
used in some applications for the shape representation, such as the medial
shape description, which defines the shape in terms of a medial axis and the
radial distance from this medial axis to the shapes surface [26]. Some of these
approaches for quantitatively describing the shape are automatically compa-
rable in a logical and anatomically consistent manner, such as the methods
that simply rely on a set of anatomical features/landmarks. However, more
generally, and particularly when anatomical landmarks are limited, further
processing is required to build correspondence (i.e., a one-to-one relation-
ship between each point describing each shape). One common technique has
been to utilize some form of topological mapping to map every point on each
shapes surface through some consistent mathematical technique (e.g., simple
projection [20] or harmonic mapping [27]) to a common topologically equiv-
alent structure, such as the surface of a plate or a sphere [20]. Finally, rigid
registration is often applied to remove effects of size, orientation, and/or po-
sition, so that the subsequent statistical analysis can be focused on shape
alone. The shapes can be aligned simply in some cases through manual
manipulation or casting the statistical analysis in terms of the difference in
shape from a reference position/shape [28]. Alternatively, some applications
require more elaborate registration algorithms, such as methods that define
a template shape and align each shape by minimizing the distance to the
template through the iterative closest point algorithm [29] or the procrustes
methodology [30], or some of the SPHARM approaches, which actually uti-
lize components of the base shape representation itself (e.g., the first-order
ellipsoidal component) to align each shape [22]. Again, a critical point is
that in some instances the specific statistical shape analysis implementation
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is chosen based on requirements/limitations of the specific application and
available resources, such as limited computational capability or insufficient
available fiducial points. However, in many other cases there is not necessar-
ily any restrictions forcing the use of a specific approach, and yet the nature
of the application (i.e., the organ/structure and disease of interest) should
dictate the use of one methodology over another.

Cardiac structures represent one area of significant interest for statisti-
cal shape analysis methods, as cardiac dysfunction is often thought to be
measurable through distortion within the geometric features at a specific
cardiac phase or by deterioration/changes in the kinematic patterns within
the cardiac cycle [31, 6]. However, cardiac structures represent a particu-
lar challenge also, in comparison to many other clinical applications to-date.
These challenges are largely due to the substantial shape variability that can
be seen across a population and resulting from various pathological changes,
as well as the dynamic variations in shape seen throughout the cardiac cy-
cle. The concept of statistical shape analysis for cardiac structures was first
introduced in [32], which used a landmark-based representation of the LVs
and RVs at end-diastole (ED) and derived shape features from these with
PCA. Since the work of Frangi et al., there have been a variety of other
techniques applied to cardiac structures in a variety of ways (e.g., utilizing
varying heart components, landmarks, and/or phases in the cardiac cycle).
For instance, Huang et al. used SPHARM descriptors along with alignment
techniques based on the spherical harmonic decomposition to examine the
shape of the endocardial and epicardial surfaces of LVs throughout a car-
diac cycle, and then heuristically derived features of these shapes and used
hierarchical clustering methods to examine mechanical dyssynchrony of the
heart [33]. Andreopoulos and Tsotsos presented a framework that also used
landmark-based models for the endocardial and epicardial surfaces of LVs
throughout a cardiac cycle, and combined PCA to produce active shape and
appearance models to be used for automated segmentation purposes [34].
Similarly, Zhang et al. used landmark-based models within a combination
active shape and appearance model using PCA for the endocardial and epi-
cardial surfaces of LVs and RVs throughout a cardiac cycle to first aid with
segmentation, and then to build quantitative shape, motion, and volumetric
features for classification of TOF [15] Alternatively, Mansi et al. introduced
currents and diffeomorphic registration algorithms to build correspondence
for mesh-based continuous descriptions of RV endocardial surfaces at ED,
then PCA was applied to reduce the dimensionality as well as derive quanti-
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tative features to identify correlations with the clinical metrics and to better
classify and understand TOF [14]. Recently, Wu et al. also used mesh-based
continuous descriptions of RV endocardial surfaces throughout a cardiac cy-
cle, applied a harmonic mapping method and converted the surfaces into
relative shape change functions to build correspondences, and then applied
proper orthogonal decomposition (POD) (i.e., a continuous form of PCA)
to derive kinematic features and build metrics for potential classification of
PH [16]. Overall, these recent research efforts in statistical shape analysis
applied to the heart have shown promising results for both image processing
and pathology classification. However, the recent efforts have also included a
diverse set of components in the analysis process (e.g., different mathemati-
cal representations, different registration and decomposition techniques, etc.)
with limited motivation for why one approach is utilized over another. As
stated previously, after factoring out restrictions necessitated by the nature
of the available imaging data, a natural assumption is that one computa-
tional approach, including both the analysis methods (e.g., representation,
decomposition, etc.) and the cardiac information utilized (e.g., specific car-
diac phase), will be best suited for a given structure and/or pathology. Yet,
minimal work has made comparisons to quantify the effectiveness of alternate
shape analysis approaches for a given application.

1.3. Contribution of Study

The present study aims to compare and contrast some approaches to sta-
tistical shape analysis that have been utilized to-date for various studies, ap-
plied herein to analyze right ventricle endocardial surfaces (RVES) for hearts
with and without PH. The investigation focuses on two specific workflows
for statistical shape analysis, a spherical harmonic function-based approach,
as presented in [22], and a direct decomposition approach, as presented in
[16], comparing the components of each framework at the various analysis
stages (representation, alignment, decomposition) as well as the output of
the complete workflows in terms of the potential to assess RV function. Ad-
ditionally, different methods of utilizing the available imaging data are also
investigated by considering analysis results when incorporating several dif-
ferent combinations of the phases captured throughout a single cardiac cycle
for the patient set. As such, the present study is intended to:

(1) - explore through comparison the efficiency and effectiveness of these
specific shape preprocessing and feature extraction approaches applied
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to the human RV with respect to PH, and provide guidance on tech-
niques to use for further (larger) studies of the same or similar biological
structure and pathology.

(2) - generally provide an example structure of the tests that could, and in
many cases should be performed toward determining the most suitable
shape analysis strategy for a given pathology and/or biological struc-
ture of interest.

It should be noted that the unique set of imaging and clinical in-
formation utilized were available for a total of only 13 patients for
this study. However, each patient had 9 distinct timeframes (so,
totaling 117 image sets), which could be considered sufficient for a
detailed method comparison, as is presented herein. Moreover, it is
not the intention of this study to generate a statistically significant
pathologically-relevant conclusion at this time.

The following section presents the specifics of the components for the two
statistical shape analysis workflows considered herein. In Section 3 the sta-
tistical shape analysis components and the complete workflows are examined
with respect to analysis of a clinically obtained set of RVES, which is followed
by concluding remarks in Section 4.

2. Methods

Two different contemporary statistical shape analysis approaches were
chosen to be applied to assess human RV function and compared for the
present study: (1) an approach that directly applies POD to harmonically
mapped surfaces, as shown in [16], and (2) an approach that also harmon-
ically maps the surfaces, but then projects the surfaces onto spherical har-
monic functions prior to further analysis, as shown in [35]. In addition, the
analysis and assessment of each approach included two different alignment
techniques for comparison purposes. In the remaining text the direct map-
ping to POD approach will be referred to as the DM-POD approach and
the spherical harmonic function-based approach will be referred to simply as
the SPHARM approach. An overview of the analysis approaches considered
herein is shown in Fig. 1. In brief, both approaches begin with segment-
ing 3D surface representations of the RVES from the cardiac image sets and
generating mesh-based representations of the surfaces. Then, the respective
version of harmonic mapping is applied to parameterize the set of RVES with
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Figure 1: Schematic of the statistical shape analysis workflows, including the approach that directly ap-
plies POD to harmonically mapped surfaces (DM-POD - solid red arrows) and the approach that projects
the surfaces onto spherical harmonic functions after harmonic mapping (SPHARM - dotted blue arrows),
showing the key steps of (a) segmentation of the right ventricle endocardial surface (RVES) from the
medical images, (b) smoothing and interpolated 3D closed surface mesh generation, (c) parameterization
of the RVES in terms of spherical coordinates (shown in 2D), (d) projection of the RVES onto a spherical
harmonic function basis (SPHARM), (e) alignment of the surfaces based on the spherical harmonic func-
tion parameterization (SPHARM), (f) alignment of the surfaces either by conversion into shape change
functions or by a rigid registration algorithm (DM-POD), and (g) decomposition of the shape sets into
modes and application of pattern recognition techniques.
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respect to a common domain. As shown with the solid red line in Fig. 1, the
DM-POD approach goes directly from harmonic mapping to alignment of
the shapes by either converting the shapes into relative shape change func-
tions over the cardiac cycle of each patient or registering the shapes to a
preselected shape template. Once the set is aligned, the DM-POD approach
applies POD to decompose the set of shapes or shape change functions into
modes, and pattern recognition techniques are utilized to generate features
from the modes, cluster the population, and/or build classifiers. Alterna-
tively, as shown with the dotted blue line in Fig. 1, following harmonic
mapping the SPHARM approach redefines the shapes in terms of a spherical
harmonic function basis. Then, the SPHARM approach aligns the shapes
either based on the orientation of the first-order ellipsoidal basis function or
using a combination of template registration and an approach that rotates
the surfaces in the space of the spherical harmonic coefficients. Lastly, the
SPHARM approach utilizes PCA to decompose the sets of coefficients of
the spherical harmonic functions to similarly obtain shape modal vectors (in
the space of the spherical harmonic basis), and then pattern recognition tech-
niques are applied. Note that PCA and POD can be considered conceptually
identical, but are differentiated here such that POD is applied to decompose
the continuous descriptions and PCA is applied to decompose the discrete
descriptions. In the following, each step of the analysis methods, includ-
ing the surface representation, parameterization, registration, and statistical
decomposition, are elaborated upon.

2.1. Image Acquisition and Surface Extraction

The present work utilized a clinically obtained set of ECG-gated multi-
slice cardiac CT images corresponding to 13 separate patients from a study
on regional RV structural and functional adaptation to PH as previously re-
ported in [36]. The 3D surface descriptions of the RV shapes were obtained
for each of the 9 unique phases captured from the cardiac cycle for each of the
13 patients by manually segmenting the RVES from each image in the CT
stacks, interpolating the slices, and then smoothing the interpolated surfaces
using a standard recursive and discrete Gaussian filter within the commercial
medical image processing software Simpleware 1. Thus, each of the 3D sur-
faces could be considered as a continuous, linearly interpolated, mesh-based

1www.simpleware.com
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representation, and the collection of 117 (13 patients with 9 cardiac phases
per patient) continuous, 3D, non-overlapping, closed, genus-0 RVES are la-
beled as {Ωk}

117
k=1. Manual segmentation was used to ensure that the most

anatomically accurate representations of the ventricle shape were segmented
within the constraints of the CT image quality. Similarly, the endocardial
surface was chosen specifically due to the relatively high imaging contrast
between the wall tissue and contrast-enhanced blood. The segmentation was
overseen and verified by a trained cardiologist (M. A. Simon), who has over
ten years of experience in advanced heart failure, PH, and in particular,
experience in the imaging of the RV.

2.2. Surface Parameterization

Both approaches initially utilized a harmonic topological mapping method,
so that the RVES were quantitatively comparable over a common domain for
further analysis. A harmonic mapping (i.e., change in coordinates) is simply
a parameterization that satisfies Laplace’s equation for each new parameter
([37]). As such, choosing the new parameters to be the spherical coordinates,
φ (longitude) and θ (latitude), the spherical coordinates for each point on
the kth RVES (i.e., location of the RVES coordinates on the unit sphere) can
be determined from the solution of

∇2θ(~x) = 0 and ∇2φ(~x) = 0, ∀~x ∈ Ωk. (1)

Provided with sufficient boundary conditions for θ and φ, which will be dis-
cussed in more detail in the following, Eqn. 1 can be numerically solved, and
then each RVES can be described over the common domain as

~x = ~x(θ, φ) in θ ∈ [0, π], φ ∈ [0, 2π], ∀~x ∈ Ωk. (2)

2.2.1. DM-POD Approach:

For the DM-POD approach, each surface mesh was parameterized solely
using a two step variation of harmonic topological mapping. Specifically,
the DM-POD approach creates an initial mapping by solving Eqn. 1 with
boundary conditions for θ and φ corresponding to anatomical features. Ac-
curately determining sufficient anatomical references may be a challenge in
certain applications, and yet, by choosing the boundary conditions to relate
to specific consistently identifiable anatomical features, this approach is able
to maintain anatomical consistency in the parameterization across popula-
tions. The RVES data used here provided more than sufficient anatomical
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references that could be consistently identified. For the analysis presented
the boundary conditions utilized included the apex, where θ = 0, the inter-
section of the pulmonary valve with the anterior border between the free wall
and septum, where θ = π, and the entire anterior border between the free
wall and septum, where φ has a non-unique value of 0 and 2π. A secondary
parameterization is then applied due to the fact that using only the initial
harmonic mapping may lead to the surface information being excessively con-
centrated in the mapped domain with a majority of the surface having initial
φ and/or θ values within a relatively small range, which may cause numerical
difficulties and degrade the subsequent analysis. This second step relies on
the observation that the harmonic parameterization of a sphere defines the
relationship between uniformly distributed spherical surface coordinates over
the unit sphere domain (the same domain as the mapped domain) and the
distortion caused by the mapping, and therefore the inverse of this mapping,
which is what is utilized, will “undo” some amount of the distortion caused
by the harmonic mapping process. See [38] for additional details about the
two-step mapping approach used for the DM-POD workflow.

2.2.2. SPHARM Approach:

In contrast to the DM-POD approach, the SPHARM approach considers
the surfaces in a discrete format in terms of the mesh vertices and connectiv-
ity, and a spherical parameterization algorithm known as the control of area
and length distortions (CALD) is applied to perform the mapping ([39]).
The CALD algorithm consists of an initial harmonic parameterization fol-
lowed by local and global smoothing methods. For initial parameterization,
the CALD approach does not use anatomical landmarks for the harmonic
mapping boundary conditions, as was the case in DM-POD. Rather, CALD
identifies two poles (θ = 0 and θ = π) to be the two vertices whose pro-
jections onto the principal Cartesian axis are furthest apart, then defines a
dateline (θ = 0 or θ = 2π) as the path with the steepest latitude ascent,
and applies these boundary conditions to solve Eqn. 1. Then, in order to
improve the area distortion (i.e., the inconsistent ratio between the area of
the elements within the original surface mesh and the initial parametrized
mesh), the latitude obtained from the initial mapping is re-parameterized
twice using a rotation operator, and the best (i.e., the parameterized mesh
with minimal overall area distortion) of these three parameterization results
(including the initial) is chosen for future usage. To further compensate for
the area distortion the CALD approach uses an optimization algorithm that
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combines local and global smoothing methods to iteratively relocate vertices
of the parameterization based on minimizing the area distortion of the surface
mesh elements with controlled length distortion, while also trying to equalize
the mesh distribution in terms of area over the spherical coordinates. After
parameterization, the SPHARM approach expands each of the mapped sur-
faces into a combination of spherical harmonic functions, such that the kth

RVES can be described as

~xk(θ, φ) ≈
Jmax
∑

j=1

[

c
(1)
kj sin(θ) cos(φ), c

(2)
kj sin(θ) sin(φ), c

(3)
kj cos(θ)

]T

Yj(θ, φ), (3)

where Yj(θ, φ) is the j
th spherical harmonic basis function, c

(i)
kj is the ith com-

ponent of the corresponding 3D coefficient vector for the kth RVES, and Jmax

is the number of spherical harmonic functions included in the description.
Therefore, each RVES can be defined uniquely by the set of corresponding
spherical harmonic function coefficients. For the remaining sections the vec-
tor of all spherical harmonic function coefficients used to describe the kth

surface is defined as ~ck =
[

c
(1)
k1 , c

(2)
k1 , c

(3)
k1 , c

(1)
k2 , c

(2)
k2 , c

(3)
k2 , ...

]T

.

2.3. Surface Alignment

Overall, surface alignment is applied to remove the effects of size, ori-
entation, and/or position, so that the subsequent analyses of the RVES set
consider shape alone. Two alignment methods were considered here for each
shape analysis workflow. The DM-POD workflow included one approach that
converts the shape sets into relative shape change (i.e., pseudo-displacement)
functions of the RVES for each patient, and another approach that is a more
standard rigid registration approach derived from the iterative closest point
algorithm. Alternatively, the SPHARM workflow tested an alignment ap-
proach based on the first-order ellipsoidal component of the spherical har-
monic function expansion, as well as an approach that minimizes the distance
between the shapes in the set with respect to the set of spherical harmonic
function coefficients from the expansions.

2.3.1. Pseudo-Displacement:

As shown in [16], an approach to convert RVES shape sets into pseudo-
displacement functions has been used to circumvent the additional computa-
tional cost and nonuniqueness of traditional registration methods. The pri-
mary assumption with this approach is that given a consistently identifiable
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phase (i.e., end diastole) to use as reference, the normalized change in shape
of an individual’s RVES over a cardiac cycle is fundamentally consistently
comparable across a population of individuals, provided that any displace-
ment not directly relating to beating of the heart is negligible throughout
the image acquisition process. As such, the parameterized RVES can be
converted into pseudo-displacement shape change functions simply by sub-
tracting one chosen phase’s RVES from each other phase’s RVES over the
cardiac cycle for each individual separately as

~dik(θ, φ) = ~xi
k(θ, φ)− ~xi

r(θ, φ), and k 6= r, (4)

where ~dik is the pseudo-displacement function for the ith patient at the kth

timeframe in the cardiac cycle and r is the chosen referential phase index for
the corresponding patient. Then, each pseduo-displacement function can be
normalized (i.e., scaled) with respect to the maximum change in the cardiac
cycle for the corresponding individual as

~pik(θ, φ) =
~dik(θ, φ)/max

j
‖~dij(θ, φ)‖L2

, (5)

with ‖.‖L2
defined as the standard L2-norm. The end diastole phase was

chosen as the referential phase for all analysis herein that used the pseudo-
displacement method for alignment.

2.3.2. Iterative Closest Point:

The iterative closest point (ICP) rigid registration algorithm ([40]) was
also considered to complete the correspondence for the RVES set within the
DM-POD workflow to more directly analyze shape (rather than change in
shape). For the ICP algorithm a template surface is chosen from the set, and
then each other surface in the set is iteratively rotated and translated until the
distance between each surface and the pre-selected template surface is min-
imized. For the present study, the RVES for an arbitrary non-hypertensive
patient at end diastole was chosen as the template shape. Furthermore, only
a single final rotation operator and translation vector were determined for
each patient using the ICP algorithm in order to align the end diastole RVES
of each patient to the template RVES, and then this rotation operator and
translation vector were applied to each other phase for each respective pa-
tient. Therefore, the kinematic information over the cardiac cycle for each
patient was also preserved with this ICP registration approach. In addition,
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prior to registration each RVES was normalized, similarly applying a single
scaling operator for each patient with respect to the internal cavity volume
of the respective end diastole RVES compared to the template surface. Thus,
the registered RVES for the ith patient at the kth timeframe in the cardiac
cycle can be shown as

~pik(θ, φ) = Ri
ED × (Si

ED × ~xi
k(θ, φ)) + ~T i

ED, (6)

where Ri
ED, S

i
ED, and

~T i
ED are the rotation operator, scaling operator, and

translation vector corresponding to the patient at ED phase, respectively.

2.3.3. First-Order Ellipsoid:

The first approach used to address the alignment need in the SPHARM
workflow was an approach that relies primarily on the first-order ellipsoidal
component of the SPHARM expansion ([22]). For this approach, each RVES
is scaled (i.e., normalized) individually with respect to the internal cavity
volume (note, this differs from the scaling in the DM-POD workflow, which
uses a single scaling value for each patient rather than a separate scaling
value for each shape). Next, the 0th-degree spherical harmonic function term
is removed from the expansion to center the shapes in the set. The param-
eterization is oriented by first aligning the poles (θ = 0 and θ = π) with
the positive and negative ends of the longest major axis of the ellipsoidal
(1st-degree) spherical harmonic functions and aligning the intersection of the
dateline (φ = 0) and the equator (θ = π/2) with the positive end of the
shortest axis of the ellipsoid. Lastly, the RVES are oriented in object space
by determining the rotations necessary to make the three main axes of the el-
lipsoidal spherical harmonic functions coincide with the Cartesian coordinate
axes with the shortest axis of the ellipsoidal functions along the x-axis and
the longest axis of the ellipsoidal functions along the z-axis. The object space
rotations are then applied to all spherical harmonic function coefficients in
combination with the previous operations as

~cfk = Robject
k ×Rparameter

k × (SFOE
k × ~ck), (7)

where ~ck is the initial (following surface parameterization) spherical harmonic
coefficient vector for the kth patient, SFOE

k , Rparameter
k , and Robject

k are the
scaling operator, rotation operator in parameter space, and rotation operator
in object space corresponding to the kth patient, respectively, and ~cfk is the
final spherical harmonic coefficient vector for this aligned individual.
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2.3.4. Registration of SPHARM Parameterization:

The final approach considered to complete the correspondence with the
SPHARM workflow was an approach that combines an ICP-type algorithm
with a method that aligns the shapes in the space of the spherical harmonic
function parameterization (in some cases referred to as the SHREC algorithm
in the literature) ([39, 41]). The first step is similar to the ICP algorithm
shown in Section 2.3.2, which initially aligns (i.e., rotates, translates, and
scales) each shape to a pre-selected template by minimizing the distance
between a selected group of landmarks prior to expansion into spherical har-
monic functions. Therefore, the initially aligned kth RVES (including all
patients at all phases) can be shown as

~x∗

k = R∗

k × (S∗

k × ~xk) + ~T ∗

k , (8)

where R∗

k, S
∗

k , and T ∗

k are the rotation operator, scaling operator, and trans-
lation vector, respectively. Then, each of the aligned shapes (i.e., ~x∗

k) is
parameterized and expanded to obtain the spherical harmonic function coef-
ficients, ~ck. The final step rotates the spherical harmonic function coefficients
using three rotation parameters, α, β, and γ, to minimize the difference be-
tween the spherical harmonic coefficient vector of each shape and the tem-
plate shape to produce the final set of aligned spherical harmonic function
coefficients, ~cfk , as

min
α,β,γ

√

‖~cfk(α, β, γ)− ~ci‖2, (9)

where
~cfk(α, β, γ) = Rf (α, β, γ)× ~ck, (10)

Rf is the rotation operator, and ~ci is the spherical harmonic function coeffi-
cient vector of the selected template.

2.4. Statistical Decomposition

As stated previously, the decomposition approaches of POD and PCA are
conceptually equivalent, but are differentiated herein such that POD was ap-
plied to decompose (i.e., obtain shape modes from) the continuous function
RVES descriptions for the DM-POD workflow, while PCA was applied to de-
compose the coefficients of the spherical harmonic functions for the SPHARM
workflow. Therefore, the POD approach determines the optimal set of modes
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(i.e., modal shapes) {~vi(θ, φ)}
n
i=1 in an average sense to approximate the set

of mapped and aligned RVES as

~pk(θ, φ) ≈
n

∑

i=1

aki~vi(θ, φ) +~b(θ, φ), (11)

where ~pk(θ, φ) is the k
thshape or shape change function, ~b(θ, φ) is the transla-

tion function, aki are modal coefficients, and n is the total number of modes.
For the present work the translation function was taken as ~0 when analyzing
the pseudo-displacement and taken as the mean shape when analyzing the
shapes with the ICP alignment. Similarly, the PCA approach determines the
optimal set of i.e., principle components {~ri}

n
i=1 to approximate the set of

spherical harmonic function coefficients for each mapped and aligned RVES
as

~ck ≈
n

∑

i=1

dki~ri + ~z, (12)

where ~ck is the kth RVES spherical harmonic function coefficient vector, ~z
is mean vector, and dki are modal coefficients. Therefore, the corresponding
modal shapes {~wi(θ, φ)}

n
i=1 can be obtained from the principal components

of the spherical harmonic function coefficients as

~wi(θ, φ) =
Jmax
∑

j=1

[

r
(1)
ij sin(θ) cos(φ), r

(2)
ij sin(θ) sin(φ), r

(3)
ij cos(θ)

]T

Yj(θ, φ),

(13)
where ~ri is broken down in a consistent manner as the vector of spherical har-

monic function coefficients such that ~ri =
[

r
(1)
i1 , r

(2)
i1 , r

(3)
i1 , r

(1)
i2 , r

(2)
i2 , r

(3)
i2 , ...

]T

.

See [16] for more details regarding the formulation and implementation of
POD directly applied to shape analysis, and see [35] for more details regard-
ing the formulation and implementation of PCA for shape analysis.

3. Results and Discussion

3.1. Human Cardiac Image Dataset Clinical Classification

The statistical shape analysis methods presented were applied to the
discussed set of clinically obtained ECG-gated multislice cardiac computed
tomography (CT) images for 13 individuals from a study on regional RV
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Figure 2: Hemodynamic distribution of the six non-hypertensive (marked as N1 - N6 with black cross),
six hypertensive with decompensated right ventricle (RV) function (marked as D1 - D6 with green cross),
and one hypertensive with compensated RV function (marked as C1 with blue cross) patients considered
for this study in terms of the mean pulmonary arterial pressure (PAP) and right atrial pressure (RAP).

structural and functional adaptation to PH as previously reported in [36].
However, the 13 patients were initially clinically classified based on resting
mean pulmonary arterial pressure (PAP) and right atrial pressure (RAP),
with six patients grouped as “non-hypertensive” based on PAP≤ 25mmHg
(labeled as N1-6), six patients grouped as “hypertensive with decompensated
RV function” based on PAP> 25mmHg and RAP> 10mmHg (labeled as
D1-6), and one patient grouped as “hypertensive with compensated RV func-
tion” based on PAP> 25mmHg and RAP< 10mmHg (labeled as C1). Fig.
2 shows the distributions of PAP and RAP for the 13 patients within the
dataset. In all cases, patients with RAP> 10mmHg also had a cardiac in-
dex < 2.0L/min/m2. An important note is that all patients within the study
(even those classified as “non-hypertensive”) are symptomatic, and therefore,
not an average healthy individual. To provide an additional clinical metric
relating to RV function, Fig. 3 shows the volume ejection fraction in compar-
ison to one reported normal cutoff [42] for each of the 13 patients, although it
should be noted that currently there is no clinically agreed upon value range
for “normal” RV ejection fraction.

3.2. Mapping and Alignment

Fig. 4 shows the initial orientation (i.e., the orientation of the RVES
after segmentation, but prior to any alignment) of a representative set of six
segmented and smoothed RVES shapes at the ED phase, as well as the re-
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Figure 3: Ejection fraction of the six non-hypertensive (N1 - N6), six hypertensive with decompensated
right ventricle (RV) function (D1 - D6), and one hypertensive with compensated RV function (C1) patients
considered for this study (note that there is some question over the appropriate “normal interval” of EF,
and the value shown here is solely to provide a relative perspective for the patient set).

sults of the mapping to spherical coordinates and orientations of each RVES
following the various parameterization and alignment methods of each work-
flow (note that the pseudo-displacement alignment results are not shown
since this approach is the only method not routed in traditional registration,
and therefore not directly comparable in this manner to the other strategies).
Note that the mapping results are displayed through the color contours, such
that the colors correspond to values of the mapping variables (i.e., the spher-
ical coordinates θ and φ) as shown in Fig. 4. In addition, for the SPHARM
workflow two additional trials were performed (labeled with “Updated”), in
which the orientations of the RVES were first manually adjusted accord-
ing to the anatomical references (i.e., the RVES were manually rotated to
place the pulmonary valve, apex, septum, and free wall in a similar posture
throughout the population) and then the two SPHARM alignment methods
in combination with the parameterization algorithm were applied again.

Overall, the alignment results for the ICP algorithm within the DM-
POD framework appeared to orient all of the RVES such that the various
anatomical regions that can be identified (e.g., the pulmonary outflow track,
the tricuspid valve, the apex, the free wall, and the septum) were in con-
sistently similar relative positions. The FOE and SHREC algorithms from
the SPHARM workflow oriented the majority of the RVES with a similar
amount of anatomical consistency in comparison to the ICP algorithm in the
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Figure 4: Initial orientation of a representative set of six segmented and smoothed right ventricle endo-
cardial surface (RVES) shapes at the end diastole (ED) phase of the cardiac cycle, including two non-
hypertensive patients (N3 & N5), three hypertensive with decompensated right ventricle (RV) function
patients (D1, D5, & D6), and one hypertensive with compensated RV function patient (C1), as well as the
results of the mapping to spherical coordinates (color contours) and orientations of each RVES following
the two step harmonic mapping and the iterative closest point (ICP) alignment of the DM-POD workflow,
and the harmonic mapping followed by the control of area and length distortions (CALD) algorithm and
the first order ellipsoid (FOE) or the SHREC alignment of the SPHARM workflow. Additionally, for the
SPHARM workflow the two updated alignment trials are shown (labeled with “Updated”), where the
orientation of the RVES were manually adjusted according to the anatomical references and then the two
SPHARM alignment algorithms in combination with the parameterization algorithm were applied again.
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DM-POD workflow. However, some of the registration results for the FOE
and SHREC algorithms were far less anatomically consistent compared to the
ICP algorithm. For example, after applying the FOE algorithm the free wall
for patient N3 was facing outward rather than to the right, as was the rest
of the population, and the pulmonary valve for patient D5 was pointing out-
ward rather than toward the top. Furthermore, after applying the SHREC
algorithm the orientations of nearly all of the anatomical features for patient
N3 were in significantly different positions compared to the rest of the popu-
lation, but generally the SHREC algorithm appeared to produce orientations
that were anatomically similar more consistently throughout the population
than the FOE algorithm. This lack of anatomical consistency for the FOE
and SHREC algorithms is not necessarily unexpected though, since the ob-
jective driving the registration process for those algorithms is based more
on shape features (i.e., the spherical harmonic expansion) than anatomical
features, particularly the FOE algorithm, in contrast to the entirely anatom-
ical reference-based ICP algorithm used in the DM-POD workflow. One
additional reason for the inconsistency in the orientation of the anatomical
features in the results from the FOE and SHREC algorithms is that both
algorithms depend significantly upon the initial orientation of the surfaces.
Thus, if the surfaces are initially substantially different in the anatomical
orientation they are more likely to remain different in the anatomical orienta-
tion following FOE or SHREC alignment. As such, the “Updated” FOE and
SHREC results, in which the initial RVES orientation was manually set to be
more anatomically consistent across the population, show some increase in
the anatomical consistency across the population for the final oriented shapes.
For the Updated SHREC results all of the RVES could be consid-
ered to have similar relative positioning of the anatomical features.
In contrast, for the FOE results there were still some RVES that
had substantially different orientations in terms of the anatomical
references (e.g., D5), and therefore, this analysis approach was not
considered for further analysis (i.e., only the updated SHREC re-
sults are considered further herein). In general, the results for the
spherical coordinate mapping (i.e., color contours) followed a similar pattern
to the results for the RVES orientation, particularly for the SPHARM work-
flow techniques, which have a direct connection between the mapping and
alignment results in the processing steps. The DM-POD workflow produced
mappings that assigned values for the spherical coordinate to the various
anatomical regions that were relatively similar across the population, while
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Figure 5: A representative set of six segmented and smoothed right ventricle endocardial surface (RVES)
shapes at the end diastole (ED) phase of the cardiac cycle, including two non-hypertensive patients (N3
& N5), three hypertensive with decompensated right ventricle (RV) function patients (D1, D5, & D6),
and one hypertensive with compensated RV function patient (C1), manually rotated to be anatomically
consistent, and the expansion of each RVES onto a collection of spherical harmonic functions after pa-
rameterization (as used within the SPHARM workflow), for spherical harmonic function bases of degree
1 (4 basis functions), degree 5 (36 basis functions), and degree 15 (256 basis functions) (with orientation
maintained consistently).

the SPHARM workflow had some amount of anatomical consistency, but
showed substantially more variation in the spherical coordinate values for
the various anatomical regions for some members of the population.

To further understand the nature of the shape descriptions, Fig. 5 shows
the expansion of the representative set of RVES onto sets of spherical har-
monic functions of varying basis order, as used in the SPHARM workflow, in
comparison to the complete (i.e., non-expanded) description, as utilized in
the DM-POD workflow. The first degree expansion is an ellipsoid, and this
is the component that is primarily used for the FOE alignment. As such,
the relatively large variation in the shape of this ellipsoid component can
be understood as the core reason why the FOE alignment method produced
substantial variations in the relative orientation of the anatomical features
of the RVES (shown in Fig. 4). Regarding the representation, as would be
expected, as the number of spherical harmonic basis functions included in the
representation increases, the number of details of the RVES preserved by the
representation also increases. What is more interesting is that a relatively
large number of spherical harmonic functions are required to clearly represent
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the RVES. At degree 5, which equates to a total of 36 basis functions, the
outline of the RVES begins to emerge, but details of some structures such as
the pulmonary valve region and the papillary muscles along the free wall and
septum are missing. Even at degree 15, which equates to a total of 256 basis
functions, the majority of the details of the original RVES are recovered,
but some fine-scale details can still be seen as missing in comparison to the
original surfaces. While this expansion onto the spherical harmonic function
basis may result in what could be considered as a loss of information, the
expansion may alternately be viewed as a filtering process to remove features
that could be contaminated by noise.

3.3. Statistical Decomposition

POD (for the DM-POD workflow) and PCA (for the SPHARM workflow)
were applied to decompose the respective sets of parameterized and aligned
RVES. However, note that while both the ICP and pseudo-displacement re-
sults were decomposed with POD for the DM-POD workflow, for brevity, the
PCA decomposition in the SPHARM workflow was considered only for the
parameterization and alignment results of the Updated SHREC algorithm,
since the Updated SHREC results were the most similar to the ICP results
for the DM-POD workflow with regards to the anatomical orientations. Ad-
ditionally, four different approaches for using the available information within
the cardiac cycle (i.e., phases) were considered: (1) analyzing the RVES at
the single ED phase for each patient, (2) analyzing the RVES at the single
ES phase, (3) analyzing the RVES at both the ED and ES phases, and (4)
analyzing the RVES at all nine available phases for each patient. As would be
expected, the pseudo-displacement method was only applied to approaches
(3) and (4), in which the pseudo-displacement functions were calculated with
the RVES at ED as the reference phase (i.e., all other phases were subtracted
from the ED phase to produce the pseudo-displacement functions).

As an example of the appearance of the modal shapes that can be ob-
tained from the decomposition methods Fig. 6 shows representations of the
3D modal shapes obtained by applying POD to the ICP results for the DM-
POD workflow and applying PCA to the SHREC results for the SPHARM
workflow to analyze only the ED phase of all 13 patients. More specifically,
Fig. 6 shows the mean shape (i.e., the average shape of the RVES at ED
over the 13 patients) in comparison to the mean shape combined with the
specified modal shape multiplied by ±1 or 2 standard deviations σi of the
corresponding ith modal coefficient value across the set of 13 patients. Note
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that the modes produced by both workflows are ranked by their relative con-
tribution to the representation of the set of 13 patients, such that mode 1
has the largest contribution to the shape over the set of patients, followed by
mode 2, and so on. As can be seen, there were distinct differences between
the modal shapes produced by each approach within each framework. For
example, mode 3 obtained from the DM-POD workflow in Fig. 6 shows a
concentrated shape variation directly below the outflow tract, while mode
3 obtained from the SPHARM workflow has no such specific regional vari-
ation, and there is actually no other mode within the set produced by the
SPHARM workflow that could be considered similar in appearance to mode
3 from the DM-POD workflow. However, there is not necessarily any method
to assess which modal shape set is preferred, particularly since the physio-
logical relevance of the modes is limited in that each is strictly one statistical
representation of the shape sets and subject to the mathematical constraints
of the decomposition, such as orthogonality.

Since there is limited physical interpretation of these statistically gener-
ated modal shapes, it is often more useful to analyze how the various modes
contribute to the representation of the shape datasets to understand the
relative compactness of the modal representations, the information content
within each mode, and how much variation there is in this shape information
across the datasets. To understand these modal contributions Fig. 7 shows
the cumulative modal energy for both the POD and PCA results for each of
the four groupings of the cardiac phase data. For the ith mode the cumulative
modal energy was calculated as

Ci =

∑i

j=1 λj
∑n

k=1 λk

, (14)

where λk is the eigenvalue obtained through the POD/PCA process cor-
responding to the kth mode and n is the total number of modes obtained
by the decomposition. For all trials, the cumulative energy curve for the
modes obtained from the DM-POD approach can be seen to be consider-
ably steeper than the energy curve for modes obtained from the SPHARM
approach, both when analyzing the shape (ICP results) and the change in
shape (pseudo-displacement results). Thus, it can be inferred that with an
equivalent number of modes the DM-POD results preserve more information
within the population (i.e., are a more compact representation) than the
SPHARM results. In other words, in order to retain the same amount of
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(a)

(b)

Figure 6: The mean shape and plus or minus one and two standard deviations (±σi and ±2σi) of each of
the first three modal coefficient values multiplied with the corresponding mode shape and added to the
mean shape for analysis of the dataset of 13 patient’s right ventricle endocardial surface shapes at the
end diastole phase in the cardiac cycle with (a) the DM-POD workflow with ICP alignment and (b) the
SPHARM workflow with the “Updated” SHREC alignment.
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information the SPHARM approach needs to utilize more modes than the
DM-POD approach. However, there was minimal variation in the energy
distribution for different groupings of the cardiac phase information or com-
paring the pseudo-displacement results to the ICP results in the DM-POD
workflow. Therefore, the results would indicate that the specific workflow
had substantially more influence on the compactness of the modal represen-
tations than the particular cardiac phase grouping or the representation as
shape change rather than shape.

3.4. Clustering

The last set of tests was intended to analyze the applicability and differ-
ences of the statistical shape analysis methods towards the ultimate goal of
identifying and classifying shape-based patterns within patient sets. There-
fore, the final set of tests considered the variations in the modal shape com-
ponents across the patient set for the various analysis methods and how these
modal components could potentially be used to separate the patient set into
various groupings (i.e., clusters).

First, a basic K-means clustering algorithm ([43]) was applied to group
the 13 patients within the set based on the modal coefficients extracted
for each patient through the DM-POD workflow with the ICP (shape) and
pseudo-displacement (shape change) strategies and the SPHARM workflow
with the Updated SHREC (shape) technique for all four groupings of the
cardiac phases considered (as were also considered in Section 3.3). The num-
ber of modes used to represent each patient (m) were selected such that at
least 99% of the cumulative energy was captured for the set respectively for
each approach (based on the eigenvalue analysis discussed previously), and
each patient was then described for the clustering process by a vector of the
individual relative modal energy percentages (as was used in [16]), with the
components of this vector calculated as

Mi =

n
∑

k=1

a2ki

N
∑

j=1

n
∑

p=1

a2pj

× 100%, for i = 1, 2, ...,m, (15)

where aki is the modal coefficient for the given patient corresponding to the ith

mode included in the vector and the kth cardiac phase, N is the total number
of modes obtained from the decomposition process of the set of 13 individuals,
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Figure 7: The cumulative modal energy for the POD and ICA modes obtained for the 13-patient dataset
from analysis of (a) the end diastole (ED) and end systole (ES) phases in the cardiac cycle alone with the
DM-POD workflow with ICP alignment and the SPHARM workflow with the “Updated” SHREC align-
ment, (b) the ED and ES phases combined with the DM-POD workflow with the pseudo-displacement
(PD) alignment (subtracting the ED phase from the ES phase), the DM-POD workflow with ICP align-
ment, and the SPHARM workflow with the “Updated” SHREC alignment, and (c) all available phases
with the DM-POD workflow with the PD alignment (subtracting the ED phase from all other phases),
the DM-POD workflow with ICP alignment, and the SPHARM workflow with the “Updated” SHREC
alignment.
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Figure 8: Percentage (i.e., Clustering Rate) of patients from the 13-patient dataset that were grouped
by K-means clustering (assuming two classes) with the majority of patients in the same classification
(hypertensive or non-hypertensive) based on the feature vector of the individual relative modal energy
percentages from the DM-POD workflow analysis with ICP alignment of all available phases in the cardiac
cycle, the end diastole (ED) phase alone, the end systole (ES) phase alone, and the ED and ES phases
combined, the DM-POD workflow analysis with the pseudo-displacement (PD) alignment (subtracting
the ED phase from all other phases) of all available phases and the ED and ES phases combined, and
SPHARM workflow analysis with the “Updated” SHREC alignment of all available phases, the ED phase
alone, the ES phase alone, and the ED and ES phases combined.

and n is the number of phases in the cardiac cycle used for the particular
analysis case. To assess how the modal representations would group the
patient set, not only with respect to each other, but also in comparison to the
most basic clinical metrics that are used to classify RV function, the number
of groupings was arbitrarily set to two and the groupings were compared with
the clinical classification of “hypertensive” and “non-hypertensive” defined
in Section 3.1. As such, Fig. 8 shows the percentage of the patients that
were grouped by the K-means clustering with a majority of patients in the
same classification (hypertensive or non-hypertensive) for each of the analysis
approaches considered. There was a substantial variation in the rate at
which the various workflows and analysis methods grouped the patients in
agreement with the hypertensive/non-hypertensive classification, and thus,
substantial variation in the way in which the methods grouped the patients in
general. The DM-POD workflow analysis of all cardiac phases with the ICP
alignment showed the highest rate of agreement with the clinical classification
and the DM-POD workflow analysis of the ED and ES phases with the
pseudo-displacement alignment produced the lowest rate of agreement, yet
on average the results of the DM-POD workflow grouped the patients more
consistently in agreement with the clinical classification than the SPHARM
workflow. The results could be further interpreted to indicate that the shape
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of the ED phase and one more more of the intermediate phases in the cardiac
cycle is more strongly correlated with the state of hypertension, while the
shape of the ES phase is related to other aspects of RV function.

To explore the nature of the potential clustering capabilities of the sta-
tistical shape analysis methods further hierarchical clustering tests were per-
formed on the two analysis techniques (one from each workflow) that had
the strongest agreement with the hypertension classification in the K-means
clustering results: the DM-POD workflow analysis of all cardiac phases with
the ICP algorithm and the SPHARM workflow analysis of the ED phase
with the Updated SHREC algorithm. Note that the choice to compare the
workflow-cardiac phase combinations based on agreement with the hyper-
tension classification as a representative example was arbitrary and done for
the purpose of brevity. To also provide an alternate comparison of standard
clinically measurable RV function an additional feature vector was created
for each patient consisting of the pulmonary arterial pressure, the right atrial
pressure, and the ejection fraction, with all values normalized with respect
to the largest respective value in the patient set. Fig. 9 shows the cluster-
ing results after applying hierarchical clustering ([43]) to the DM-POD and
SPHARM relative modal energy feature vectors, as described above, as well
as the clinical pressure-volume feature vector, with the vertical lines in the
figure indicating the relative distance in the feature space between the patient
groups connected by the horizontal lines. As would be expected, the clin-
ical pressure-volume features clustered all non-hypertensive patients in one
group with a relatively large distance from this group to the hypertensive
patient group. However, it is interesting to observe that the patient with
compensated RV function was clustered considerably closer in the clinical
feature space to two of the patients with decompensated RV function than
those three are to the rest of the hypertensive patients with decompensated
RV function and all of the hypertensive patients were clustered relatively
far from each other in comparison to the non-hypertensive patients, further
highlighting the wide spectrum of patient hemodynamic states and the com-
plexity of the affects of PH on RV function. The results from the DM-POD
workflow led to clustering all of the non-hypertensive patients within one
relatively compact group, but also included two of the decompensated hy-
pertensive patients in the same grouping, while having a diverse spectrum, in
a similar way as the clinical features, for the remaining decompensated and
compensated hypertensive patients. Alternatively, the hierarchical clustering
results for the SPHARM workflow placed one decompensated hypertensive
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Figure 9: Hierarchical clustering results (relative distance between feature vectors in the set) of the
13-patient dataset, including the 6 non-hypertensive individuals (N1 - N6), the 6 hypertensive with de-
compensated right ventricle (RV) function individuals (D1 - D6), and the 1 hypertensive with compensated
RV function individual (C1), for the (a) clinical normalized pressure-volume feature vector, (b) individual
relative modal energy percentage feature vector from the results of the DM-POD workflow with ICP align-
ment analysis of all available cardiac phases, and (c) individual relative modal energy percentage feature
vector from the results of the SPHARM workflow with the “Updated” SHREC alignment analysis of only
the end diastole cardiac phase.
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individual in a group with five other non-hypertensive individuals, while plac-
ing one non-hypertensive individual within the other group of the remaining
hypertensive individuals. Yet, the overall distribution of the patients for the
SPHARM workflow clustering is substantially more widespread than the two
other approaches, with only relatively small groupings of patients (i.e., two
or three) being placed relatively close together. However, it is generally im-
possible to say whether one approach or another is a “better” indicator of
RV function, relating to PH or otherwise in this preliminary clustering anal-
ysis, but rather the results are an indication that these analysis approaches
relate differently to the state of the RV (with pressure being one aspect of the
state of the RV), and that there is value in exploring the various strategies in
the future to identify the workflow components and the cardiac phase infor-
mation that could potentially provide the necessary information to classify
functional changes throughout the course of a disease such as PH.

4. Conclusions

Two different statistical shape analysis workflows to assess human RV
function were discussed and analyzed, including an approach that directly
applies POD to harmonically mapped surfaces, and an approach that also
harmonically maps the surfaces, but then projects the surfaces onto spherical
harmonic functions prior to further analysis. Each step of both workflows,
including the surface representation, parameterization, registration, and sta-
tistical decomposition, were elaborated upon, and the techniques were tested
with a collection of human RVES. The DM-POD workflow appeared to pro-
vide surface mappings and alignments that were more anatomically consis-
tent than the SPHARM workflow with respect to observable regions of the
RV, such as the septum, free wall, pulmonary and tricuspid valves, and the
apex. Additionally, the two workflows were shown to extract shape-related
features that are distinctly different from one another, while the pattern anal-
ysis (shown in terms of clustering) of the patient set is closely related to both
the various aspects of the workflows and the specific cardiac phase informa-
tion utilized for the analysis. On average, the DM-POD workflow clustered
the patient set in closer agreement with the standard clinical hemodynamic
metrics in comparison to the SPHARM workflow, while the ED and other
intermediate phases of the cardiac cycle produced shape features that were
relatively correlated with the state of hypertension, whereas the shape of
the ES phase is related to other aspects of RV function. Overall, both the
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DM-POD and SPHARM workflows where shown to produce features that
relate distinctly to the state of the RV, and the observations herein pro-
vide a foundation for future work to determine the specific statistical shape
analysis techniques and cardiac phase components to provide the necessary
information to effectively classify functional changes in the human RV.
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