
A Comparative Analysis of Methodologies
for Database Schema Integration

C. BATINI and M. LENZERINI

Dipartimento di Informutica e Sistemistica, University of Rome, Rome, Italy

S. B. NAVATHE

Database Systems Research and Development Center, Computer and Information Sciences Department,
University of Florida, Gainesville, Florida 32601

One of the fundamental principles of the database approach is that a database allows a
nonredundant, unified representation of all data managed in an organization. This is

achieved only when methodologies are available to support integration across

organizational and application boundaries.

Methodologies for database design usually perform the design activity by separately

producing several schemas, representing parts of the application, which are subsequently

merged. Database schema integration is the activity of integrating the schemas of existing

or proposed databases into a global, unified schema.

The aim of the paper is to provide first a unifying framework for the problem of
schema integration, then a comparative review of the work done thus far in this area.

Such a framework, with the associated analysis of the existing approaches, provides a

basis for identifying strengths and weaknesses of individual methodologies, as well as
general guidelines for future improvements and extensions.

Categories and Subject Descriptors: H.0 [Information Systems]: General; H.2.1

[Database Management]: Data Models; Schema and Subschema; H.2.5: [Database

Management]: Heterogeneous Databases; D.2.1: [Requirements/Specifications]:

Methodologies

General Terms: Management

Additional Key Words and Phrases: Conceptual database design, database integration,

database schema integration, information systems design, models, view integration

INTRODUCTION

1.1 Schema Integration

Database management systems (DBMSs)
have been developed in the past two dec-
ades using various data models and archi-
tectures. The primary data models used for
implementation are the hierarchical, net-
work, and relational data models. More re-
cently, several so-called semantic data

models, significantly more powerful than
primary data models in representing the
application of interest, have been proposed
(e.g., see Smith’s abstraction hierarchy
model [Smith and Smith 19771, the Seman-
tic Data Model [Hammer and McLeod
19811, the TAXIS data model [Mylopoulos
et al. 19801, DAPLEX [Shipman 19801, and
recently, the Galileo data model [Albano et
al. 19851).

Authors in alphabetical order.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0360-0300/86/1200-0323 $1.50

ACM Computing Surveys, Vol. 18, No. 4, December 1986

324 l C. Batini, M. Lenzerini, and S. B. Navathe

CONTENTS traditional “data-processing-using-files”
approach is that a database management
system makes it possible to define an inte-
grated view of relevant data for all appli-
cations. This eliminates duplication, avoids
problems of multiple updates, and mini-
mizes inconsistencies across applications.
Whereas the above claims of the database
approach are highly touted, database text-
books and survey literature to date have
paid scant attention to this topic. At the
same time, research on the problem of
integration has proceeded, and most
of the researchers have suggested perform-
ing the integration activity as a part of
the conceptual design step. In this paper
we refer to the integration activity by a
generic term, schema integration, which is
defined as the activity of integrating the
schemas of existing or proposed databases
into a global, unified schema. Schema
integration, as defined here, occurs in
two contexts:

INTRODUCTION

I.1 Schema Integration

1.2 View Integration in Database Design

1.3 Database Integration

I.4 Organisational Context for Integration

1.5 Structure of the Paper

1. METHODOLOGIES FOR SCHEMA

INTEGRATION

1.1 An example

1.2 Causes for Schema Diversity

1.3 Steps and Goals

of the Integration Process

1.4 Influence of the Conceptual Model

on the Integration Process

2. A COMPARISON OF METHODOLOGIES

2.1 Introduction

2.2 Applicability of Integration Methodologies

2.3 Methodologies Viewed as Black Boxes

2.4 Gross Architecture of Methodologies

2.5 Preintegration

2.6 Comparison of Schema8

2.7 Conforming of Schemas

2.8 Merging and Restructuring

3. CONCLUSIONS AND FUTURE WORK

3.1 General Remarks

3.2 Missing Aspects

3.3 Future Research Directions

APPENDIX 1. A SUMMARY DESCRIPTION

OF METHODOLOGIES

APPENDIX 2. THE ENTITY-RELATIONSHIP

MODEL

ACKNOWLEDGMENTS

REFERENCES

Since semantic models allow data to be
described in a very abstract and under-
standable manner, they are currently used
in designing the conceptual structure of
databases. This conceptual activity is called
conceptual database design. Its goal is to
produce an abstract, global view of the data
of the application, called conceptual
schema.

The introduction of a conceptual step in
design methodologies is a fairly recent de-
velopment. It allows designers and users to
cooperate in collecting requirements and
provides a high-level specification of the
data involved in the application. Further-
more, it simplifies the integration of differ-
ing perspectives and expectations that
various users have of the application.

One of the basic motivations for using
the database approach instead of the

(1) View integration (in database design)
produces a global conceptual descrip-
tion of a proposed database.

(2) Database integration (in distributed
database management) produces the
global schema of a collection of data-
bases. This global schema is a virtual
view of all databases taken together in
a distributed database environment.

The database technology has progressed
to a level where thousands of organizations
are using databases for their day-to-day,
tactical, and strategic management appli-
cations. The distributed database manage-
ment area is also becoming sufficiently well
understood, and we expect to see a large
number of organizations changing to dis-
tributed databases by integrating their
current diverse databases.

The contributions to the state of the art
of database design methodologies, and in
particular schema integration, have been
particularly significant in the last ten years.
Our goal is to provide first a framework by
which the problem of schema integration
can be better understood, and second a
comparative review of the work done thus
far on this problem. Such a framework with
an associated analysis of the prevalent

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 325

approaches provides

(1) a conceptual foundation to the problem
of schema integration;

(2) a basis upon which to identify strengths
and weaknesses and the missing fea-
tures about individual methodologies;

(3) general guidelines for future improve-
ments and extensions to the present
approaches.

In the next section we explain the view
integration activity; Section I.3 is devoted
to database integration. In Section I.4 we
elaborate on the motivation for investi-
gating integration. Finally, in Section I.5
we describe the general structure of the
remainder of the paper.

1.2 View Integration in Database Design

The problem of database design is one of
designing the structure of a database in a
given environment of users and applica-
tions such that all users’ data requirements
and all applications’ process requirements
are “best satisfied.” This problem has ex-
isted ever since DBMSs came into being.

The DBMSs that store and manipulate
a database must have a definition of the
database in the form of a schema. This is
termed the intension of the database. The
actual values of data in a database are
called instances or occurrences of data.
Sometimes they are termed the extension
of a database, or just “the database.”
Whereas the extension of a database keeps
changing with time, the intension of the
database is supposed to be time invariant.
The database design problem aims at de-
signing the intension schema of the data-
base, which includes logical specifications
such as groupings of attributes and rela-
tionships among these groupings (logical
schema), as well as physical specifications
such as the type of access to records, in-
dexes, ordering, and physical placement
(physical schema). On the basis of this dis-
tinction, the corresponding database design
activities are termed logical schema design
andphysical schema design. Logical schema
design involves the problem of designing
the conceptual schema and mapping such
a schema into the schema definition lan-

guage (or data definition language) of a
specific DBMS. Figure 1 shows the phases
of database design and the intermediate
schema representations. The phases of
database design are

(1)

(2)

(3)

(4)

Requirements Specification and Analy-
sis. An analysis of the information re-
quirements of various areas within an
organization resulting in a preliminary
specification of the information needs
of various user groups.
Conceptual Design. Modeling and rep-
resentation of users’ and applications’
views of information and possibly a
specification of the processing or use of
the information. The final result of this
activity is a conceptual schema that
represents a global, high-level descrip-
tion of the requirements.
Implementation Design. Transforming
a conceptual schema into the logical
schema of a DBMS. The second and
third phases taken together are called
logical database design.
Physical Schema Design and Optimi-
zation. Mapping the logical schema of
a database into an appropriate stored
representation in a DBMS, including
new physical parameters to optimize
the database performance against a set
of transactions.

Typically, the application design activity
proceeds in parallel with database design.
Hence, Figure 1 also shows specifications
related to applications as the outputs of the
last two phases.

As shown in Figure 1, the activity of view
integration can be performed at several
points of the database design process. It
usually is performed during conceptual de-
sign. In that case, its goal is to produce an
integrated schema starting from several ap-
plication views that have been produced
independent1y.l

‘There is a body of work that regards conceptual
design as an activity that considers the application as
a whole, thus producing a single schema. This includes
Batini et al. 119841, Biller and Neuhold 119821, Brodie
[1981], Brodie and Zilles [1981], Ceri [i983];Ceri et
al. [1981], Chen [1983], Lum et al. [1970], Olle et al.
[1982], Rolland and Richards [1982], and Sakai
[1981].

ACM Computing Surveys, Vol. 18, No. 4, December 1986

326 . C. Batini, M. Lenzerini, and 5’. B. Navathe

User Requirements in

an Application Domain

1

Logical

Design

1 Requirement Analysis 1

1
Specification and Representation

of Information Needs *----v---y

of Organization and User Groups
\

1

I
c

I

Global Conceptual Schema

+,

1 1

i
*--------~ J

ktgical Schema Functional Design

of Applications

Implemented Application

Database Schema Programs

Figure 1. Phases of database design. (Adapted from Navathe and Schkolnick [1978].)

(1) The structure of the database for large
annlications (orzanizations) is too com-

The reason for integration is twofold: their own reauirements and exnecta-
tions of data, -which may conflict with
other user groups.

plex to be modeTed by a single designer Another possibility (Figure 1) is to per-
in a single view. form integration even before the “concep-

(2) User groups typically operate inde- tual design” step is undertaken. In this
pendently in organizations and have case, view integration still occurs; however,

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 327

views are less formal and are mostly in the
form of narrative descriptions of require-
ments. The last possibility shown in the
figure is to perform integration after the
implementation design step, that is, start
from schemas expressed as implementable
logical schemas. This is the approach fol-
lowed in methodologies based strictly on
the relational model (see Al-Fedaghi and
Scheuermann [19811 and Casanova and Vi-
da1 [1983]) that do not advocate a concep-
tual step and model requirements directly
in terms of the relational model.

1.3 Database Integration

Database integration is a relatively recent
problem that has appeared in the context
of distributed databases. A distributed da-
tabase is a collection of data that logically
belong to the same system but are spread
over the sites of a computer network [Ceri
and Pelagatti 19841. Distributed databases
and distributed database management sys-
tems can be classified into two major cate-
gories: homogeneous, dealing with local
databases having the same data model
and identical DBMSs, and heterogeneous,
having a diversity in data models and
DBMSs. The term Federated Database is
used (e.g., in McLeod and Heimbigner
[1980]) to refer to a collection of databases
in which the sharing is made more explicit
by allowing export schemas, which define
the sharable part of each local database.
Each application is able to design its own
global schema by integrating the export
schemas.

The above contexts require that an in-
tegrated global schema be designed from
the local schemas, which refer to existing
databases. This too can be considered a
database design activity. Existing work on
database integration included in our survey
implicitly addresses this problem. The au-
thors of these works [Dayal and Hwang
1984; ElMasri et al. 1987; Mannino and
Effelsberg 1984a; Motro and Buneman
19811 use a semantic data model as an
intermediate model to facilitate the inte-
gration. Another implicit assumption they
make is that the heterogeneous database
management system is able to map the

requests of users-retrievals as well as up-
dates-from such a semantic data model
into the actual databases.

The database integration activity is de-
scribed in a general way in Figure 2. It
shows that this activity has as input the
local schemas and the local queries and
transactions. Most existing work, however,
does not explicitly take into account the
latter process-oriented information in de-
veloping the integrated schema. It is
strictly used in mapping the queries (query
mapping) between the global and the local
levels. Hence, we show the global schema
as well as the data and query-mapping spec-
ifications to be the outputs of the database
integration activity.

1.4 Organizational Context for Integration

Thus far we have pointed out how schema
integration arises in database design. As we
survey the work on schema integration, it
is worthwhile to point out an organizational
context for this important area.

There is a growing trend to regard data
as an autonomous resource of the organi-
zation, independent of the functions cur-
rently in use in the organization [National
Bureau of Standards 19821. There is a need
to capture the meaning of data for the
whole organization in order to manage it
effectively. Because of this awareness, in-
tegration of data has become an area of
growing interest in recent years.

One of the fundamental principles of the
database approach is that a database allows
a nonredundant, unified representation of
all data managed in an organization. This
is true only when methodologies are avail-
able to support integration across organi-
zational and application boundaries. More
and more organizations are becoming aware
of the potential of database systems and
wish to use them for integrated applications
and not just as software for fast retrieval
and updating of data.

Even when applications and user groups
are structurally disconnected, as in most
governmental and large administrative set-
ups, there is something to be gained by
having an enterprise-wide view of the data
resource. This potentially affords individ-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

328 l C. Batini, M. Lenzerini, and S. B. Navathe

Local Database

Schemas

Local Database

Queries/Transactions

A global
database
schema

Data Mapping
from global

to local

Mapping of

queries/transactions

from global

to local databases

Figure 2. Inputs and outputs of database integration.

ual applications to “build bridges” among
themselves and understand how the data-
bases or files relate to one another.

With the increasing use of databases, we
expect the integration problem to be more
severe and pervasive. New technologies of
networking, distributed databases, knowl-
edge-based systems, and office systems will
tend to spread the shared use of data in
terms of number of users, diversity of ap-
plications, and sophistication of concepts.
Design, manufacturing, and engineering
applications are becoming centered around
database management systems. The need
for methodologies for integrating data in
its diverse conceptual and physical forms
is thus expected to increase substantially.

1.5 Structure of the Paper

As described in Section 1.1, our main goals
are to provide a conceptual foundation for
schema integration and perform a detailed
comparison of existing work in this area.

It is possible to classify the existing lit-
erature into two categories:

(A) Complete methodologies for schema in-
tegration. These include view integra-
tion and database integration.

(B) Related works addressing specific is-
sues of schema integration.

In the References, the relevant literature is
placed under Categories A and B.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

In Section 1 we establish the general
framework for a comparison of schema
integration methodologies. An example
introduces the aspects that influence the
integration process; we then identify the
activities usually performed during schema
integration. These activities are used as a
basis for comparing methodologies. Finally,
we examine the influence of the conceptual
model on the overall integration process.

Section 2 is devoted to a detailed com-
parative analysis of the methodologies. The
results of the analysis are presented in the
following format:

(1)

(2)

Tables illustrating comparative fea-
tures. The table entries are drawn from
the original publications on the meth-
odologies and are not exhaustively ex-
plained. However, we extract salient
features and trends that are evident in
these tables. We highlight the approach
of a specific methodology when it ex-
plains a specific feature.
Because of the diversity of the
data models (entity-relationship, en-
tity-category-relationship, functional,
structural, Navathe-Schkolnick, rela-
tional, and generalized entity manipu-
lator) used in the methodologies, we
have adopted a uniform treatment
of concepts primarily based on the
entity-relationship model. The entity-
relationship model is briefly summa-
rized in Appendix 2.

Comparison of Methodologies for Database Schema Integration l 329

In Section 3, we present the conclusions
of this investigation, identify missing as-
pects and open problems, and indicate some
research directions.

We compare 12 different complete meth-
odologies. A summary description of each
is in Appendix 2. The data model used,
inputs and outputs, the general strategy,
and special features are briefly described
for each methodology.

In order to make the treatment of schema
integration uniformly applicable to both
the view integration as well as the database
integration contexts, we use the following
terminology:

General terms used for schema integra-
tion: Component Schema, Integrated
Schema.

View integration context: user view, con-
ceptual view.

Database integration context: local
schema, global schema.

1. METHODOLOGIES FOR SCHEMA
INTEGRATION

1.1 An Example

In order to introduce the reader to the main
features and problems of schema integra-
tion, we present an example. In Figure 3,
we show two descriptions of requirements
and corresponding possible conceptual
schemas that model them.

The following additional information
applies to this example:

(1)

(2)

The meaning of “Topics” in the first
schema is the same as that of “Key-
word” in the second schema.
“Publication” in the second schema is
a more abstract concept than “Book”
in the first schema. That is, “Publica-
tion” includes additional things such
as proceedings, journals, monographs,
etc.

Figure 4 shows a set of activities that may
be performed to integrate the schemas.

Let us look at the two schemas in Fig-
ure 4a. Topics and Keywords correspond to
the same concept. Since we have to merge
the schemas, the names should be unified
into a single name. Let us choose the name

Topics. Observe the corresponding change
in the second schema as we go from (a) to
(b) in Figure 4. When we look at the new
schemas (Figure 4b), another difference we
notice is that Publisher is present in the
two schemas with different types: It is an
entity in the first schema and an attribute
in the second. The reason for choosing dif-
ferent types (attribute vs. entity) comes
from the different relevance that Publisher
has in the two schemas. However, we have
to conform the two representations if we
want to merge them. Therefore we trans-
form the attribute Publisher into an entity
in the second schema and add a new attri-
bute, Name, to it (see Figure 4~). We now
can superimpose the two schemas, produc-
ing the representation in Figure 4d. We
have not finished merging yet, since we
have to look for properties that relate con-
cepts belonging to different schemas, which
were “hidden” previously. This is the case
with the subset relationship between the
concepts Book and Publication. We can
add such a subset relationship to the
merged schema, producing the result shown
in Figure 4e. Now, to simplify the represen-
tation, we can restructure the schema by
dropping the properties (relationships and
attributes) of Book that are common to
Publication. This is allowable since the
subset relationship implies that all the
properties of publications are implicitly in-
herited by Book. The final schema is shown
in Figure 4f.

1.2 Causes for Schema Diversity

The example of schema integration used
above is obviously a “toy example” that
highlights some of the basic problems in-
volved. That the integration of realistic
sized component schemas can be a complex
endeavor is amply evident from this ex-
ample.

The basic problems to be dealt with dur-
ing integration come from structural and
semantical diversities of schemas to be
merged. Our investigation of integration
starts with a classification of the various
causes for schema diversity, which are dif-
ferent perspectives, equivalence among
constructs of the model, and incompatible
design specifications.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

330 l C. Batini, M. Lenzerini, and S. B. Navathe

Books have titles. They are published

by Publishers with names and addresses.

Books are adopted by Universities

publications of different types.

Each publication has a lille.

a publisher and a list of keywords.

Each keyword consists of a name.

a code and a research area.

Area

Figure 3. Examples of requirements and corresponding schemas.

1.2.1 Different Perspectives

In the design process, different user groups
or designers adopt their own viewpoints in
modeling the same objects in the applica-
tion domain. For instance, in the example
in Section 1.1, different names were at-
tached to the same concept in the two
views.

Another example is given in Figure 5, in
which the two schemas represent informa-
tion about employees and their depart-
ments. In Figure 5a information is modeled
by means of the relationship E-D. In Figure
5b, relationship E-P relates the employees
with projects, whereas relationship P-D as-
sociates projects with departments. It is
assumed that an Employee “belongs to”

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Title
t4an-e

Book

Address

Figure 4a. Original schemas.

Title Name

L

Figure 4b. Choose “Topics” for “Keyword” (Schema 2).

Title Name

Figure 4c. Make Publisher into an entity (Schema 2).

Area

Figure 4d. Superimposition of schemas.

Figure 4e. Creation of a subset relationship.

Title

Figure 4f. Drop the properties of Book common

to Publication.

Title

Figure 4. An example of integration.

334 l C. Batini, M. Lenzerini, and S. B. Navathe

Employee

1 Department 1

\Department 1

Figure 5. Different perspectives.

those departments that are involved in the
projects the employee works on. Therefore
the relationship between Employee and De-
partment is perceived as a direct relation-
ship in one schema, whereas it is seen via
the entity Project and two relationships in
another.

1.2.2 Equivalence among Constructs
of the Model

Typically, in conceptual models, several
combinations of constructs can model the
same application domain equivalently. As
a consequence, “richer” models give rise to
a larger variety of possibilities to model the
same situation. For example, in Figure 3,
the association between Book and Pub-
lisher was modeled as an attribute of Pub-
lisher in one schema and as a relationship
between Book and Publisher in the other.
Figure 6 shows another example of equiv-
alent constructs. Man and Woman are dis-
tinguished by a generalization hierarchy in
the first schema, whereas in the second
schema they are distinguished by the dif-
ferent values of the attribute Sex.

1.2.3 Incompatible Design Specifications

Erroneous choices regarding names, types,
integrity constraints, etc. may result in er-
roneous inputs to the schema integration
process. A good schema integration meth-
odology must lead to the detection of such
errors. Schema 1 in Figure 7 erroneously

shows that an Employee is always assigned
to a unique project, since the cardinality
constraint 1 : n has been specified. The
correct situation (that an Employee may be
assigned to many projects) appears in
Schema 2.

These three aspects are concerned with
what we can call the common part of the
various schemas, that is, the set of concepts
of the application domain that are repre-
sented in all of the schemas. In other words,
the above aspects represent the reasons
why the common part may be modeled in
different ways in different schemas.

In order to perform integration, it is CN-

cial to single out not only the set of common
concepts but also the set of different con-
cepts in different schemas that are mu-
tually related by some semantic properties.
We refer to these as interschemaproperties.
They are semantic relationships holding
between a set of objects in one schema and
a different set of objects in another schema.
In the rest of this section, we provide a
further taxonomy to address correspond-
ences among common concepts and con-
cepts related by interschema properties.

1.2.4 Common Concepts

Owing to the causes for schema diversity
described above, it may very well happen
that the same concept of the application
domain can be represented by different rep-
resentations R1 and Rz in different schemas,
and several types of semantic relationships
can exist between such representations.
They may be identical, equivalent, compat-
ible, or incompatible:

(1)

(2)

Identical: R1 and RP are exactly the
same. This happens when the same
modeling constructs are used, the same
perceptions are applied, and no inco-
herence enters into the specification.
Equivalent: R1 and RP are not exactly
the same because different but equiva-
lent modeling constructs have been ap-
plied. The perceptions are still the
same and coherent. Several definitions
of equivalence have been proposed in
the literature (see Atzeni et al. [1982],
Beeri et al. [1978], Biller [19791, Na-
vathe and Gadgie [1982], Ng et al.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 335

Person

T Sex

(a) (b)
Figure 6. Equivalent constructs. (a) Generalization hierarchy. (b) A single entity.

Project 7 1

Project

Lr’
n

3
Figure 7. Incompatible design specifications.

3 (a) Schema 1. W Mmna 2.

(a) (b)

[1983], Rissanen [1977]). Although (3) Compatible: R1 and RS are neither
several semantic data models are in identical nor equivalent. However, the
existence today, the authors of these modeling constructs, designer percep-
models do not provide any criteria for tion, and integrity constraints are not
equivalence of concepts. Definitions contradictory.
are typically based on three different (4) Incompatible: I$ and Rz are contra&c-
types of equivalence: tory because of the incoherence of the

(4

(b)

(c)

specification.
Behavioral: R1 is equivalent to Rz
if for every instantiation of R1, a
corresponding instantiation of Rz
exists that has the same set of an-
swers to any given query and vice
versa [Atzeni et al. 19821.

Situations (2), (3), and (4) above can be
interpreted as conflicts. Conflicts and their
resolutions are central to the problems of
integration. A general definition of the term
conflict would be as follows:

Mapping: R, and Rz are equivalent A conflict between two representations
if their instances can be put in a R, and RP of the same concept is every
one-to-one correspondence (e.g., situation that gives rise to the represen-
see Rissanen [19771). tations R1 and R2 not being identical.
Transformational: R1 is equivalent
to Rz if RP can be obtained from R1
by applying a set of atomic trans-
formations that by definition pre-
serve equivalence. (Navathe and
Gadgie [19821 call this “restructure
equivalence.“) This technique is
common in other disciplines (e.g.,
program equivalence).

1.2.5 Concepts Related
by Some Semantic Property

Regarding the concepts in component sche-
mas that are not the same but are related,
we need to discover all the interschema
properties that relate them. In Figure 8, we
show two examples of interschema proper-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

336 l C. Batini, M. Lenzerini, and S. B. Navathe

Interschema

Subset Relationship

(a)

Application

Domains

Schema 1

Schema 2

lb)

Figure 8. Interschema properties. (a) Example 1. (b) Example 2.

ties. The subset relationship among Person
and Employee (Example 1) and the rela-
tionship “Belongs-to” between Country
and State (Example 2) are interschema
properties that could not be perceived in
the original component schemas.

1.3 Steps and Goals
of the integration Process

Thus far, we have discussed the nature of
the schema integration problem and iden-
tified the causes and implications of
schema diversity. How do the methodolo-
gies accomplish the task of integration?
Each methodology follows its own solution
procedure. However, any methodology
eventually can be considered to be a mix-
ture of the following activities.

1.3.1 Preintegration

An analysis of schemas is carried out before
integration to decide upon some integration
policy. This governs the choice of schemas
to be integrated, the order of integration,
and a possible assignment of preferences to
entire schemas or portions of schemas. Giv-
ing preference to financial applications
over production applications is one exam-
ple of an integration policy that could be
set by management.

Global strategies for integration, namely,
the amount of designer interaction and the
number of schemas to be integrated at one
time, are also decided in this phase. Collec-
tion of additional information relevant to
integration, such as assertions or con-
straints among views, is also considered to
be a part of this phase.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 337

1.4 Influence of the Conceptual Model
on the Integration Process

1.3.2 Comparison of the Schemas

Schemas are analyzed and compared to
determine the correspondences among
concepts and detect possible conflicts.
Interschema properties may be discovered
while comparing schemas.

1.3.3 Conforming the Schemas

Once conflicts are detected, an effort is
made to resolve them so that the merging
of various schemas is possible. Automatic
conflict resolution is generally not feasible;
close interaction with designers and users
is required before compromises can
be achieved in any real-life integration
activity.

1.3.4 Merging and Restructuring

Now the schemas are ready to be superim-
posed, giving rise to some intermediate
integrated schema(s). The intermediate
results are analyzed and, if necessary,
restructured in order to achieve several
desirable qualities. A global conceptual
schema may be tested against the following
qualitative criteria:

All of the above issues and activities are
strongly influenced by the data model used
to express conceptual schemas. The rela-
tionship between the comparison and con-
forming activity and the choice of data
model is apparent in all the methodologies
that perform these activities “by layers”
[Batini et al. 1983; ElMasri et al. 1987;
Kahn 1979; Navathe and Gadgil 1982; Teo-
rey and Fry 1982; Wiederhold and ElMasri
1979; Yao et al. 19821. These layers corre-
spond to the different semantic constructs
supported by the model; Table 1 makes an
interesting point concerning the specific
order of the layers of schema constructs
used in the methodologies. The comparison
activity focuses on primitive objects first

(e.g., entities in the entity-relationship
model); then it deals with those modeling
constructs that represent associations
among primitive objects (e.g., relationships
in the entity-relationship model). Note
that relational-model-based methodologies
do not show up in this table because the
relation is their only schema construct.

A few qualitative observations can
be made concerning the relative merit of
different models.

l Completeness and Correctness. The in-
tegrated schema must contain all con-
cepts present in any component schema
correctly. The integrated schema must be
a representation of the union of the ap-
plication domains associated with the
schemas.

A simpler data model, that is, one with
fewer data-modeling constructs, properties,
and constraints has an advantage in con-
forming and merging activities. This stems
from various factors:

l Minimality. If the same concept is rep-
resented in more than one component
schema, it must be represented only once
in the integrated schema.

l Understandability. The integrated
schema should be easy to understand for
the designer and the end user. This im-
plies that among the several possible rep-
resentations of results of integration
allowed by a data model, the one that is
(qualitatively) the most understandable
should be chosen.

l the possibility of type conflicts is smaller;
l the transformation operations are

simpler;
l merging involves fewer primitive opera-

tions.

We make use of the above four phases of
schema integration for analyzing and com-
paring different methodologies.

On the other hand, a simpler model consti-
tutes a weaker tool in the hands of the
designer in discovering similarities, dissim-
ilarities, or incompatibilities. Models with
a rich set of type and abstraction mecha-
nisms have the advantage of representing
predefined groupings of concepts and al-
lowing comparisons at a higher level of
abstraction.

Schema integration comes about when
the design of a global schema is attempted

ACM Computing Surveys, Vol. 18, No. 4, December 1986

338 9 C. Batini, M. Lenzerini, and S. B. Navathe

Table 1. Order of Schema Constructs Subjected to Integration

Reference Phase 1 Phase 2

Batini et al. [19831
ElMasri et ai. [1987]
Kahn [19791
Navathe and Gadgil [19821
Teorey and Fry [19821
Yao et al. 119821

Entities
Object classes
Entities
Objects
Aggregations
Obiects

Relationships
Relationship classes
Relationships
Connections
Generalizations
Functions

Wiederhold and ElMasri [19791 Primary relations Connections

using the “divide and conquer” philosophy.
It is an inherent attribute or property of
this philosophy that the “global character-
istics” that cannot be captured by the in-
dividual views must be added when a global
view becomes available. Consider the rela-
tive advantage of the entity-relationship
model over the relational model in this
respect.

Referring to the example in Section 1.1,
adding the subset between Book and Pub-
lication allowed us to incorporate a “global
characteristic” that was not evident in com-
ponent schemas. The relational model
lacks this modeling feature. Hence, it could
only be captured by expressing and enforc-
ing it as a part of the transactions that
operate on the global schema or by defining
new dependencies such as inclusion inter-
dependencies (e.g., as in Casanova and
Vidal [19831).

The current body of work on the schema
integration problem can be divided into two
schools: one using the relational or func-
tional models and one using semantic
models. Among the semantic models, the
entity-relationship model and its variants
are dominant.

A few observations can be made when

(2)

rally avoid dealing with a large subset
of the possible conflicts. The semantic-

2. A COMPARISON OF METHODOLOGIES

model-based methodologies in general
allow a larger amount of freedom in
terms of naming, compatible and in-
compatible design perspectives, etc.
Correspondingly, they deal with a
much wider spectrum of conflicts.
The more recent relational-model-
based methodologies (e.g., Biskup and
Convent [19861, Casanova and Vidal
[1983]) use inclusion, exclusion, and
union functional dependencies in
addition to conventional functional de-
pendencies. An inclusion (exclusion)
dependency is used to constrain the set
of values associated with a given attri-
bute to be subset of (disjoint from) the
set of values corresponding to another
attribute. By making use of these de-
pendencies, they claim to achieve the
same semantic expressiveness as the
semantic models. Owing to the well-
defined semantics of the relational
model in terms of set theory and de-
pendency theory [Maier 1983; Ullman
19821, they are able to address the
problem of minimal redundancy in a
formal wav.

comparing these two schools:

model ([AlIFedaghi and Scheuermann
(1) Methodologies using the relational

1981; Casanova and Vidal 19831) make
the universal relation schema assump-
tion; that is, every attribute name is
unique, across the entire database. As
a consequence, problems related to
naming and contradictory specifica-
tions are ignored. Furthermore, they
are not really able to state different
perspectives (e.g., contradictory func-
tional dependencies in two views at the
start would not be allowed) and natu-

2.1 Introduction

There are 12 different complete methodol-
ogies that we consider (see Category A Ref-
erences). We have placed a summary
description of each in Appendix 2, which
include the data model used, inputs and
outputs, the general strategy, and special
features.

In this section, each methodology is an-
alyzed and compared on the basis of some
common criteria. In Section 2.2, we concen-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration

Table 2. Placement of Methodologies

339

Phases of database design References

Between requirement analysis and conceptual
design

Conceptual design

Implementation design

Kahn [1979]

Batini and Lenzerini [1984], ElMasri et al. [1987],
Navathe and Gadgil [19821, Teorey and Fry [19821,
Wiederhold and ElMasri [1979]

Al-Fedaghi and Scheuermann [19811, Casanova and
Vidal [1983], Yao et al. [1982]

trate on the phases of database design,
where the integration methodologies are
most applicable. It is seen there that the
different methodologies apply to different
portions of the design process from require-
ments analysis to implementation design.
We deepen the framework provided in Sec-
tion 1 by first considering these methodol-
ogies as “black boxes” and examine their
inputs and outputs. Then we deal with their
general structure by examining the proce-
dures that they follow in terms of the four
main activities: preintegration, compari-
son, conforming, merging, and restructur-
ing. Finally, we describe each of these
activities in detail.

Performing integration during the re-
quirements analysis phase is difficult be-
cause user requirements are generally very
poorly structured, and are difficult to deal
with in terms of a formal methodology in-
volving a semantic analysis. Among the
methodologies, only that of Kahn [1979]
can be considered applicable to the require-
ments analysis phase. There, a loosely
structured data model is used that resem-
bles those used for collecting requirements
specifications.

2.2 Applicability of Integration Methodologies

A majority of the methodologies being an-
alyzed here fall into the class of view inte-
gration methodologies. In fact, all except
those of Dayal and Hwang [19841, Motro
and Buneman [1981], and Mannino and
Effelsberg [1984a] belong to this class.
That of ElMasri et al. [1987] belongs
to both view integration and database
integration.

On the other hand, performing integra-
tion during the implementation design
phase is difficult because representations
at that point do not allow one to make
effective use of abstractions. Methodologies
such as those of Al-Fedaghi and Scheuer-
mann [1981] and Yao et al. [1982] are able
to do integration as a part of the logical
design phase by working with the relational
(or a functional) data model and various
types of dependencies. Pure relational syn-
thesis algorithms (e.g., Bernstein [19761
and Biskup et al. [1979]) can also be con-
sidered examples of this approach. As such,
they do not deal with the more powerful
semantic constructs or abstractions.

There is little choice in terms of deciding
when schemas are integrated in the case of
database integration; it has to be performed
on the basis of existing local database sche-
mas when a global interface is desired to
access them. In contrast, view integration
can occur at different times (see Figure 1).
It is therefore worthwhile to consider the
correspondence between the phases of
database design and the various view
integration methodologies.

The above observations suggest that the
preferred phase for integration is the con-
ceptual design phase, where the use of ab-
straction is very helpful in comparing and
conforming different perceptions of the ap-
plication domain by different user groups.

Another viewpoint regarding the phase
when schema integration should be per-
formed may be stated in terms of the fol-
lowing statements:

Table 2 shows the phases at which the
various view integration methodologies can

(1) Perform integration as early as pos-

be considered to be best applicable.
sible because the cost of carrying
erroneous/inconsistent data increases

ACM Computing Surveys, Vol. 16, No. 4, December 1966

340 l C. Batini, M. Lenzerini, and S. B. Navathe

during the life cycle of the database
and the application.

(2) Perform integration only after com-
plete, correct, minimal, unambiguous
representations are available.

This again leads one to the conclusion
that schema integration should be placed
after requirements analysis but before im-
plementation design. Methodologies [Ba-
tini and Lenzerini 1984; ElMasri et al. 1987;
Navathe and Gadgil 1982; Teorey and Fry
1982; Wiederhold and ElMasri 19791 in-
deed confirm this position. We have placed
these methodologies under “conceptual de-
sign” in Table 2 according to the present
terminology. Database integration can be
considered to apply more to the conceptual
design phase rather than the other two. The
above point of view is confirmed by [Dayal
and Hwang 1984; ElMasri et al. 1987; Man-
nino and Effelsberg 1984a; Motro and
Buneman 19811 in that for doing database
integration they advocate translating het-
erogeneous logical schemas into conceptual
data representations. Hence, all methodol-
ogies for database integration [Dayal and
Hwang 1984; ElMasri et al. 1987; Mannino
and Effelsberg 1984a; Motro and Buneman
19811 are placed in that category.

2.3 Methodologies Viewed as Black Boxes

The basic input to schema integration is a
number of component schemas and the
basic output is an integrated schema.

Table 3 shows the specific inputs and
outputs taken into account by different
methodologies. Since Navathe and Gadgil
[19821 represented the view integration
process with the most comprehensive list-
ing of inputs and outputs, which roughly
represent a union of all methodologies, we
discuss their terminology:

l Enterprise View. Pertinent only to view
integration, and not to database integra-
tion, this view is an initial conceptual
schema which is the enterprise’s view of
the most important and stable concepts
in the application domain. Having such
a view at one’s disposal makes the activ-
ities of comparing and conforming views
easier.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Assertions. These correspond to con-
straints. Intraview assertions are con-
straints defined on concepts within one
schema, whereas interview assertions are
constraints among concepts belonging to
different views. Methodologies that as-
sume interview assertions to be input
implicitly require that some global
knowledge pertaining to the diverse ap-
plications is supplied to the designer.
Modified assertions in the output are re-
vised constraints.
Processing Requirements. These refer to
the operations defined on component
views. They may be specified in the form
of a high-level data manipulation or
query language.
Mapping Rules. These define the map-
ping from queries (operations) applicable
to component schemas to queries (oper-
ations) against the integrated schema.
Statement of Conflicts. This is a set of
conflicts that the designer is not able to
resolve and is beyond the scope of the
methodology to resolve automatically.

One issue deserving special attention is
the treatment of processing requirements.
Some methodologies [Al-Fedaghi and
Scheuermann 1981; Batini and Lenzerini
1984; Casanova and Vidall983; Kahn 1979;
Teorey and Fry 1982; Wiederhold and
ElMasri 19791 ignore processing require-
ments totally. Navathe and Gadgil [1982]
and Yao et al. [1982] refer to the transac-
tions and queries on component schemas
that have to be supported after integration.
Navathe and Gadgil [1982] show that this
support of processing requirements is pro-
vided by a set of mapping rules. In Dayal
and Hwang [1984] and Motro and Bune-
man [1981] the query modification process
is addressed in detail to deal with the proc-
essing of local queries on the global data-
base. Batini et al. [1983] and Yao et al.
[1982] consider the problem of query mod-
ification during view integration.

We can conclude that a complete treat-
ment of processing requirements during in-
tegration is not present in any of the meth-
odologies surveyed. Some recent proposals
have been made to combine process de-
sign with database design [Carswell and
Navathe 19861.

Comparison of Methodologies for Database Schema Integration

Table 3. Inputs and Outputs

341

Reference Inputs outputs

Al-Fedaghi and Scheuermann n External views
[1981]

Batini and Lenzerini [19841

Casanova and Vidal [19831

Dayal and Hwang [19841

User schemas
Weights for schemas
Enterprise schema

User views

ElMasri et al. [1987]

Local schemas of existing
databases

Queries

Local schemas
Interschema assertions

Kahn [1979] Local information structures

Motro and Buneman [19811

Mannino and Effelsberg [1984a]

Logical schemas
Database queries

Local schemas
Interschema assertions about

entities and attributes

Navathe and Gadgil [19821

Teorey and Fry [1982]

Yao et al. [19821

Wiederhold and ElMasri [1979]

Enterprise view
Local views
Interview assertions
Intraview assertions
Processing requirements

Information, application, event,
corporate perspectives

Policy guidance and rules

Views
Processing specifications

Two schemas

n External schemas
Conceptual schema
Mapping between external

schemas and conceptual
schema

Global schema

Conceptual schema

Global interface to databases
Modified queries

Global schema
Mapping rules

Global information structure

Super-view
Modified queries

Global schema
Mapping rules
Definition of integration schema

objects

Global view
Mapping rules
Modified assertions
Conflicts

Global information structure
Conflicts

Global view
Modified processing specification

Global schema

The form in which the inputs and out-
puts exist in an integration system (which
may be partly automated) is not stated
explicitly by any of the authors considered.
It is obvious that in order to process the
schemas in an automated environment,
they must be expressed in some well-
defined language or some internal
representation using data structures.

2.4 Gross Architecture of Methodologies

Let us consider the four activities of the
integration process. In Table 4, we show
the steps that are performed by each of the
methodologies and the looping structure
present in them.

It is possible to classify the methodolo-
gies into four groups on the basis of

Table 4:

(1) Those that perform a repetitive com-
parison, conforming, and merging of
schemas, and avoid the need to restruc-
ture later [Mannino and Effelsberg
1984a; Navathe and Gadgil 1982; Wied-
erhold and ElMasri 19791.

(2) Those that perform most of the activi-
ties during and after the merging of
schemas. They include Steps 3 and 4
only and avoid comparison and con-
forming of the schemas [Al-Fedaghi
and Scheuermann 1981; Casanova
and Vidal 1983; Motro and Buneman
1981; Teorey and Fry 1982; Yao et al.
19821.

(3) Those that perform all four activities
[Batini and Lenzerini 1984; Dayal and

ACM Computing Surveys, Vol. 18, No. 4, December 1986

342 . C. Batini, M. Lmzerini, and S. B. Navathe

Table 4. Schema Integration Activities

Preintegration Compare Conform Merging Restructuring
References (Step 1) (Step 2) (Step 3) (SW 44 (Step 4b)

Al-Fedaghi and Scheuermann - - - X--TX
[19811

Batini and Lenzerini [19841 - XQX--rX‘X

Casanova and Vidal[1983] - - - x-x

Dayal and Hwang [19841 - x-x-x-x

ElMasri et al. [19871 x-x-x-x-----+x

Kahn [1979] - x-x-x-x

Motro and Buneman [1981] - - - x-x

Mannino and Effelsberg [1984a] x-x-x-x -

Navathe and Gadgil [19821 x-x5x+x -

Teorey and Fry [19821 - - - x-x

Yao et al. [19821 - - - x-x

Wiederhold and ElMasri [1979] - x4--x+x -

Hwang 1984; ElMasri et al. 1987; Kahn
19791.

(4) Those that explicitly mention preinte-
gration analysis [ElMasri et al. 1987;
Mannino and Effelsberg 1984a; Na-
vathe and Gadgil 19821.

On the basis of the looping structure alone,
the following similarities can be observed:

(1)

(2)

(3)

(4)

Casanova and Vidal [19831 and Teorey
and Fry [1982] have a “no-feedback”
approach to integration. They only per-
form the merging and restructuring
steps.
Al-Fedaghi and Scheuermann [19811;
Dayal and Hwang [1984], Motro and
Buneman [1981], and Yao et al. [1982]
are similar to the above group in that
they perform only merging and restruc-
turing; however, they allow a feedback
between these two steps.
Kahn [1979], Mannino and Effelsberg
[1984a], Navathe and Gadgil [1982],
Wiederhold and ElMasri [1979] pro-
vide a global loop from the end of the
process to the initial comparison activ-
ity. Kahn [1979] includes the restruc-
turing step, whereas the others do not.
Finally, Batini and Lenzerini [1984]
and ElMasri et al. [1987] cover all the
steps; moreover, they provide an itera-
tive execution of comparison and con-
forming steps before any merging is

attempted. As such, they appear to
have the maximum interaction with the
user/designer.

2.5 Preintegration

As shown in Table 4, only three method-
ologies [ElMasri et al. 1987; Mannino and
Effelsberg 1984a; Navathe and Gadgil
19821 explicitly mention preintegration.
They basically propose a collection of cor-
respondences among schemas in the form
of constraints and assertions among com-
ponent schemas. These specifications are
used, for example, to relate names, to es-
tablish that an object in one schema is the
result of some operation on a set of objects
in another schema, etc.

For all methodologies, whether or not
preintegration is explicitly mentioned, the
sequencing and grouping of schemas for
integration has to be considered. In this
section we describe the different strategies
that address this problem.

The first step, choice of schemas, in-
volves processing component schemas in
some sequence. In general, the number of
schemas considered for integration of each
step can be n > 2. Figure 9 shows four
possible variations termed integration-
processing strategies. Each strategy is
shown in the form of a tree. The leaf nodes
of the tree correspond to the component

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 343

ladder

7-l

Integration Process

balanced

r

binary n-&y

one-shot I I iterative

Figure 9. Types of integration-processing strategies.

Table 5. Integration-Processing Strategies

Type of integration-
Reference processing strategy

Al-Fedaghi and Scheuermann [1981] One-shot n-ary
Batik and Lenzerini [1984] Binary
Casanova and Vidal[1983] Binary
Dayal and Hwang [19841 Binary
ElMasri et al. [19871 One-shot n-ary
Kahn [1979] Binary
Motro and Buneman [1981] Binary
Mannino and Effelsberg [1984a] Binary among families
Navathe and Gadgil [1982] Iterative n-ary
Teorey and Fry [1982] Binary
Yao et al. [1982] One-shot n-ary
Wiederhold and ElMasri [1979] Binary

Balance of strategy

-

Ladder
Balanced
No claim

-

No claim
No claim
No claim

-

Balanced
-

Ladder

schemas, and the nonleaf nodes correspond
to intermediate results of integration. The
root node is the final result. The primary
classification of strategies is binary versus
n-ary.

Binary strategies allow the integration of
two schemas at a time. They are called
ludder strategies when a new component
schema is integrated with an existing inter-
mediate result at each step. A binary strat-
egy is balanced when the schemas are di-
vided into pairs at the start and are inte-
grated in a symmetric fashion (see Fig-
ure 9, balanced).

N-ary strategies allow integration of n
schemas at a time (n > 2). An n-ary strategy
is one shot when the n schemas are inte-
grated in a single step; it is iterative other-
wise. The latter is the most general case.

Table 5 is a comparison of methodologies
along two dimensions: binary versus n-ary
and the nature of balancing.

We now comment on the specific features
pertaining to the above classes of strategies.

The advantage of binary strategies is in
terms of simplifying the activities of com-
parison and conforming at each integration
step. It is evident from the table that most
of the methodologies agree in adopting a
binary strategy because of the increasing
complexity of the integration step with re-
spect to the number of schemas to be inte-
grated. In general, the merging algorithm
for n schemas can be shown to be n2 in
complexity. Hence, keeping n down is de-
sirable from the standpoint of complexity.
The disadvantages of binary strategies are
an increased number of integration opera-

ACM Computing Surveys, Vol. 16, No. 4, December 1986

344 l C. Batini, M. Lenzerini, and S. B. Navathe

tions and the need for a final analysis to
add missing global properties.

The motivation behind the ladder pro-
cessing strategy comes from two reasons:

(1) Component schemas can be picked up
for integration in the decreasing order
of their relevance (or “weights,” as Ba-
tini and Lenzerini [1984] call them);

(2) There is an inherent importance asso-
ciated with an already existing partially
integrated schema.

An integration step could take advantage
of this situation by resolving conflicts in
favor of the partially integrated schema.
For instance, an enterprise view (see Sec-
tion 2.3) is frequently viable in an organi-
zation. Choosing it as the initial schema
makes the detection and resolution of dis-
similarities more efficient.

A binary balanced strategy has been pro-
posed only by Teorey and Fry [19821. They
justify it on the basis of minimizing the
number of comparisons among concepts in
the schemas.

The work of ElMasri and Navathe
[ElMasri 1980; Navathe et al. 19841 are
good examples of one-shot n-ary strategies.
They consider that during Step 2, an anal-
ysis of the n schemas is performed together.
After collecting, analyzing, and validating
all the interview assertions, they perform
the integration in a single step. The obvious
advantages of n-ary integration are:

(1) A considerable amount of semantic
analysis can be performed before merg-
ing, avoiding the necessity of a further
analysis and transformation of the
integrated schema;

(2) The number of steps for integration is
minimized.

The recommended procedure given by Na-
vathe and Gadgil [1982] is an iterative n-
ary strategy where “equivalence groups” of
user views are initially formed, the views
within the groups are merged first, creating
intermediate integrated schemas that are
again analyzed and grouped iteratively.

Not all the analyzed methodologies state
what strategy they adopt. Hardly any (ex-
cept Teorey and Fry [1982]) make any
statement about balancing.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

2.6 Comparison of Schemas

The fundamental activity in this step con-
sists of checking all conflicts in the repre-
sentation of the same objects in different
schemas. Methodologies broadly distin-
guish two types of conflicts (see Table 6):
naming conflicts and structural conflicts.
We now examine each in detail.

2.6.1 Naming Conflicts

Schemas in data models incorporate names
for the various objects represented. People
from different application areas of the same
organization refer to the same data using
their own terminology and names. This
results in a proliferation of names as well
as a possible inconsistency among names
in the component schemas. The problem-
atic relationships among names are of two
types:

(1)

(2)

Homonyms: When the same name is
used for two different concepts, giving
rise to inconsistency unless detected.
Consider the two schemas shown in
Figure 10. Both schemas include an
entity named EQUIPMENT. However,
the EQUIPMENT in Figure 10a refers
to Computers/Copiers/Mimeographic
machines, whereas in Figure lob it re-
fers to pieces of furniture as well as air
conditioners. It is obvious that merging
the two entities in the integrated
schema would result in producing a sin-
gle entity for two conceptually distinct
objects.
Synonyms: When the same concept is
described by two or more names. Un-
less different names improve the un-
derstanding of different users, they are
not justified.

An example appears in Figure 11,
where CLIENT and CUSTOMER are
synonyms; the entities with these two
names in the two schemas refer to the
same real-world concept. In this case,
keeping two distinct entities in the in-
tegrated schema would result in mod-
eling a single object by means of two
different entities.

The motivation behind establishing
naming correspondences and discovering

Comparison of Methodologies for Database Schema Integration l

Table 6. Naming and Structural Conflicts

Reference Naming conflicts Structural conflicts

345

Al-Fedaghi and Scheuermann -
[1981]

Batini and Lenzerini [1984] Homonyms
Synonyms

Casanova and Vidal [19831

Dayal and Hwang [19841 Homonyms
Synonyms

-

ElMasri et al. [19871

Kahn [19791

Motro and Buneman [1981]

Mannino and Effelsberg [1984a]

Navathe and Gadgil [1982]

Teorey and Fry [19821

Yao et al. [1982]

Wiederhold and ElMasri [1979]

Homonyms
Synonyms
Attribute equivalence assertions
Entity class equivalence

Homonyms
Synonyms

-

Use of qualified names
Attribute equivalence specification

Homonyms
Synonyms

-

Type inconsistencies
Integrity constraints conflicts

-

Schema level conflicts:
Scale differences
Structural differences
Differences in abstraction

Data level inconsistencies:
Various levels of obsolescence

and reliability

Open ended treatment of conflicts,
specifically:

Differences in abstraction levels
Differences in roles, degree, and

cardinality constraints of
relationships

Cardinality ratio conflicts

Differences in abstractions

Dependency conflicts
Redundancy conflicts
Modeling conflicts

-

-

Cardinality ratio conflicts

Building I
piiz.q

(4
Figure 10. Example of homonyms.

homonyms and synonyms is to be able to
determine the four kinds of semantic rela-
tionships among component schemas that
we introduced in Section 1.2. Note that
whereas homonyms can be detected by

(4 (b)
Figure 11. Example of synonyms.

comparing concepts with the same name in
different schemas, synonyms can only be
detected after an external specification.

Data dictionaries have been advocated as
a useful adjunct tool to schema integration

ACM Computing Surveys, Vol. 18, No. 4, December 1986

346 . C. Batini, M. Lenzerini, and 5’.

methodologies for a better management of
names [Navathe and Kerschberg 19861.

Methodologies [Al-Fedaghi and Scheuer-
mann 1981; Casanova and Vidal1983; Mo-
tro and Buneman 1981; Teorey and Fry
1982; Wiederhold and ElMasri 1979; Yao
et al. 19821 make no mention of naming
correspondences, probably as a result of an
implicit assumption that such correspon-
dences are preestablished and thus no
naming conflicts can arise (see also the
discussion of the relational model in Sec-
tion 1.4). In ElMasri et al. [1987] a full
naming convention

schemaname.objectname

for objects and

schemaname.objectname.attributename

for attributes is adopted to assure unique-
ness of names. As a consequence, hom-
onyms cannot arise. The synonym problem
still remains and must be dealt with via the
establishment of attribute classes. There is
also a cross-reference lexicon of names
maintained to keep information on syn-
onyms. In Batini and Lenzerini [19841 and
ElMasri et al. [19871 the integration system
automatically assigns a “degree of similar-
ity” to pairs of objects, based on several
matching criteria. Users are presented with
the similarity information to help them
detect synonyms.

A type of homonyms arises when for the
same concept there is a match on names
but no match on the corresponding sets of
instances. They can occur at various levels
of abstraction. For example, at the attribute
level, size refers to dress size (a single in-
teger code) in one schema, whereas it refers
to trouser size (a pair of integers) in another
schema. At the entity level, STUDENT
refers to all students in the database kept
in the registrar’s office, whereas it refers
to married students only in the married-
student-housing database.

2.6.2 Structural Conflicts

We use the term structural conflicts to in-
clude conflicts that arise as a result of a
different choice of modeling constructs or
integrity constraints. They can be traced

B. Navathe

back to the three reasons for schema diver-
sity described in Section 1.2. Table 6 lists
the different kinds of structural conflicts
that are taken into account in various
methodologies. Here we present a classifi-
cation of structural conflicts that is inde-
pendent from the various terminologies and
from the specific characteristics of the dif-
ferent data models adopted in the method-
ologies. Such a classification distinguishes
the following kinds of conflicts:

(1) Type Conflicts. These arise when the
same concept is represented by differ-
ent modeling constructs in different
schemas. This is the case when, for
example, a class of objects is repre-
sented as an entity in one schema and
as an attribute in another schema.

(2) Dependency Conflicts. These arise
when a group of concepts are related
among themselves with different de-
pendencies in different schemas. For
example, the relationship Marriage be-
tween Man and Woman is 1: 1 in one
schema, but m : n in another accounting
for a marriage history.

(3) Key Conflicts. Different keys are as-
signed to the same concept in different
schemas. For example, SS# and Emp-
id may be the keys of Employee in two
component schemas.

(4) Behavioral Conflicts. These arise when
different insertion/deletion policies are
associated with the same class of ob-
jects in distinct schemas. For example,
in one schema a department may be
allowed to exist without employees,
whereas in another, deleting the last
employee associated with,a department
leads to the deletion of the department
itself. Note that these conflicts may
arise only when the data model allows
for the representation of behavioral
properties of objects.

Another activity typically performed
during the schema comparison step is the
discovery of interschema properties. Meth-
odologies usually consider this discovery to
be a by-product of conflict detection. If any
interschema properties are discovered dur-
ing this step, they are saved and processed

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l

Table 7. Schema Transformations Performed by Methodologies

Reference Conform Merge and restructure

347

Al-Fedaghi and Scheuermann [1981] -

Batini and Lenzerini [1984] Type transformations
Restructuring
Renaming

Casanova and Vidal [19831

Dayal and Hwang [19841

ElMasri et al. [1987]

Kahn [19791

Mannino and Effelsberg, [1984a]

Motro and Buneman [1981]

Navathe and Gadgil [1982]

Teorey and Fry [1982]

Yao et al. [19821

Wiederhold and ElMasri [19791

Modify assertions
Renaming

Algebraic operations

-

-

-

Removal of redundant
dependencies

Subsetting
Aggregation
Restructuring

Optimization

Include
Integration by generalization
Define supertype
Define subtype
Scale unifying
Renaming

Remove redundant relationships

Redundancy elimination

Create generalization hierarchies
Create subtype

Meet
Fold
Aggregate
Join
Add
Delete

Attribute enhancement
Attribute creation
Restriction

Aggregation
Generalization

Removal of functions

Subsetting

during schema merging [ElMasri et al.
19871 or schema restructuring [Batini and
Lenzerini 19841.

In general, both the discovery of conflicts
and the interschema properties are aided
by a strong interaction between the de-
signer and the user. This is the position
advocated by [Batini and Lenzerini [1984],
ElMasri et al. [1987], Kahn [1979], Man-
nino and Effelsberg [1984a], and Navathe
and Gadgil [19821.

2.7 Conforming of Schemas

The goal of this activity is to conform or
align schemas to make them compatible for
integration. Achieving this goal amounts to
resolving the conflicts, which in turn re-

quires that schema transformations be per-
formed. In order to resolve a conflict, the
designer must understand the semantic re-
lationships among the concepts involved in
the conflict. Sometimes conflicts cannot be
resolved because they arose as a result of
some basic inconsistency. In this case, the
conflicts are reported to the users, who
must guide the designer in their resolution.

The concept of schema transformation is
central to conflict resolution and therefore
to the conforming activity. Since method-
ologies also perform schema transforma-
tions during merging and restructuring, in
Table 7 we introduce a comprehensive tax-
onomy of all types of transformations.

From this table it is clear that a limited
number of transformations are proposed

ACM Computing Surveys, Vol. 18, No. 4, December 1986

348 l C. Batini, M. Lenzerini, and S. B. Navathe

(c)

Figure 12. Transformation of an attribute into an entity.

for conflict resolution. Simple renaming
operations are used for solving naming con-
flicts by most methodologies. With regard
to other types of conflicts, the methodolo-
gies do not spell out formally how the pro-
cess of resolution is carried out; however,
an indication is given in several of them as
to how one should proceed. For example,
when dealing with equivalence, Batini and
Lenzerini [1984] suggest that atomic con-
cepts be transformed (i.e., transform enti-
ties/attributes/relationships among one
another) to reach a common canonical rep-
resentation of the schemas.

We show in Figure 12 three examples of
transforming an attribute into an entity, as
suggested by Batini and Lenzerini [1984].
The dashed lines in these figures specify
identifiers. In Figure 12a attribute A is not
an identifier. It is shown to be transformed
into an entity. In Figure 12b, attribute A,
which is an identifier, becomes an entity in
the new schema; entity A now provides

identification to entity E (since 1: n means
that every instance of A participates only
once in the relationship with E). In Figure
12c attribute A is only a part of an identifier
and so in the new structure, entity A be-
comes a part of a compound identifier for
entity E.

It is interesting to note that among the
methodologies surveyed, none provide an
analysis or proof of the completeness of the
schema transformation operations from the
standpoint of being able to resolve any type
of conflict that can arise.

All the methodologies take the goal of
the conforming activity to be the construc-
tion of a single “consensus schema” by pos-
sibly changing some user views. This is
consistent with the ANSI/SPARC [Klug
and Tsichritzis 19771 three-schema archi-
tecture in which the conceptual schema is
a unified representation of the whole appli-
cation, whereas individual perspectives are
captured by external schemas.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 349

2.8 Merging and Restructuring

The activities usually performed by meth-
odologies during this phase require differ-
ent kinds of operations to be performed on
either the component schemas or the tem-
porary integrated schema. In order to es-
tablish a common framework for this
phase, we assume that all methodologies
first merge the component schemas by
means of a simple superimposition of com-
mon concepts, and then perform restruc-
turing operations on the integrated schema
obtained by such a merging. Table 8 shows
the transformations proposed in the meth-
odologies for this step. Each transforma-
tion is performed in order to improve the
schema with respect to one of the three
qualities described in Section 1.3, namely,
completeness, minimality, and understand-
ability. We now analyze each quality sepa-
rately.

2.8.1 Completeness

To achieve completeness, the designer has
to conclude the analysis and addition of
interschema properties that is initiated in
previous design steps. In Figure 8 we
showed examples of interschema proper-
ties. In Table 8 we present a comprehensive
list of interschema properties mentioned in
the methodologies. Note that “subsetting”
is the interschema property used by most
methodologies. In fact, it is considered to
be the basis for accommodating multiple
user perspectives on comparable classes of
objects.

Batini and Lenzerini [1984], Dayal and
Hwang [1984], Mannino and Effelsberg
[1984a], Motro and Buneman [1981], Teo-
rey and Fry [19821, and Wiederhold and
ElMasri [19791 propose suitable transfor-
mations for introducing subset-generaliza-
tion relationships in the integrated schema
(subsetting, integration by generalization,
define subtype, etc. are the names of such
transformations). In Motro and Buneman
[1981], “meet” is the transformation that
produces a common generalization of two
classes. Such a transformation is based on
the existence of a common key for the two
classes. On the other hand, “join” produces
a common subtype for the two classes. It is
used when a class is needed in the inte-

grated schema for the representation of the
set of instances that are common to two
different classes.

Other types of interschema properties
are concerned with aggregation relation-
ships among classes. Batini and Lenzerini
[19841, Motro and Buneman [19811 and
Teorey and Fry [1982], propose specific
transformations for introducing new rela-
tionships in the integrated schema so that
aggregation among classes coming from
different component schemas can be
represented.

Finally, there is a set of transformations
that introduces new concepts in order to
convey all the information represented in
the component schemas. In Navathe and
Gadgil [1982] “attribute creation” is the
transformation that adds a new attribute
to an entity in the integrated schema (a
similar transformation is called “add” by
Motro and Buneman [1981]). For example,
the attribute Category for the class Student
in the integrated schema may be used to
distinguish among Graduate Students (the
students represented in View 1) and
Undergraduate Students (the students
represented in View 2).

Note that the variety of interschema
properties is strongly related to the reper-
tory of schema constructs at the disposal of
the data model. Among the semantic
models, Wiederhold and ElMasri [1979]
provide the richest set of interschema prop-
erties in the form of various subsets among
different schema constructs. For every
meaningful pair of constructs in their
model, they show an exhaustive list of cases
and show how to integrate each by adding
interschema properties. Among the rela-
tional model based approaches, the richest
set of interschema properties-inclusion,
exclusion, and union functional dependen-
cies-are provided by Casanova and Vidal
[1983] and more recently in the extension
of this methodology by Biskup and Convent
[1986].

2.8.2 Minimality

In most of the methodologies, the objective
of minimality is to discover and eliminate
redundancies. A different approach is fol-
lowed by Batini and Lenzerini [1984],

ACM Computing Surveys, Vol. 18, No. 4, December 1986

350 l C. Batini, M. Lenzerini, and S. B. Navathe

Table 8. Interschema Properties

Reference Interschema properties

Al-Fedaghi and Scheuermann -

[1981]

Batini and Lenzerini [19841 Subsetting
Generalization
Relationship

Casanova and Vidal [19831 Inclusion dependencies
Exclusion dependencies
Union functional dependencies

Dayal and Hwang [19841 Subsetting
Subfunction

ElMasri et al. [1987]

Kahn [1979]

Motro and Buneman [19811

Mannino and Effelsberg [1984a]

Navathe and Gadgil [1982]

Teorey and Fry [1982]

Yao et al. [1982]

Wiederhold and ElMasri 119791

Assertions related to extensions
Clustering of attributes into classes

-

Subsetting

Generalization
Overlap and nonoverlap
Attribute scope and meaning

Categorization
Subsetting
Partitioning

Generalization
Aggregation

-

Subsetting

where it is stated that discovering the re-
dundancies is a task of conceptual design,
whereas their elimination has to be per-
formed during the implementation design
phase.

We motivate the minimality notion in
Figure 13. There, three subset relationships
are present, indicated by double-lined ar-
rows; each arrow points from a subentity
to a superentity.

The subset relationship between Engi-
neering-manager and Employee is redun-
dant since it can be derived from the other
two. Keeping a minimal number of con-
cepts in the global schema implies dropping
the redundant relationship from it. Other
typical situations sought are cycles of rela-
tionships, derived attributes [Batini and
Lenzerini 1984; ElMasri et al. 1987; Na-
vathe and Gadgil 19821, and composition
of functions [Yao et al. 19821. In the rela-
tional-model-based approaches, redundan-
cies are related to derived dependencies of
various types [Al-Fedaghi and Scheuer-

I Employee
I

Engineer

Engineering-
Manager

Figure 13. A schema with redundancy.

mann 1981; Casanova and Vidal19831. For
these approaches, minimality is the driving
force behind integration.

As seen from Table 7, most of the schema
transformations during restructuring are
geared for a removal of redundancy.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 351

Journal

(a)

Researcher

(b)

Figure 14. Improving understandability. (a) Schema A. (b) Schema B.

2.8.3 Understandability

Attention to the issue of understandability
is diffused in all methodologies. The prob-
lem is addressed explicitly by Batini and
Lenzerini [19841. We reproduce an example
in Figure 14, where they argue on qualita-
tive terms that, while the two schemas are
equivalent, Schema B is more understand-
able than Schema A. Schema B was
obtained from Schema A by adding a
generalization hierarchy relating Publica-
tion to Book and Paper. In general, for
improving understandability, additional
schema transformations are needed.

At present, to our knowledge, no quan-
titative and objective measures of concep-
tual understandability exist that can be
applied here. If a graphical representation
of the conceptual model is supported, the
shape of the diagram, the total length of
connections, the number of crossings and
bends, and so forth may be used as param-
eters to define graphic understandability
[Batini et al. 19861.

A specific activity performed during the
restructuring step by database integration
methodologies is query modification. We
already have indicated in Figure 2 that the

mapping of queries is an output of the
database integration process. Dayal and
Hwang [19841 develop query modification
algorithms for modifying global queries
into essential local subqueries with dupli-
cate elimination.

3. CONCLUSIONS AND FUTURE WORK

3.1 General Remarks

A few general remarks about the method-
ologies are in order. The methodologies sur-
veyed can be reviewed on the basis of some
general criteria as follows.

3.1.1 Use

Most methodologies were developed as
parts of research projects with low empha-
sis on developing full-scale automated sys-
tems. It is obvious that design tools can be
built using the concepts from individual
methodologies. If the size of the problem
can be contained within manual means,
however, methodologies also can be used
manually.

Partial implementation of some of the
methodologies (e.g., Batini and Lenzerini

ACM Computing Surveys, Vol. 18, No. 4, December 1986

352 l C. Batini, M. knzerini, and S. B. Navathe

[19841, Teorey and Fry [19821, and Yao et
al. [1982]) have been reported. Nothing has
been reported, however, on the actual use
of these methodologies to perform view
integration.

The entity-relationship model, which
provides a basis for the [Batini and Len-
zerini 1984; ElMasri et al. 1987; Kahn 19791
methodologies, was reported to be the most
widely used model in practice. Chilson and
Kudlac [1983] report that the Navathe and
Schkolnick model [Navathe and Schkol-
nick 19781, used in the Navathe and Gadgil
[1982] methodology, was also known to the
users surveyed.

Out of the methodologies for database
integration, that of Dayal and Hwang
[1984] has been used with modifications
within the framework of the Multibase
project at Computer Corporation of Amer-
ica. The Multibase system [Landers and
Rosenberg 19821 has been designed and
implemented to allow users access to
heterogeneous databases in a single sys-
tem. Several researchers [Hubbard 1980;
Chiang et al. 1983; Data Designer 1981;
Ferrara 19851 describe tools that allow an
integration capability to a limited extent.

3.1.2 Completeness and Detailed Specification

Most of the surveyed methodologies do not
provide an algorithmic specification of the
integration activities, and they rarely show
whether the set of conflicts or the set of
transformations considered is complete in
some sense. What they provide are general
guidelines and concepts on different steps.
Methodologies that address well-defined
problems of logical design based on purely
mechanized procedures such as Al-Fedaghi
and Scheuerman [19811, Casanova and Vi-
da1 [1983], and Yao et al. [1982] are able to
construct precise algorithms. But by their
very nature, they cover more of the imple-
mentation design compared to conceptual
design (according to Table 2).

A side effect of the above problem is that
there is no easy way to guarantee conver-
gence in these methodologies, especially for
those involving looping structures (see Ta-
ble 5). The termination of the loops is es-
sentially left to the designer’s discretion.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

3.2 Missing Aspects

Several aspects are currently missing in
methodologies for view integration.

(4 Processing Specifications in View Inte-
gration. This is the specification of the
queries and transactions on component
schemas. An initial position reported
on view integration in the database de-
sign literature [Yao et al. 19821 was
that a view integration methodology
should have two goals with respect to
processing specification:

(1)

(2)

Feasibility. The integrated schema
supports any processes on the com-
ponent schema.
Performance. The integrated
schema is “optimal” with respect to
a given set of component schema
queries and transactions. Specifi-
cations of queries and transactions
are not explicitly used in any meth-
odologies except that of Yao et al.
[1982], where an “optimal” struc-
ture is selected on the basis of a
given set of transactions. We be-
lieve that performance analysis
based on processing specifications
is not meaningful at the conceptual
design level since no reasonable
performance predictions can be
made. Such performance analysis
is meaningful only when logical
and physical schemas are fully de-
fined in a DBMS. On the other
hand, we stress that the real per-
formance measures of conceptual
schemas are the goals that we
stated in Section 1.3, namely, com-
pleteness and correctness, mini-
mality, and understandability.

(b) Behavioral Specification. This is the
specification of the dynamic properties
of objects in the schema (e.g., the value
of the salary of an employee can never
decrease).

None of the methodologies surveyed
model behavioral properties fully. The
models adopted by ElMasri et al. [19871
and Navathe and Gadgil [1982] allow
them to formulate limited types of
behavioral properties in the form
of insertion/deletion constraints.

Schema Mappings. To support the lo-
cal views (i.e., external schemas accord-
ing to the ANSI/SPARC [Klug and
Tsichritzis 19771 terminology) of the
users of component schemas on the
basis of the integrated schema is a
problem that is well addressed by the
database integration methodologies
[Dayal and Hwang 1984; Motro and
Buneman 19811. However, it is only
hinted at by ElMasri et al. [19871, Man-
nino and Effelsberg [1984a], and Na-
vathe and Gadgil [1982] in the form of
recognizing “mapping rules” as an out-
put of integration. Only Wiederhold
and ElMasri [1979] have given a com-
plete set of rules to support component
schemas. Actually, various levels of
mappings need to be addressed in going
from (or building) external schemas of
the integrated schema to (from) one
or more external schema(s) of the
component schemas.

3.3 Future Research Directions

Comparison of Methodologies for Database Schema Integration 353

From Sections 3.1 and 3.2, it is obvious that
more work is required on incorporating
processing specifications, behavior model-
ing, and schema mapping in the schema
integration methodologies. More research
is also required to settle open issues such
as the choice of data models and levels of
integrity constraint specification. Along
with these, the following directions for fu-
ture research are important.

3.3.1 Extension of Integration Methodologies

View integration methodologies need to be
extended to be used in distributed database
design. This would imply enriching the in-
puts by adding more information on the
distribution preference of users as well as
distributed processing requirements. The
principle behind the integration process
would remain practically unaltered, but a
new set of problems would have to be con-
sidered in terms of materializing the so-
called local conceptual schemas.

Another possible extension could be to
address the design of databases with special
properties, such as scientific and statistical
databases and databases for computer-

aided design (CAD). In the first case, the
integration methodology has to deal with
data at different levels of summarization.
This leads to a greater complexity of the
semantic analysis, an accompanying in-
crease in conflicts, and a corresponding
increase in the complexity of conflict-
resolution strategies. In the case of CAD
databases, problems arise as a result of
multiple representations of the same data,
as in very large scale integration design,
top-down organization of design data, and
the far-reaching update propagation.

The statistical and CAD databases are
often subjected to database integration for
allowing sharing of information. New
methodologies of database integration for
such cases need to be designed; the existing
works seem limited in this area.

3.3.2 Knowledge Base Integration

Integration of knowledge bases has received
attention in the literature only recently
[Eick and Lockemann 19851. Knowledge
bases treat classes and their instances to-
gether: This implies that data and metadata
coexist in the representation. Moreover,
they provide richer linguistic mechanisms:
Knowledge is often expressed in the form
of logical assertions, productions, and in-
ference rules. Rule integration is a problem
in itself. These considerations bring a new
set of issues that are not covered presently
in the surveyed methodologies.

3.3.3 Process Integration

This refers to the activity of integrating
and transforming a set of processes appli-
cable to component schemas into a set of
processes applicable to the integrated
schema. It seems that many notions used
for data schema integration can be trans-
ferred to process integration: For example,
the goals (Section 1.3) are equally applica-
ble; so are the concepts of equivalence,
semantic analysis, conflict detection and
resolution, and transformations. Tucher-
man et al. [1985] consider database design
to be an integration of process modules.
Some preliminary work is under way on the
related problem of program transformation
[Demo 1983; Demo and Kundu 19851.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

354 l C. Batini, M. Lmzerini, and S.

3.3.4 Expert Systems for Schema Integration

As pointed out in the Introduction and
Section 1, schema integration is a difficult
and complex task. An expert system ap-
proach to database design in general and to
schema integration in particular on the
basis of the rules and heuristics of design
is worth investigating. Projects have al-
ready been under way in this area (e.g.,
see Bouzeghoub et al. [1986] and Shin
and Irani [1985]). Model dependent rules
should be used in the comparison and con-
forming activities with the goal of improv-
ing the equivalence and/or compatibility of
component schemas. Alternative schema
transformations can be suggested or eval-
uated by the system when a conflict must
be solved. Selection among alternative
schemas for integration can be guided by
system-designer interaction.

APPENDIX 1. A SUMMARY DESCRIPTION
OF METHODOLOGIES

In the following, the methodologies sur-
veyed in this paper are briefly described.
The same categories of description are used
for each methodology. These descriptions
should only be treated as a quick reference
guide and not as a substitute for the original
descriptions of the methodologies. They are
included here to highlight the fact that,
although the general intent of all method-
ologies is very similar, the actual mechanics
vary greatly. The terminology of the au-
thors is used without modification. Words
in parentheses refer to equivalent terms
used in this paper.

Of the above methodologies surveyed,
those of Dayal and Hwang [19841, Mannino
and Effelsberg [1984a], and Motro and
Buneman [19811 apply to database integra-
tion; the method of [ElMasri et al. [1987]
is used for database integration as well as
view integration, whereas the remaining
methodologies apply to view integration
only.

Al-Fedaghi and Scheuermann [1981]

Type: View integration methodology.

Model: Relational model.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

B. Navathe

Input: n external views (component sche-
mas), given in terms of relations and
functional dependencies.

Output: n external schemas, one concep-
tual schema (integrated schema), a
mapping mechanism between external
schemas and conceptual schema.

Processing specifications considered: No.

Integration strategy:

(1)

(2)

(3)

(4)

Find sets of functional dependencies
common to some set of external views.
Eliminate in previous sets (local) re-
dundant dependencies.
Remove redundant dependencies due
to transitivity in the global set of de-
pendencies, thus producing a nonre-
dundant cover of the conceptual
schema.
Identify dependencies that were elimi-
nated in previous steps, but must now
be readded to external views in order
to minimize their effect on the mapping
process; construct external views.

Special features:

(1) The main goal of the methodology is to
obtain mappings that
(a) preserve compatibility between re-

lations and dependencies in exter-
nal schemas and in the integrated
schema;

(b) reduce interferences between in-
sert/delete operations in different
external schemas.

(2) The methodology assures that all rela-
tions are projections of a universal
relation.

Batini and Lenzerini [1984]

Type: View integration methodology.

Model: Entity-relationship model (see Ap-
pendix 2).

Input:
user schemata (component schemas),
enterprise schema,
weights for schemata.

Output: Global schema (integrated
schema).

Comparison of Methodologies for Database Schema Integration l 355

Processing specifications considered: No.

Integration strategy:

(1)

(2)

Choose the enterprise schema as the
base schema.
While new schemas are to be inte-
grated, do
(2.1)
(2.2)

(2.3)

(2.4)
(2.5)

Choose a new schema.
Find conflicts between the two
schemas.
Amend the two schemas in order
to conform them.
Merge the schemas.
Analyze the draft integrated
schema in order to discover re-
dundancies and simplify the rep-
resentation.

Special features:

(1)

(2)

(3)

(4)

Several indications are suggested to
guide the designer in the investigation
of conflicts (e.g., type inconsistencies,
concept likeness/unlikeness).
For every indication, several scenarios
are proposed (i.e., typical solutions of
the conflict).
Several types of equivalence transfor-
mations are supplied to confirm the
representation of concepts.
A specific activity is suggested to im-
prove understandability of the global
schema.

Related references: Batini and Lenzerini
[1983] and Batini et al. [1983].

Casanova and Vidal [19831

Type: View integration methodology.

Model: Relational model. Besides func-
tional dependencies, other types of
dependencies are considered: inclusion,
exclusion, and union functional dependen-
cies.

Input: Two user views (component
schema).

Output: Conceptual schema (integrated
schema).

Processing specifications considered: No.

Integration strategy:

(1) Combine user views, merging relation
schemas of the two different views and
defining new inclusion, exclusion, and
union functional dependencies.

(2) Optimize the temporary conceptual
schema, trying to minimize redundancy
and the size of the schema.

Special features:

(1)

(2)

(3)

The relational model is enriched with
interrelational dependencies useful for
expressing how data in distinct views
are interrelated.
It is assumed that a preliminary inte-
gration process has been carried out to
detect which structures of different
views represent the same information
and interrelational dependencies.
The optimization procedure (Step 2) is
shown to be correct for a special class
of schemas, called restricted schemas;
a restricted schema is essentially a rep-
resentation of a collection of entities-
relationships, identified by their keys.

Dayal and Hwang [19841

Type: Database integration methodology.

Model: Functional model. The model uses
two constructs: entities and functions
(i.e., properties of entities, relationships
among entities). Functions may be single
valued or multivalued. Entities may be
user defined (e.g., Person) or else con-
stants (e.g., Boolean). A generalization
abstraction is provided among entities
and functions.

Input:
local schemas of existing databases,
queries.

Output:
global interface to databases,
modified queries.

Processing specifications considered:
Queries.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

356 l C. Batini, M. Lmzerini, and 5’

Integration strategy:

B. Navathe

Integration strategy:

(1)
(2)

2
(5)

Transform existing schemas into ECR
if needed.
Preintegration, which consists of an in-
terleaved application of schema analy-
sis and modification with assertion
specification.
Integration of object classes.
Integration of relationship classes.
Generation of mappings.

(1)

(2)

(3)

Solve conflicts among concepts in local
schemas (naming, scale, structural, ab-
straction conflicts).
Solve conflicts among data in existing
databases (inconsistencies in identi-
fiers, different degree of obsolescence,
different degree of reliability).
Modify queries and make them consist-
ent with the global schema.

Special features:

(1) Generalization abstraction is uniformly
used as a means to combine entities
and resolve different types of conflicts.

(2) A detailed algorithm is given for query
modification and is formally proved
correct and nonredundant by Hwang
[1982].

ElMasri et al. [19871

Type: Both view integration in logical da-
tabase design and database integration.

Model: Entity-Category-Relationship
(ECR) model [ElMasri et al. 19851, which
recognizes, besides entities and relation-
ships, the concept of categories. Cate-
gories are used for two purposes: to show
a generalization of a superentity into sub-
entities and to simply allow for the defi-
nition of a subset of an entity based on
some predicate.

Input:
n schemas, which represent either user

views or existing databases repre-
sented in the ECR model;
attribute equivalence assertions;
object class extension assertions.

output:
integrated schema,

mappings between integrated and con-
ceptual schemas.

Processing specifications considered: Not
to determine the result of integration.
However, the problem of dealing with
queries on the integrated schema is ad-
dressed in terms of mappings.

The above procedure is followed as an
n-ary integration process.

Special features:

(1)

(2)

(3)

A very detailed treatment of attribute
and object extension assertions via con-
sistency checking and verification of
algorithms is included.
The methodology uses the notion of
extension of attribute types and object
classes as a basis for comparison.
The methodology applies equally to
view integration and database integra-
tion.

Related references: ElMasri and Navathe
[1984], Larson et al. [1986], Navathe
et al. [1984], Navathe et al. [1986],
Weeldreyer [19861.

Kahn [1979]

Type: View integration methodology.

Model: Entity-relationship model (see Ap-
pendix 2).

Input: Local information structures (com-
ponent schemas).

Output: Global information structure (in-
tegrated schema).

Processing specifications considered: No.

Integration strategy:

(1) (Entity step) Aggregate entities.
(1.1) Standardize names.
(1.2) Aggregate entities to form a non-

redundant collection.
(1.3) Check entities against processing

requirements.
(1.4) Eliminate nonessential attri-

butes.
(1.5) Simplify the representation.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

.*

Comparison of Methodologies for Database Schema Integration l 357

(2) (Relationship step) Aggregate relation-
ships.
(2.1) Standardize names.
(2.2) Analyze consistency of relation-

ship cardinalities versus entity
cardinalities.

(2.3) Aggregate relationships.
(2.4) Determine conditional and exist-

ence-dependent relationship.
(2.5) Eliminate all redundant relation-

ships.

Special features:

0)

(59

A rich set of heuristics is suggested to
guide the designer in discovering con-
flicts.
Several types of qualities are defined
for the integrated schema, and strate-

~otro and Buneman [1981]

gies are suggested to achieve these. Type: Database integration methodology.

(2) Companion global view definition lan-
guage that uses the same set of integra-
tion operators as the methodology.

(3) Semantic equivalence and range of
meaning of individual attributes,
groups of attributes, and functions of
attributes can be defined in attribute
assertions.

Steps 2, 3, and 4 may be performed in
sequence or iteratively with backtrack-
ing.

Related references: Mannino and Effels-
berg [1984b], Mannino and Karle [19861,
and Mannino et al. [1986].

Mannino and Effelsberg [1984a]

Type: Database integration.

Model: Generalized entity manipulator.

Input: Local schemas in a common data
model, interschema assertions about en-
tity types and attributes.

Output: Global view objects, global view
mapping, integration schema objects.

Processing specifications considered: No.

Integration strategy:

(1)

(2)

(3)

(4)

(5)

Transform each local schema into an
easy-to-integrate form.
Match the entity types and attributes
of the local schemas.
Define assertions about the entity
types that can be generalized and then
define assertions about equivalent at-
tributes.
Merge pairs of “generalizable” entity
families as indicated by the assertions
and designer preferences.
Define global attribute formats and
conversion rules for the global entity
types.
.*,. , Sneciar reatures:

Model: Functional model. Constructs of
the model are classes of objects, which
may be related by two types of func-
tions-att, by which one class becomes
an attribute of another class, and gen,
which establishes a generalization rela-
tionship.

Input:
Two logical (component) schemas with

the corresponding databases,
queries.

output:
superview (global schema), modified

Processing specifications considered:
Queries.

Integration strategy:

(1) Merge the two (independent) logical
schemas by combining initially primi-
tive classes.

(2) While new restructurings can be ap-
plied to the temporary integrated
schema, do

(2.1) Choose a restructuring primitive
and apply to the integrated
schema.

(1) The merging step uses entity families
Special features:

(collection of entity types related (1) The main feature of the methodology
by generalization) rather than simple is to provide a large and powerful set
entity types. of restructuring primitives while no

ACM Computing Surveys, Vol. 18, No. 4, December 1986

!m

358 l C. Batini, M. Lenzerini, and S. B. Navathe

heuristics are given to discipline their Special features:
use.

Related references: Motro [19811.
(1)

Navathe and Gadgil [19821

Type: View integration methodology.
(2)

Model: Navathe-Schkolnick model. The
main construct of the model is the object (3)

(type), representing either an entity or
an association, which can be recursively
defined in terms of entities or associa- (4)
tions. Other concepts are connectors,
which model insertion/deletion proper-
ties of associations and subsets between
objects. Associations are divided into
three types: subsetting, partitioning, and
categorizing associations.

Input:
enterprise view,
local views (component schemas),
integration strategy,
interview and intraview assertions,
processing requirements.

output:
global view,
mapping rules,
unresolved conflicts,
modified assertions.

Divide views into classes of

Integration strategy:

(1)

equivalent views,
identical views,
single views.

(2)

(3)

(4)

Integrate classes checking for conflicts
(among names, keys, etc.) and solving
them on the basis of assertions and
order of preference.
While new view assertion operations
are applicable, do
(3.1) Perform new integrations be-

tween intermediate and semiin-
tegrated views in a way similar to
Step 2.

Generate mapping rules determining
how each of the component views can
be obtained from the integrated view.

Equivalence and containment relations
among information contents of user
schemas are assumed as input to the
design.
A taxonomy is given for types of com-
parisons among objects, conflicts, and
view integration operations.
Conflicts are generally resolved by
adopting the most restrictive specifi-
cation.
Attention is given to the problem of
automating the view integration proc-
ess, distinguishing activities that can
be solved automatically and activities
that ask for interaction with the
designer/user.

Teorey and Fry 119821

Type: View integration methodology.

Model: Semantic hierarchical model. Con-
structs are classes of objects, aggregation
abstractions among objects by which an
object is seen as an abstraction of the
set of its properties, and generalization
abstractions.

Input:
information perspective (component

schemas),
application perspective,
event perspective,
corporate perspective,
policy guidance and rules.

output:
global information structure (integrated

schema),
conflicts.

Processing specifications considered: No.

Integration strategy:

(1) Order local views as to importance with
respect to the specific design objectives.

(2) Consolidate local views, two at a time
(the order is determined by Step 1).

(3) Solve conflicts that have arisen in
Step 2.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 359

Special features:

(1) Attention is given to the problem of
integration of processing specifica-
tions, but no specific strategies and
methods are proposed.

(2) Different types of integration process-
ing strategies (see Section 2.5) are com-
pared. The binary balanced strategy is
claimed to be the most effective.

Related references: ElMasri [19801 and
ElMasri and Wiederhold [19791.

Yao et al. [1982]

Type: View integration methodology.

Model: Functional model. Constructs of
the model are nodes, classified into
simple nodes representing atomic data
elements and tuple nodes, represent-
ing nonfunctional (i.e., many-to-many)
relationships among nodes, and func-
tions among nodes.

Wiederhold and ElMasri [19791

Type: View integration methodology.

Model: Structural model. Such a model is
constructed from relations that are used
to represent entity classes and several
types of relationships among entity
classes. Other types of relationships are
represented by connections between re-
lations.

Input: Two data models (component sche-
mas).

output:
Integrated database model (integrated

schema),
database submodels.

Input: Two schemas.

Output: The integrated schema.

Processing specifications considered: Yes,
in language TASL.

Integration strategy:

(1) Merge nodes with same values.
(2) Merge nodes that are subsets of other

nodes.
(3) Remove redundant functions and mod-

ify corresponding transaction speci-
fications.

Processing specifications considered: Only Special features:
primitive operations on concepts (inser-
tion, deletion). (1) The main aspect dealt with in the

Integration strategy:
methodology is to determine and
remove redundancv.

(1) Find all compatible pairs of relations.
(2) Paths to be removed are found by using

(2) For each pair of relations, integrate the
processing specification information.

connection between them.
(3) A transaction specification language

(3) Integrate compatible relations.
(TASL) accompanies the methodology.

Special features:

(1) Owing to the rich variety of modeling
constructs of the structural model, an
extensive set of conflicts is presented
and analyzed, and solutions are pro-
vided.

(2) Mapping rules are derived from the
integration process to express data
models consistently with the integrated
database model.

APPENDIX 2. THE ENTITY-RELATIONSHIP
MODEL

The original model, known as the entity-
relationship Model (E-R), was proposed by
Chen [1976]. Further extensions of the
model appear in DOS Santos et al. [1980]
and Scheuermann et al. [19801. The follow-
ing concepts are defined in the model.

An entity is a class of objects of the real
world having similar characteristics and

ACM Computing Surveys, Vol. 16, No. 4, December 1986

360 . C. Batini, M. Lenzerini, and S. B. Navathe

properties. A relationship is a class of ele-
mentary facts or associations among enti-
ties. An attribute is an elementary property
either of an entity or a relationship. An
entity El is a subset of an entity Ez if every
object belonging to E1 also belongs to Ez.
An entity E is a generalization of entities
Ez, E?, . . . , E, if

(1) every Ei is a subset of E, and
(2) every object belonging to E belongs ex-

actly to one of the Ei’s.

A diagrammatic representation is widely
used with the E-R model. In Table 9 we
show the correspondence between the con-
cepts of the model and the diagrammatic
symbols.

An example of a schema appears in Fig-
ure 15, which describes information of in-
terest in a data processing department of a
company.

The information is about employees
(which includes programmers, managers,
and senior programmers), projects, and lan-
guages. The entities and their correspond-
ing attributes are as follows:

Employee: Employee#, Last-name, Age
Project: Project#, Name
Language: Name, Version
Manager: Budget
Programmer: none
Senior-programmer: Years-of-experi-

ence

The relationships among the above en-
tities are:

“Works-on,” connecting Employee and
Projects.

“Uses,” connecting Programmer, Project
and Language.

The Works-on relationship has an attri-
bute %-of-time.

Senior-Programmer is a subset of Pro-
grammer, and Employee is a generalization
of Programmer and Manager. The resulting
hierarchy among Employee as a generic
entity and Programmer and Manager as its
specialized entities is denoted by the name
Rank. Note that, by virtue of the generali-
zation hierarchies, Manager and Program-

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Table 9. Concepts of the Entity-Relationship Model
and Corresponding Symbols

CONCEPT SYMBOL

Entity
L

Relationship

Attribute Q-

Subset

Generalization

mer inherit all properties (attributes and
relationship types) of Employee, which in-
clude attributes of Employee and relation-
ship “Works-on.” Owing to the subset re-
lationship, Senior-programmer inherits all
the properties of Programmer, which in-
clude relationship “Uses” and all attributes
from Employee.

Various types of constraints have been
specified to go with the E-R model. Here
we only refer to the cardinality constraints.
The cardinality constraint restricts the
number of relationships in which a specific
entity can participate. In the example, the
cardinality constraint governing the
“Works On” relationship is many to many
(m : n); that is, an employee may Work on
many projects, and a project may have
many employees who Work on it. Common
cardinality constraints are: one to one
(1: l), one to many (1: n), many to one
(n:l), and many to many (m:n).

Comparison of Methodologies for Database Schema Integration l 361

Employee *

Last name

% of time
Project *

Age Name

Budget

Name

Compiler Version

Figure 15. An entity-relationship schema.

ACKNOWLEDGMENTS

Navathe’s research was partly supported by National
Science Foundation grant No. INT-8400216. Batini’s
and Lenzerini’s research was partly supported by Pro-
getto Finalizzato Informatica and Progetto Finalizzato
Transporti, CNR, Italy.

We gratefully acknowledge the patience and coop-
eration of Sharon Grant and Claudio Dollari in pre-
paring this manuscript. The comments of anonymous
referees were very helpful in revising an earlier draft
of the paper.

REFERENCES

A. Complete Methodologies for Schema Integration

AL-FEDAGHI, S., AND SCHEUERMANN, P. 1981.
Mapping considerations in the design of schemas
for the relational model. IEEE Trans. Softw. Eng.
SE-7, 1 (Jan.).

BATINI, C., AND LENZERINI, M. 1984. A methodol-
ogy for data schema integration in the entity
relationship model. IEEE Trans. Softw. Eng.
SE-lo, 6 (Nov.), 650-663.

CASANOVA, M., AND VIDAL, M. 1983. Towards a
sound view integration methodology. In Proceed-
ings of the 2nd ACM SZGACTISZGMOD Confer-

Rep., Honeywell Corporate Research Center
(submitted for publication).

KAHN, B. 1979. A structured logical data base design
methodology. Ph.D. dissertation, Computer Sci-
ence Dept., Univ. of Michigan, Ann Arbor, Mich.

MANNINO, M. V., AND EFFELSBERG, W. 1984a. A
methodology for global schema design, Computer
and Information Sciences Dept., Univ. of Florida,
Tech. Rep. No. TR-84-1, Sept.

MOTRO, A., AND BUNEMAN, P. 1981. Constructing
superviews. In Proceedings of the International
Conference on Management of Data (Ann Arbor,
Mich., Apr. 29-May 1). ACM, New York.

NAVATHE, S. B., AND GADGIL, S. G. 1982. A meth-
odology for view integration in logical data base
design. In Proceedings of the 8th International
Conference on Very Large Data Bases (Mexico
City). VLDB Endowment, Saratoga, Calif.

TEOREY, T., AND FRY, J. 1982. Design of Database
Structures. Prentice-Hall, Englewood Cliffs, N.J.

WIEDERHOLD, G., AND ELMASRI, R. 1979. A struc-
tural model for database systems. Rep. STAN-
CS-79-722, Computer Science Dept., Stanford
Univ., Stanford, Calif.

YAO, S. B., WADDLE, V., AND HOUSEL, B. 1982.
View modeling and integration using the func-
tional data model. IEEE Trans. Softw. Eng. SE-
8,6, 544-553.

ence dn Principles of Database’Systems (Atlanta,
Ga., Mar. 21-23). ACM, New York, pp. 36-47.

B. Related Work

DAYAL, U., AND HWANG, H. 1984. View definition
and generalization for database integration in
multibase: A system for heterogeneous distrib-
uted databases. IEEE Trans. Softw. Eng. SE-lo,
6 (Nov.), 628-644.

ELMASRI, R., LARSON, J., AND NAVATHE, S. B.
1987. Integration algorithms for federated
databases and logical database design. Tech.

ALBANO, A., CARDELLI, L., AND ORSINI, R.
1985. Galileo: A strongly typed, interactive con-
ceptual language. ACM Trans. Database Syst. 10,
2 (June), 230-260.

ATZENI, P., AUSIELLO, G., BATINI, C., AND MOSCAR-
INI, M. 1982. Inclusion and equivalence between
relational database schemata. Theor. Comput.
Sci. 19, 267-285.

ACM Computing Surveys, Vol. 18, No. 4, December 1986

362 . C. Batini, M. Lenzerini, and S. B. Navathe

BATINI, C., AND LENZERINI, M. 1983. A conceptual
foundation to view integration. In Proceedings of
the IFIP TC.2 Workina Conference on &stem
Description MethodologGs (Kecskmet, Hungary).
Elsevier, Amsterdam, pp. 109-139.

BATINI, C., LENZERINI, M., AND MOSCARINI, M.
1983. Views integration. In Methodology and
Tools for Data Base Design, S. Ceri, Ed. North-
Holland, Amsterdam.

BATINI, C., DEMO, B., AND DI LEVA, A. 1984. A
methodology for conceptual design of office data
bases. Znf. Syst. 9,3,251-263.

BATINI, C., NARDELLI, E., AND TAMASSIA, R. 1986.
A layout algorithm for data flow diagrams. IEEE
Trans. Softw. Eng. SE-12,4 (Apr.), 538-546.

BEERI, C., BERNSTEIN, P., AND GOODMAN, N.
1978. A sophisticate’s introduction to database
normalization theory. In Proceedings of the 4th
Intemutionul Conference on Very Lurge Data
Bases (West Berlin, Sept. 13-15). IEEE, New
York.

BERNSTEIN, P. A. 1976. Synthesizing third normal
form relations from functional dependencies.
ACM Trans. Database Syst. 1,4 (Dec.), 277-298.

BILLER, H. 1979. On the equivalence of data base
schemas: A semantic approach to data transla-
tion. Znf. Syst. 4, 1, 35-47.

BILLER, H., AND NEUHOLD, E. J. 1982. Concepts for
the conceptual schema. In Architecture and
Models in Data Base Management Systems,
G. M. Nijssen, Ed. North Holland, Amsterdam,
pp. l-30.

BISKUP, J., AND CONVENT, B. 1986. A formal view
integration method. In Proceedings of the Znter-
notional Conference on the Management of Data
(Washington, D.C., May 28-30). ACM, New
York.

BISKUP, J., DAYAL, U., AND BERNSTEIN, P. A.
1979. Independent database schemas. In Pro-
ceedings of the Znternutionul Conference on the
Management of Data (Boston, Mass., May 30-
June 1). ACM, New York.

BOUZEGHOUB, M., GARDARIN, G., AND METAIS, E.
1986. Database design tools: An expert systems
approach. In Proceedings of 11th Znternutionul
Conference of Very Large Databases (Stockholm,
Sweden). Morgan Kaufmann, Los Altos, Calif.

BRODIE, M. L. 1981. On modelling behavioural se-
mantics of data. In Proceedinns of the 7th Znter-
national Conference on Very-Large Data Bases
(Cannes. France, Se&. 9-11). IEEE. New York.
Pp. 32-41. -

BRODIE, M. L., AND ZILLES, S. N., EDS. 1981. In
Proceedings of the Workshop on Data Abstraction,
Databases, and Conceptual Modelling. SIGPLAN
Not. 16, 1 (Jan.).

CARSWELL, J. L., AND NAVATHE, S. B. 1986.
SA-ER: A methodology that links structured
analysis and entity relationship modeling for da-
tabase design. In Proceedings of the 5th Znternu-
tionul Conference on the Entity Relationship Ap-

proach, S. Spaccapietra, Ed. (Dijon, France,
Nov.), pp. 19-36.

CERI, S., ED. 1983. Methodology and Tools for
Database Design. North-Holland, Amsterdam.

CERI, S., AND PELAGATPI, G. 1984. Distributed Da-
tabases: Principles and Systems. McGraw-Hill,
New York.

CERI, S., PELAGA~I, G., AND BRACCHI, G. 1981. A
structured methodology for designing static and
dynamic aspects of data base applications. Znf.
Syst. 6, 1, 31-45.

CHEN, P. P. 1976. The entity-relationship model-
Toward a unified view of data. ACM Trans.
Database Syst. 1, 1 (Mar.), 9-36.

CHEN, P. P. 1983. English sentence structure and
entity-relationship diagrams. J. Znf. Sci. 29,
127-150.

CHIANG, W., BASAR, E., LIEN, C., AND TEICHROEW,
D. 1983. Data modeling with PSL/PSA: The
view integration system (VIS). ISDOS Rep. No.
M0549-0, Ann Arbor, Mich.

CHILSON, D., AND KUDLAC, C. 1983. Database de-
sign: A survey of logical and physical design tech-
niques. Database 15, 1 (Fall).

DATA DESIGNER 1981. Data designer product de-
scription. Database Design Inc., Ann Arbor,
Mich.

DEMO, B. 1983. Program analysis for conversion
from a navigation to a specification database
interface. In Proceedilzps of the 9th International
Conference on Very Layge’Data Bases (Florence,
Italy). VLDB Endowment, Saratoga, Calif.

DEMO, B., AND KUNDU, S. 1985. Modeling the CO-
DASYL DML execution context dependency for
application program conversion. In Proceedings
of the International Conference on Management
of Data (Austin, TX., May 28-30). ACM, New
York, pp. 354-363.

DOS SANTOS, C. S., NEUHOLD, E. J., AND FURTADO,
A. L. 1980. A data type approach to the entity
relationship model. In Proceedings of the Znter-
national Conference on the Entity Re.!ationship
Approach to System Anulysis and Design, P. Chen,
Ed. (Los Angeles, 1979). North-Holland, Amster-
dam, pp. 103-120.

EICK, C. F., AND LOCKEMANN, P. C. 1985.
Acquisition of terminological knowledge using da-
tabase design techniques. In Proceedings of the
International Conference on Management of Data
(Austin, TX., May 28-30). ACM, New York, pp.
84-94.

ELMASRI, R. 1980. On the design, use and integra-
tion of data models. Ph.D. dissertation, Rep. No.
STAN-CS-80-801, Dept. of Computer Science,
Stanford Univ., Stanford, Calif.

ELMASRI, R., AND NAVATHE, S. B. 1984. Object
integration in database design. In Proceedings of
the IEEE COMPDEC Conference (Anaheim,
Calif., Apr.). IEEE, New York, pp. 426-433.

ELMASRI, R., AND WIEDERHOLD, G. 1979. Data
model integration using the structural model. In

ACM Computing Surveys, Vol. 18, No. 4, December 1986

Comparison of Methodologies for Database Schema Integration l 363

Proceedings of the International Conference on
Management of Data (Boston. Mass., May 30-
June 1). ACM, New York.

ELMASRI, R., WEELDRYER, J., AND HEVNER, A.
1985. The category concept: An extension to the
entity-relationship model. Data Knawl. Eng. I, 1
(June).

FERRARA, F. M. 1985. EASY-ER: An integrated sys-
tem for the design and documentation of data
base applications. In Proceedings of the 4th Znter-
natianal Conference on the Entity Relationship
Approach (Chicago, Ill.). IEEE Computer Society,
Silver Spring, Md., pp. 104-113.

HAMMER, M., AND MCLEOD, D. 1981. Database de-
scription with SDM: A semantic database model.
ACM Trans. Database Syst. 6,3 (Sept.), 351-386.

HUBBARD, G. 1980. Computer Assisted Data Base
Design. Van Nostrand-Reinhold, New York.

HWANG, H. Y. 1982. Database integration and op-
timization in multidatabase systems. Ph.D. dis-
sertation, Dept. of Computer Science, Univ. of
Texas, Austin, Oct.

KLUG, A., AND TSICHRITZIS, D., Eds. 1977. The
ANSIJKBJSPARC Report of the Study Group on
Data Base Management Systems. AFIPS Press,
Reston, Va.

LANDERS, T. A., AND ROSENBERG, R. L. 1982. An
overview of Multibase. In Distributed Databases,
H. J. Schneider, Ed. North-Holland, Amsterdam.

LARSON, J., NAVATHE, S. B., AND ELMASRI, R.
1986. Attribute equivalence and its role in
schema integration. Tech. Rep., Honeywell Com-
puter Sciences Center, Golden Valley, Minn.

LUM, V., GHOSH, S., SCHKOLNICK, M., JEFFERSON,
D., Su, S., FRY, J., AND YAO, B. 1979. 1978 New
Orleans data base design workshop. In Proceed-
ings of the 5th Zntematianal Conference on Very
Large Data Bases (Rio de Janeiro, Oct. 3-5).
IEEE, New York, pp. 328-339.

MAIER, D. 1983. The Theory of Relational Databases.
Computer Science Press, Potomac, Md.

MANNINO, M. V., AND EFFELSBERG, W.
1984b. Matching techniques in global schema
design. In Proceedings of the IEEE COMPDEC
Conference (Los Angeles, Calif.). IEEE, New
York, pp. 418-425.

MANNINO, M. V., AND KARLE, C. 1986. An extension
of the general entity manipulator language for
global view definition. Data Knawl. Eng. 2, 1.

MANNINO, M. V., NAVATHE, S. B., AND EFFELSBERG,
W. 1986. Operators and rules for merging gen-
eralization hierarchies. Working Paper, Graduate
School of Business, Univ. of Texas, Austin, April
1986.

MCLEOD, D., AND HEIMBIGNER, D. 1980. A feder-
ated architecture for data base systems. In
Proceedings of the AFIPS National Cam-
puter Conference, vol. 39. AFIPS Press, Arling-
ton, Va.

MOTRO, A. 1981. Virtual merging of databases.
Ph.D. dissertation, Tech. Rep. #MS-CIS-80-39,

Computer Science Dept., Univ. of Pennsylvania,
Philadelphia, Pa. 1981.

MYLOPOULOS, J., BERNSTEIN, P. A., AND WONG, H.
K.T. 1980. A language facility for designing
database-intensive applications. ACM Trans.
Database Syst. 5,2 (June) 185-207.

NATIONAL BUREAU OF STANDARDS 1982. Data base
directions: Information resource management-
strategies and tools. Special Publ. 500-92, A.
Goldfine, Ed. U.S. Dept. of Commerce, Washing-
ton, D.C., Sept. 1982.

NAVATHE, S.B., AND SCHKOLNICK, M. 1978. View
representation in logical database design. In Pro-
ceedings of tke International Conference on Man-
agement of Data (Austin, Tex.). ACM, New York,
pp. 144-156.

NAVATHE, S. B., AND KERSCHBERG, L. 1986. Role
of data dictionaries in information resource man-
agement. Znf. Manage. 10, 1.

NAVATHE, S. B., SASHIDHAR, T., AND ELMASRI, R.
1984. Relationship matching in schema integra-
tion. In Proceedings of the 10th International
Conference on Very Large Data Bases (Singa-
pore). Morgan Kaufmann, Los Altos, Calif.

NAVATHE, S. B., ELMASRI, R., AND LARSON, J.
1986. Integrating user views in database design.
IEEE Computer 19,l (Jan.), 50-62.

Nc, P.. JAJODIA, S.. AND SPRINGSTEEL, F. 1983. The
problem of equivalence of entity relationship
diasrams. IEEE Trans. Softw. Enc. SE-g. 5,
617u-630.

OLLE, T. W., SOL, H. G., AND VERRIJN-STUART, A.
A., Eds. 1982. Information systems design
methodologies: A comparative review. In Proceed-
ings of the IFIP WG 8.1 Working Conference on
Comparative Review of Znformation Systems De-
sign Methodologies (Noordwijkerhout, The Neth-
erlands). North-Holland, Amsterdam.

RISSANEN, J. 1977. Independent components of rela-
tions. ACM Trans. Database Syst. 2, 4 (Dec.),
317-325.

ROLLAND, C., AND RICHARDS, C. 1982. Transaction
modeling. In Proceedings of the Znternatianal
Conference on Management of Data (Orlando,
Fla., June 2-4). ACM, New York, pp. 265-275.

SAKAI, H. 1981. A method for defining information
structures and transactions in conceptual schema
design. In Proceedings of the 7th Znternatianal
Conference on Very Large Data Bases (Cannes,
France, Sept. 9-11). IEEE, New York, pp.
225-234.

SCHEUERMANN, P., SCHIFFNER, G., AND WEBER, H.
1980. Abstraction capabilities and invariant
properties modeling within the entity relation-
ship approach. In Proceedings of the Zntematianal
Conference on Entity Relationship Approach to
System Analysis and Design, P. Chen, Ed. (Los
Angeles, 1979). North-Holland, Amsterdam.

SHIN, D. G., AND IRANI, K. B. 1985. Knowledge-
based distributed database system design. In
Proceedings of the International Conference on

ACM Computing Surveys, Vol. 18, No. 4, December 1966

364 . C. Batini, M. Lenzerini, and S. B. Navathe

Management of Data (Austin, Tex., May 28-30).
ACM, New York, pp. 95-105.

SHIPMAN, D. W. 1980. The functional data model
and data language DAPLEX. ACM Trans. Data-
base Syst. 6, 1 (Mar.), 140-173.

SMITH, J. M., AND SMITH, D. C. 1977. Database
abstraction: Aggregation and generalization.
ACM Trans. Database Syst. 2,2 (June), 105-133.

TUCHERMAN, L., FURTADO, A. L., AND CASANOVA,
M. A. 1985. A tool for modular database design.

In Proceedings of the 11th Internntionul Confer-
ence on Very Large Data Bases (Stockholm,
Sweden). Morgan Kaufmann, Los Altos, Calif.

ULLMAN, J. D. 1982. Principles of Database Systems,
2nd ed. Computer Science Press, Potomac, Md.

WEELDREYER, J. A. 1986. Structural aspects of the
entity-category-relationship model of data,
Tech. Rep. HR-80-251, Honeywell Computer Sci-
ences Center, Golden Valley, Minn.

Received March 1985; final revision accepted December 1986.

ACM Computing Surveys, Vol. 18, No. 4, December 1966

