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Abstract. The Random Sample Consensus (RANSAC) algorithm is a
popular tool for robust estimation problems in computer vision, primar-
ily due to its ability to tolerate a tremendous fraction of outliers. There
have been a number of recent efforts that aim to increase the efficiency
of the standard RANSAC algorithm. Relatively fewer efforts, however,
have been directed towards formulating RANSAC in a manner that is
suitable for real-time implementation. The contributions of this work are
two-fold: First, we provide a comparative analysis of the state-of-the-art
RANSAC algorithms and categorize the various approaches. Second, we
develop a powerful new framework for real-time robust estimation. The
technique we develop is capable of efficiently adapting to the constraints
presented by a fixed time budget, while at the same time providing ac-
curate estimation over a wide range of inlier ratios. The method shows
significant improvements in accuracy and speed over existing techniques.

1 Introduction

The RANSAC (Random Sample Consensus) algorithm [1] is a simple, yet power-
ful, technique that is commonly applied to the task of estimating the parameters
of a model, using data that may be contaminated by outliers. RANSAC estimates
a global relation that fits the data, while simultaneously classifying the data into
inliers (points consistent with the relation) and outliers (points not consistent
with the relation). Due to its ability to tolerate a large fraction of outliers, the
algorithm is a popular choice for a variety of robust estimation problems.

RANSAC operates in a hypothesize-and-verify framework: a minimal subset of
the input data points is randomly selected and model parameters are estimated
from this subset. The model is then evaluated on the entire dataset and its
support (the number of data points consistent with the model) is determined.
This hypothesize-and-verify loop is repeated until the probability of finding a
model with better support than the current best model falls below a predefined
threshold (typically 1%-5%). RANSAC can often find the correct solution even
for high levels of contamination; however, the number of samples required to do
so increases exponentially, and the associated computational cost is substantial.
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There have been a number of recent efforts aimed at increasing the efficiency
of the basic RANSAC algorithm. Some of these strategies [2,3,4] aim to optimize
the process of model verification, while others [5,6,7] seek to modify the sampling
process in order to preferentially generate more useful hypotheses. While these
efforts have shown considerable promise, none of them are directly applicable
in situations where real-time performance is essential. Relatively fewer efforts
have been directed towards the goal of formulating RANSAC in a manner that
is suitable for real-time implementations. In particular, Nister [8] describes the
preemptive RANSAC framework, where a fixed number of hypotheses are eval-
uated in a parallel, multi-stage setting. In this case the goal is to find, within a
fixed time budget, the best solution from a restricted set of hypotheses. While
the preemptive RANSAC framework facilitates real-time implementation, there
exist a few limitations in the scheme. One of the primary limitations of preemp-
tive RANSAC is its inherent non-adaptiveness to the data. The selection of a
fixed number of hypotheses implicitly implies that a good prior estimate of the
inlier ratio is available; in practice, this is often not the case. For low contami-
nation problems, preemptive RANSAC is often slower than standard RANSAC,
since it evaluates many more hypotheses than necessary. On the other hand,
when the inlier ratio is too low, preemptive RANSAC is unlikely to find a good
solution, since it does not test enough hypotheses.

There has been recent work on dealing with issues arising from degenerate
data configurations [9,10]. While we do not address degeneracy specifically in the
paper, we note that both techniques are extensions of RANSAC and accordingly
can be improved by the proposed scheme in a similar way.

The goal of the current paper is two-fold. First, we provide a comparative
analysis of the important RANSAC algorithms that have been proposed over
the past few years [2,3,4,5,7,8,11]. We classify the various approaches based on
the aspect of RANSAC that they seek to optimize, and evaluate their perfor-
mance on synthetic and real data. Following the evaluation, we propose a pow-
erful new framework for real-time robust estimation. One of the main challenges
in real-time robust estimation lies in being able to adapt to the strict limitations
presented by the fixed time budget. The framework we develop is able to ele-
gantly cope with variations in the contamination level of the data, while at the
same time providing accurate estimation at real-time speeds.

2 Survey of RANSAC Techniques

2.1 RANSAC

As mentioned earlier, RANSAC operates in a hypothesize-and-verify framework.
Given a set U containing N tentative correspondences, RANSAC randomly sam-
ples subsets of size m from the data, where m is the minimal number of samples
required to compute a solution, which is equivalent to the complexity of the
geometric model. Once a model has been hypothesized from this minimal sub-
set, it is verified against all data points in U and its support is determined.
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This process is repeated until a termination criterion is met. The standard ter-
mination criterion for RANSAC is based on the minimum number of samples
required to ensure, with some level of confidence η0, that at least one of the
selected minimal subsets is outlier-free. Given the true inlier ratio ε, the proba-
bility of selecting an uncontaminated sample of m inliers is εm. The probability
of selecting k samples, each of which is contaminated with at least one outlier, is
given by (1 − εm)k. Thus, the minimum number of samples that must be drawn
in order to ensure that this probability falls below a 1 − η0 threshold is

k ≥
log(1 − η0)

log(1 − εm)
(1)

Since the true inlier ratio ε is a priori unknown, a lower bound on this ratio can be
found by using the sample which currently has the largest support. This estimate is
then updated as the algorithm progresses.A number of recently proposed methods
seek to optimizedifferentaspects of thebasicRANSACalgorithm.Wediscuss three
strategies to optimize the model verification stage of RANSAC in Section 2.2. We
also review in Section 2.3, methods that have been proposed to incorporate non-
uniform sampling into the hypothesis generation stage. Finally, in Section 2.4, we
discuss a very different RANSAC framework that operates in a real-time setting.

2.2 Optimizing Model Verification

While the number of samples drawn by RANSAC depends on the inlier ratio and
the model complexity, an additional computational factor is the total number of
correspondences N , since a hypothesis is verified against all data points. How-
ever, since most of the generated models are likely to be contaminated, these will
be consistent only with a small fraction of the data. Thus, it is often possible
to discard bad hypotheses early on in the verification process. Some of the early
efforts to speed up RANSAC made use of precisely this observation.

2.2.1 The Td,d Test

Matas and Chum [2] design a pre-evaluation stage which attempts to quickly
filter out bad hypotheses. Model verification is first performed using a subset
of d randomly selected points (where d ≪ N). The remaining N − d points
are evaluated only if the first d points are all inliers to the model. A setting of
d = 1 is recommended as the optimal value. Due to the randomized hypothesis
evaluation procedure, a valid hypothesis may be mistakenly rejected by the Td,d

test. Thus, one of the consequences of this approach is that it requires many
more hypotheses than the original RANSAC. However, in general, the overall
running time is reduced due to the preverification procedure.

2.2.2 Bail-Out Test

The idea of early termination of bad hypotheses was further extended by Capel
in [3]. Given a randomly selected subset of n points, the number of inliers κn in
this subset follows a hyper-geometric distribution: κn ∼ HypG(κ, n, κ, N), where
κ is the total number of inliers for the current hypothesis. Given the current
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best hypothesis with inlier count κbest, consider a new hypothesis that has been
partially evaluated against a subset of n data points. The goal is to determine
the probability that having observed κn inliers so far, the total number of inliers
for the new hypothesis, κ, is greater than κbest. Since this is computationally
expensive to calculate, a lower bound κn

min is derived on the number of inliers
observed after evaluating n data points. If, at this point, the number of inliers
is below the threshold, bail-out occurs and the hypothesis is discarded. For a
given confidence bound Pconf , also note that the minimum bound κn

min may be
approximated as a binomial distribution (for small values of n) or as a normal
distribution (for large values of n).

2.2.3 WaldSAC

Most recently, Chum and Matas described an optimal randomized model verifi-
cation strategy [4,12] based on Wald’s theory of sequential decision making. The
evaluation step is cast as an optimization problem which aims to decide whether
a model is good (Hg) or bad (Hb), while simultaneously minimizing the number
of verifications performed per model. Wald’s Sequential Probability Ratio Test
(SPRT) is based on the likelihood ratio

λj =

j
∏

r=1

p(xr|Hb)

p(xr |Hg)
(2)

where xr is equal to 1 if the rth data point is consistent with a given model, and
0 otherwise. p(1|Hg) denotes the probability that a randomly chosen data point
is consistent with a good model, and this can be approximated by the inlier ratio
ε. Similarly, p(1|Hb) is the probability that a randomly chosen data point is con-
sistent with a bad model, and this can be modeled using a Bernoulli distribution
with parameter δ. If, after evaluating j data points, the likelihood ratio becomes
greater than some threshold A, the model is rejected. The decision threshold A is
the only parameter of the SPRT test, and it can be set to achieve optimal running
time (for more details we refer to [5]). When the level of contamination is known
a priori, the WaldSAC strategy is provably optimal. In practice, however, inlier
ratios have to be estimated during the evaluation process and the threshold A is
adjusted to current estimates. An initial estimate of the parameter δ is obtained
through geometric considerations, and this estimate is revised during the sam-
pling process. The performance of the SPRT test is not significantly affected by
the imperfect estimation of these parameters. A detailed comparative evaluation
of the three methods described above is provided in Section 4. While we defer a
discussion of the experimental results until later, we briefly note that in general,
the performance of the bail-out and SPRT tests are comparable, both producing
speed-ups ranging between 2-7 times compared to standard RANSAC.

2.3 Improving Hypothesis Generation

The RANSAC algorithm generates hypotheses by uniformly sampling the input
data set. This implicitly implies that there is no a priori information available
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about the accuracy of the data points. In practice, this may be an overly pes-
simistic approach, since a priori information is often available, and can be used
to generate better hypotheses.

2.3.1 PROSAC

Typically, correspondences between two or more images are obtained by the
use of a local matching algorithm. A similarity function is evaluated over a
number of points, and subsequently thresholded to obtain a set of tentative
correspondences. Based on the assumption that points with high similarity are
more likely to be inliers than points with low similarity, it may be possible
to generate better hypotheses by sampling from a reduced set of points with
high similarity scores. This fact is exploited in [7], where the correspondences
are ordered based on their similarity scores, and progressively larger subsets
of tentative correspondences are used to generate hypotheses. The Progressive
Sample Consensus (PROSAC) algorithm is designed to draw the same samples
as RANSAC, only in a different order. Consider a sequence of TN samples of
size m drawn by RANSAC from the set of all N correspondences. This sequence
is denoted by {Mi}

TN

i=1. Let Un denote a subset of UN containing n points with

the highest quality. The sequence {Mi}
TN

i=1 contains, on average, Tn samples
containing points only from Un, where

Tn = TN

(

n

m

)

(

N

m

) (3)

A recurrence relation for Tn+1 can be obtained as: Tn+1 = n+1
n+1−m

Tn. Since this
may not necessarily be an integer, T ′

n+1 is defined as T ′
n+1 = T ′

n + ⌈Tn+1 − Tn⌉.
The t-th sample in PROSAC is denoted by Mt and is generated as follows:

Mt = {ug(t)}
⋃

M′
t (4)

where g(t) is a growth function defined as g(t) = min{n : T ′
n ≥ t} and M′

t is a
set containing m − 1 points drawn at random from the set Ug(t)−1. In practice,
the PROSAC approach often achieves significant computational savings, since
good hypotheses are generated early on in the sampling process. Two important
points must, however, be noted. First, though PROSAC often succeeds in dra-
matically reducing the number of hypotheses required, this is data-dependent,
and also hinges on the availability of a reasonable similarity function to rank
correspondences. Secondly, we observe that in many cases, correspondences with
high similarity scores often lie on the same spatial structure and are potentially
in a degenerate configuration. Thus, when utilizing the PROSAC approach, it is
advisable to ensure robustness to degenerate configurations [9,10].

2.3.2 Guided Sampling for MLESAC

A similar approach to PROSAC was proposed earlier by Tordoff and Murray in
[6], wheer the Maximum Likelihood Estimation Sample Consensus (MLESAC) al-
gorithm [11] was combined with non-uniform sampling of correspondences. The
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Algorithm 1. Preemptive RANSAC

Generate all hypotheses (indexed by 1, ..., f(1))
for i = 1 to N do

Score the hypotheses 1, ..., f(i) using data point i
Reorder the set to retain the best f(i + 1) hypotheses
if f(i + 1) = 1 then

Break with the remaining hypothesis as the top one
end if

end for

MLESAC algorithm is a generalization of RANSAC, which adopts the same sam-
pling strategy but attempts to maximize the likelihood of the solution, as opposed
to the number of inliers. While MLESAC assumes a uniform prior for the validity
of a match, the guided-sampling approach of [6] uses the quality function of the fea-
ture matching algorithm to derive probabilities of match validity. These are then
incorporated as priors in MLESAC. The technique was experimentally shown to
reduce the number of iterations required by MLESAC by an order of magnitude.

2.3.3 Lo-RANSAC

One of the assumptions inherent in the standard termination criterion ofRANSAC
(equation (1)) is that a model computed from an uncontaminated sample is con-
sistent with all inliers. In practice, this is often not the case, particularly when the
data points are noisy. Chum et al. [5] define a locally optimized RANSAC variant
to deal with this issue. By observing that a good model tends to find a significant
fraction of the inliers, an innerRANSAC strategy is devised where a constant num-
ber of hypotheses (∼ 20) are generated using only the set of inliers to the current
best model. Since inner RANSAC operates on a set of inliers, it is not essential that
hypotheses are generated from minimal subsets. In addition to providing a more
robust fit, the inner RANSAC technique has the effect of improving the consensus
score more rapidly than standard RANSAC, which causes the termination crite-
rion (1) to be met earlier.

2.4 Preemptive RANSAC

As discussed earlier, though the recent variants of RANSAC show an appre-
ciable decrease in runtime, they are still not directly applicable in real-time
implementations. This is primarily due to the fact that in order to achieve an η0

confidence in the solution, all these methods need to draw a significantly large
number of samples, particularly for low inlier ratios. In the case of real-time
systems the goal is to achieve the threshold when possible; however, when this
is not the case, it is desirable to obtain the best solution given the time con-
straints. Preemptive RANSAC attempts to do precisely this: a fixed number of
hypotheses are generated beforehand, and then compared against each other by
scoring them in parallel. The preemption schemes described in Section 2.2 are



506 R. Raguram, J.-M. Frahm, and M. Pollefeys

depth-first in nature, meaning that a particular hypothesis is completely eval-
uated before moving on to the next hypothesis. Preemptive RANSAC uses a
breadth-first approach, where all the hypotheses generated are evaluated on a
subset of the data points. Subsequently, the hypotheses are reordered based on
the results of this scoring procedure, and only a fraction of the hypotheses ar
e evaluated on the next subset of data. A non-increasing preemption function
f(i), i = 1, ..., N defines the number of hypotheses retained before evaluating
the ith data point. The preemption function used in [8] is

f(i) = ⌊M2(−⌊ i
B
⌋)⌋ (5)

where M is the number of hypotheses in the initial set and B is the number
of data points that a hypothesis is evaluated against, before the preemption
and reordering step takes place. This process continues until only one hypoth-
esis remains, or all data points have been used. Recommended values for these
parameters are M = 500 hypotheses and B = 100 data points per subset.

3 Adaptive Real-Time Random Sample Consensus

In this section, we describe a novel framework for Adaptive Real-Time Random
Sample Consensus (ARRSAC), which is capable of providing accurate real-time
estimation over a wide range of inlier ratios. From the discussion on preemptive
RANSAC (Section 2.4), it can be seen that the number of hypotheses M in the
initial candidate set is fixed a priori. In a real-time setting, this ensures that the
runtime of the algorithm is bounded. However, fixing this number beforehand
effectively places a restriction on the inlier ratio. When the true inlier ratio is
high, preemptive RANSAC evaluates far too many samples. On the other hand,
when the true inlier ratio is low, the likelihood that preemptive RANSAC finds a
correct solution decreases drastically. The breadth-first scan advocated by pre-
emptive RANSAC is indeed a natural formulation for real-time applications,
since the primary constraint is the fixed time-budget. On the other hand, adapt-
ing the number of hypotheses to the contamination level of the data requires an
estimate of the inlier ratio, which necessitates the adoption of a depth-first scan.
The ARRSAC framework retains the benefits of both approaches (i.e, bounded
run-time as well as adaptivity) by operating in a partially depth-first manner.
Hypotheses for the initial candidate set are generated one-by-one, and are evalu-
ated on the first data block. Bad hypotheses are discarded based on a depth-first
preemptive strategy. Hypotheses that pass this verification procedure provide an
estimate of the inlier ratio, which is used to determine the required number of
hypotheses, keeping the upper limit fixed at M . Note that since the evaluation
is performed on only a subset of the data (thus, partially depth-first), the esti-
mated inlier ratio may be either above or below the true inlier ratio. In view of
this fact, the ARRSAC algorithm allows the generation of additional hypothe-
ses at a later stage in the evaluation process. While this discussion describes a
method for adaptively determining the number of hypotheses, note that there is
still an upper limit on the size of the hypothesis set. In such a scenario, it is then
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Algorithm 2. The ARRSAC algorithm

Initialization

Set values for M (max. number of candidate hypotheses) and B (block size)
Set parameters for the SPRT test, calculate the initial value of A (see [4])
1. Generate initial hypothesis set (Algorithm 3)
k =total number of hypotheses generated in the initial stage
2. Preemptive evaluation

for i = B + 1 to N do

Set p =number of hypotheses remaining, n =min(f(i), p/2)
Reorder and select hypotheses h(1), ..., h(n)
if n = 1 then

Break with the remaining hypothesis as the top one
end if

Score the hypotheses using data point i
if (i mod B) = 0 then

Calculate best inlier ratio ε̂ and number of hypotheses M ′ (equation (1))
M ′ =max(M,M ′)
if M ′ > k then

Generate and evaluate M ′ − k new hypotheses on i data points
k = M ′

end if

end if

end for

important to choose a strong set of candidate hypotheses, since this facilitates
good performance at low inlier ratios. ARRSAC accomplishes this by adopting a
non-uniform sampling approach, generating hypotheses from the highest quality
matches. Note, however, that even in the absence of information to guide non-
uniform sampling (or when this does not help), ARRSAC still has a bounded
runtime. This is in contrast with strategies such as PROSAC, which in the worse
case operates like RANSAC (and hence has a potentially unbounded runtime).
The ability to sample non-uniformly from the data is crucial only when the in-
lier ratios are very low. As an additional strategy, once a hypothesis passes the
verification test, it is also possible to generate new hypotheses by sampling from
data points that are consistent with this good hypothesis. This idea is similar
to the inner RANSAC technique in [5]. Since the sampling now is selecting
points from inlier data, it is not essential that hypotheses are generated from
minimal subsets. An important advantage of the competitive evaluation frame-
work is that ARRSAC does not spend excessive time in local optimization, since
the hypotheses generated in the inner RANSAC are forced to compete among
themselves. This prevents the algorithm from spending excessive time in the
refinement, particularly when the inlier ratio is high.

Finally, while the partially depth-first evaluation strategy described above
serves to adaptively determine the number of hypotheses, it also provides an
additional computational advantage. In the original preemptive RANSAC al-
gorithm, hypotheses are evaluated on all B data points in a block before the
reordering and preemption step takes place. As we have noted earlier, this
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Algorithm 3. ARRSAC: Generating the initial hypothesis set

k = 1, M ′ = M , countin = 0, Inner RANSAC flag: flagin = 0
Set max number of inner RANSAC iterations: Min

repeat

if flagin = 0 then

Generate hypothesis h(k) by selecting the k-th PROSAC sample
else

Generate hypothesis h(k) by sampling (perhaps non-minimal) subset from Uin

countin = countin + 1
if countin = Min, reset inner RANSAC parameters (countin, flagin)

end if

Evaluate hypothesis h(k) using Wald’s SPRT
if hypothesis h(k) is rejected then

Reestimate parameters of the SPRT (if required)
else if hypothesis h(k) is accepted and has the largest support so far then

flagin = 1, countin = 0, set Uin = support of hypothesis h(k)
Reestimate parameters of the SPRT
Estimate inlier ratio ε̂ and M ′ (equation (1)). Cap M ′ at a max of M

end if

k = k + 1
until (k > M ′)
Return k, set containing accepted hypotheses

constitutes an unnecessary overhead since most of the generated hypotheses
are likely to be contaminated. Thus, in ARRSAC, bad hypotheses are discarded
after partial evaluation and only the hypotheses that survive are selected for
propagation to subsequent stages of evaluation. The preemption function (7)
thus effectively defines an upper bound on the number of hypotheses required
for the next stage of evaluation. The number of good hypotheses that need to be
reordered and propagated in ARRSAC is typically much less than this bound.

To summarize the main contributions of the ARRSAC algorithm: the adop-
tion of a partially depth-first strategy for hypothesis generation provides a great
degree of control over the initial set. Adaptively determining the number of hy-
potheses ensures computational efficiency for higher inlier ratios. Furthermore,
this strategy also allows more control over the quality of hypotheses that are
included in the initial set, thereby increasing the likelihood of obtaining a good
solution even for low inlier ratios. Finally, the use of optimized verification tech-
niques is geared towards improving the overall efficiency of the algorithm. We
note that unlike preemptive RANSAC, the proposed method makes no assump-
tions about the underlying data. The ability to efficiently adapt to the data and
provide accurate real-time robust estimation makes ARRSAC easily deployable
in real-time vision systems.

3.1 Algorithm Description

Generating the Initial Hypothesis Set. The ARRSAC algorithm adopts
a PROSAC-based non-uniform sampling strategy to generate hypotheses. For
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Fig. 1. Results of synthetic data evaluation. Number of models evaluated vs. inlier ratio
for four different values of N . From left-right in each group: RANSAC, Td,d, bail-out,
WaldSAC. Note that the y-axis uses a log scale.

clarity, we also restrict our attention to a preemptive approach based on SPRT,
though in principle any depth-first preemption scheme may be used. For the
SPRT, the threshold parameter A depends on the inlier ratio ε and the Bernoulli
parameter δ. These are initialized conservatively (ε = 0.1, δ = 0.05) and updated
as the processing continues. During the SPRT, a hypothesis is either rejected
or accepted. In the first case, we continue to the next hypothesis, updating
δ if required. In the second case, when a hypothesis is accepted and has the
best support so far, a fixed number of new hypotheses, Min, are generated by
sampling non-minimal subsets from the inliers to this hypothesis. Furthermore,
an accepted hypothesis provides an estimate ε̂ of the inlier ratio; this is used to
determine the new number of hypotheses required, M ′. Note that we cap the
maximum number of hypotheses in the initial set at M , so M ′ ≤ M . It is also
important to note that the estimate ε̂ may be either greater than or less than
the actual inlier ratio. However, the flexibility of the ARRSAC algorithm allows
us to always generate additional hypotheses at a later stage, if required to do so.

Preemptive evaluation. The evaluation procedure in ARRSAC is based on
the partially depth-first approach outlined earlier. While preemptive RANSAC
uses the fixed preemption function (7), ARRSAC is more flexible in this regard.
Thus, at any given point, there are typically far less than f(i) hypotheses in the
set, due to the fact that contaminated hypotheses are discarded. In practice, this
turns out to be a very significant computational saving (see Section 4). After
every evaluation of B data points, the inlier ratio ε̂ is re-estimated, and the value
of M ′ is updated. If, at any point, the inlier ratio is found to be an overestimate,
additional hypotheses are evaluated as shown in Algorithm 2.
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Fig. 2. Results of synthetic data evaluation. Number of verifications per model (vpm)
vs. inlier ratio for four different values of N . From left-right in each group: RANSAC,
Td,d, bail-out, WaldSAC. Note that the y-axis uses a log scale.

4 Experimental Evaluation

In this section, we provide a detailed comparative evaluation of the approaches
described in this paper. First, we compare the performance of the various depth-
first preemptive approaches discussed in Section 2.2. For this experiment, we
estimate the epipolar geometry for synthetic data over a wide range of parameter
variations. Gaussian noise (µ = 0, σ = 0.2) was added to the pixel locations. The
results of the synthetic evaluation are shown in Figures 1 and 2. Figure 1 shows
the variation in the number of models evaluated as a function of the inlier ratio
ε, for four different values of N (total number of correspondences). Figure 2
shows the number of verifications per model, again as a function of ε and N .
The results are averaged over 200 runs for each tested case. Figure 2 shows
that the Td,d test succeeds in greatly reducing the number of verifications per
model. On the other hand, it requires the generation of a much larger number
of hypotheses. The performance of the bail-out and SPRT tests are comparable
over the range of parameter variations, with the SPRT producing slightly greater
speed-ups on average. However, for high inlier ratios, when the total number of
models generated is small, the bail-out test often performs marginally better
than SPRT, since the parameters in the SPRT are initialized conservatively.

We next evaluate the performance of preemptive RANSAC on synthetic data,
over a range of parameter variations. The goal in this case is not to examine the
number of verifications or the execution time (which are constant). Rather, we
seek to examine the ability of preemptive RANSAC to cope with varying inlier
ratios. Figure 3(a) shows the fraction of inliers found, as a function of ε and
N . The main trend to be observed from the graph is that for lower inlier ratios
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Fig. 3. (a) Variation in fraction of inliers found by preemptive RANSAC as a function of
inlier ratio. (b) Number of hypotheses scored at each stage of preemption in preemptive
RANSAC and ARRSAC, for four values of ε.

(< 0.5), preemptive RANSAC does not evaluate a sufficient number of hypothe-
ses, and thus misses a significant number of inliers. This presents a drawback for
the robust operation of a real-time system. Figure 3(b) compares the number of
hypotheses retained at each stage of preemption for preemptive RANSAC and
ARRSAC, for synthetic data at four values of ε. Note that for this experiment, it
was assumed that a PROSAC-based ordering of the hypotheses was unavailable.
It can be seen that even without PROSAC, the partially depth-first evalua-
tion strategy used in ARRSAC causes an appreciable decrease in the number
of hypotheses evaluated at each stage. Thus, the effective preemption function
in ARRSAC always remains below that of equation (7), providing considerable
computational savings. This demonstrates one of the advantages associated with
being able to adapt to the contamination level of the data.

Finally, we provide a comprehensive comparative evaluation of the various
RANSAC methods on real image data, and demonstrate the efficiency of the
ARRSAC approach, in terms of accuracy and computational efficiency. A sam-
ple of the test images chosen for this experiment are shown in Table 1. These
comprise of image pairs from well-known sequences (A-C), as well as images
taken from various other sources (D-F, G, H-I, J). The images were selected to
cover a wide range of inlier ratios and number of correspondences. Correspond-
ing points in the image pairs were detected using Harris corner matching. The
results for the evaluation are shown in Table 1 which lists, for each method and
test sequence, the number of inliers found (I), the number of models evaluated
(k), the number of verifications per model (vpm) and the relative speed-up ob-
tained with respect to standard RANSAC (spd-up). A few important trends are
noticeable from the table. Firstly, for images where the total number of models
evaluated is low (A, B, C), it can be observed that preemptive RANSAC evalu-
ates more hypotheses than standard RANSAC and is thus slower. On the other
hand, ARRSAC is able to efficiently estimate the inlier ratio and accordingly
limit the number of hypotheses, producing a considerable speed-up. Secondly,
for images with low inlier ratios (D, E, F), preemptive RANSAC is often unable
to find the correct solution since it evaluates too few hypotheses. In contrast,
the adaptive hypothesis generation in ARRSAC enables accurate estimation of
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Table 1. Evaluation results for ten selected real image pairs. The images show vari-
ation over a range of inlier ratios and number of correspondences. It can be observed
from the above results that the ARRSAC approach produces significant computational
speed-ups, while simultaneously providing accurate robust estimation in real-time. In
practice, the ARRSAC technique stays well within the time budget, with estimation
speeds ranging between 55-350 Hz. It can be seen from the table that the number of hy-
potheses evaluated by ARRSAC is always less than preemptive RANSAC. In addition,
the correct epipolar geometry is always recovered.

RANSAC Td,d Bail- Wald PROSAC Pre- ARRSAC
out emptive

A : ε = 0.83, N = 1322 I 884 884 885 889 885 933 1099
k 112 156 118 148 5 500 6

vpm 1322 531 361 594 1322 396 434
spd-up 1.0 1.9 2.6 2.2 12.9 0.4 37.3

B : (ε = 0.7, N = 795) I 514 512 514 517 514 527 559
k 242 329 242 283 43 500 47

vpm 795 149 65 132 795 374 218
spd-up 1.0 2.4 4.1 3.9 7.7 0.3 11.1

C : (ε = 0.65, N = 2162) I 1344 1342 1344 1345 1344 1372 1413
k 208 947 208 211 17 500 17

vpm 2162 59 67 52 2162 400 430
spd-up 1.0 1.9 5.5 5.8 15.2 0.9 29.1

D : (ε = 0.33, N = 1500) I 483 483 484 484 484 350 491
k 15506 49090 15509 15514 201 500 241

vpm 1500 22 37 28 1500 398 59
spd-up 1.0 1.9 5.7 6.2 104.2 90.6 305.7

E : (ε = 0.44, N = 420) I 174 174 173 177 177 134 183
k 2714 4889 2719 2716 439 500 499

vpm 420 10 24 13 420 305 70
spd-up 1.0 2.0 4.4 5.7 5.3 11.5 20.2

F : (ε = 0.43, N = 1325) I 557 557 557 557 557 488 582
k 4353 11753 4366 4359 288 500 329

vpm 1325 5 31 24 1325 396 182
spd-up 1.0 2.1 4.7 5.3 6.9 12.3 15.1

G : (ε = 0.56, N = 2875) I 1537 1524 1539 1537 1537 1539 1616
k 432 628 437 432 30 500 33

vpm 2875 20 24 31 2875 400 456
spd-up 1.0 2.2 3.1 4.2 16.6 1.3 47.2

H : (ε = 0.67, N = 1986) I 1249 1247 1251 1252 1250 1237 1330
k 335 1153 351 347 17 500 18

vpm 1986 29 41 32 1986 400 467
spd-up 1.0 2.4 4.2 4.9 22.2 1.1 60.9

I : (ε = 0.76, N = 1508) I 945 934 948 951 949 960 1149
k 498 1644 505 502 58 500 65

vpm 1508 43 31 33 1508 398 277
spd-up 1.0 1.9 2.7 2.5 12.3 1.8 45.1

J : (ε = 0.61, N = 1521) I 872 872 873 873 872 870 927
k 362 1167 381 372 40 500 44

vpm 1521 39 28 25 1521 398 338
spd-up 1.0 2.2 6.1 6.3 9.8 1.9 26.1
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the epipolar geometry even for very low inlier ratios. Thirdly, even in the case
where a PROSAC-based sampling strategy does not provide any significant ad-
vantage (E), ARRSAC is still able to achieve a performance speed-up, due to
the efficient preemption strategy employed (as illustrated in Fig 3(b)). As the
results in Table 1 indicate, the ARRSAC algorithm is able to elegantly adapt
to the data and ensure accurate robust estimation over a wide range of inlier
ratios, while at the same time providing considerable computational savings.

5 Conclusion

In this paper, we presented a discussion and comparative analysis of a num-
ber of important RANSAC techniques. In addition, a powerful new formulation
for adaptive real-time random sample consensus (ARRSAC) was proposed. In
contrast to existing techniques for real-time robust estimation, the ARRSAC ap-
proach makes no limiting assumptions about the underlying data, and is capable
of efficiently adapting to the contamination level of the data. The framework we
develop is suitable for use in real-time applications with a limited time budget,
while at the same time providing accurate robust estimation over a wide range of
inlier ratios. Experimental results on synthetic and real data demonstrate very
significant improvements in accuracy and speed over existing methods.
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