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A comparative analysis of several non–local fracture
criteria

L. P. Isupov S. E. Mikhailov

Summary Comparative analysis was carried out for three non–local fracture criteria
(NLFC) in application to plane problems: the average stress fracture criterion (ASFC),
the minimum stress fracture criterion (MSFC) and the fictitious crack fracture criterion
(FCFC). Each of them may be considered as a particular form of the general non–local
strength functional. All the criteria contain two material parameters: a characteristic
length and the tensile strength (ASFC and MSFC) or the critical stress intensity factor
(FCFC).

These criteria were used for a strength description of a plate containing a smooth stress
concentrator (circular hole) or a singular stress concentrator (central straight crack). It
was ascertained that ASFC and FCFC lead to identical results for the symmetrically
loaded central straight crack. ASFC and MSFC may be successfully used for the de-
scription of strength of the bodies with smooth as well as singular concentrators while
the FCFC gives incorrect predictions for large smooth concentrators and for some other
cases. Comparison of predicted and experimental data has shown that ASFC is preferable
in most cases but nevertheless there exists a systematic deviation of experimental points
from the criterion predictions.

Key words fracture mechanics, strength, non-local fracture criteria, comparison with
experiment.

1
Introduction

In the traditional (local) approach, the strength of a body in an analyzed point y is
characterized by the value of some function of stress tensor components at the same point
without consideration of the stress state in other points. The local fracture criteria can
be represented, e.g., in the form

f(σij(y)) = σc,

where f is a material function and σc is a material constant. These criteria give a good
description of experimental data when the stress distribution is close to a uniform stress
state.
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There are several problems of strength and fracture mechanics that can not be solved
(or are tedious to solve) by use of traditional strength conditions. Such problems include
the strength small-scale effects, strength description of bodies with singular stress con-
centrators (corner points, intersection of interfaces) generating singularities with different
exponents, the problem of unification of strength conditions for bodies with smooth and
singular concentrators. Some examples of the problems are given in Fig.1-3.

An example of the strength small-scale effect is presented in Fig.1. An infinite elastic
plate with a circular hole is considered, which is loaded at the infinity by a uniform
traction q. It is known from the elasticity theory that the maximum stress is independent
of the hole radius a, is equal to 3q, and is realized in the boundary point y. The plate
strength evaluated by use of the fracture criterion σθθ = σc is then independent of the hole
radius and is equal to one third of the strength σc of the plate without a hole (the solid
line). However appropriate fracture test data for plates with small holes (see, e.g., [1-3])
pointed out schematically in the figure show that the plate strength depends actually on
the hole radius.

Another example of the strength small-scale effect is delivered by the same plate
but now with a crack, having a length 2a, instead of a hole, Fig. 2. From the linear
elasticity one obtains the value for the stress intensity factor K1(y) = q

√
πa. From

the linear fracture mechanics one has the fracture criterion K1(y) = K1c, where K1c is a
material constant – fracture toughness. Using these two expressions, we get the theoretical
dependence of the plate strength from the crack length (the solid line), according to which
the plate strength tends to infinity as the crack length tends to zero. But the experiments
for short cracks (see, e.g., [2,4,5]) show that the strength tends to a finite value.

The same plate, but now with a diamond-shaped hole (Fig. 3), delivers an exam-
ple of a singular concentrator with a not square root singularity. According to the lin-
ear elasticity, we have the following stress behavior near the corner points: σij(ρ, θ) ∼
K1(y; α)ρ−γ(α)fij(θ; α), where the exponent γ depends only on the angle α. It is not
possible to estimate the strength of a body with such stress behavior either by the tra-
ditional local strength condition or by the local linear fracture mechanics condition. In
principle, one can try to use the strength condition K1(y; γ) = K1c(γ), which is analogous
to the linear fracture mechanics condition. However, one must then determine the critical
strength intensity factor K1c experimentally for each γ, that is, for each angle α, what is
rather tedious and expensive. Moreover, the same difficulties occur with the small-scale
effect as for short cracks or small circular holes.

These three examples show the necessity of a more general strength theory. Such a
theory should describe the small-scale effects and be applicable to bodies without cracks,
with cracks as well as with other singular concentrators. These conditions meet the non-
local strength theories.

A functional approach to non–local strength conditions and fracture criteria was sug-
gested in [6,7,8], where a general form of non–local strength condition based on a nonlinear
space strength functional was proposed. The strength functional (functional safety factor)
is associated with the supremum of a positive factor by which a given stress field may be
multiplied to obtain a non–fracturing stress field.

There are a number of non-local fracture criteria proposed earlier, which can be consid-
ered as particular cases of the general strength functional form. The objective of this work
is a comparative analysis of some non-local fracture criteria on the basis of experimental
data for the bodies containing smooth and singular concentrators.
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2
Three non–local fracture criteria for the plane problems.

Three most popular non–local fracture criteria for the two–dimensional case are repre-
sented in [6] in some generalized forms. Let (ρ, θ) be a local polar coordinate system with
the center at an analyzed point y of a body; let η(θ) be a unit vector making an angle θ
with the coordinate axis; and let σρρ, σθθ, σρθ be the stress components in this coordinate
system.

2.1 Fracture criterion based on average stress over a characteristic length d1

(ASFC)

This approach was considered by Neuber [9], Novozhilov [10], Whitney and Nuismer [2]
and other authors. It can be written in the following generalized form:

1

d1

max
−π<θ≤π

d1∫

0

σθθ(y + ρη(θ))dρ = σc. (1)

Here σc is the strength of a body without concentrators under uniform traction; d1 is a
material constant with length measure.

If the direction θ0, where the maximum in (1) is realized, is known, the ASFC has the
simplest form:

1

d1

d1∫

0

σθθ(y + ρη(θ0))dρ = σc, (2)

where integration is performed along this direction.

2.2 Fracture criterion based on a minimum stress over a characteristic length
d2 (MSFC)

This approach was used by Whitney and Nuismer [2] and other authors. In a generalized
form, this criterion may be written as:

max
−π<θ≤π

[ min
0≤ρ≤d2

σθθ(y + ρη(θ))] = σc. (3)

Here σc and d2 are material constants. In the case of a known direction θ0, where the
maximum in (3) is realized, the MSFC may be written in a more simple form:

min
0≤ρ≤d2

σθθ(y + ρη(θ0)) = σc. (4)

2.3 Fracture criterion based on a model of fictitious crack with a characteristic
length d3 (FCFC)

Criterion of such type was used by Waddoups et al.[1], Cruse [11], Caprino et al.[12] and
other authors. It is supposed that there exists a fictitious crack with a characteristic
length d3 originating from the considered point y of the body. After some modification
[6], this criterion may be represented in the following form:

max
−π<θ≤π

min
i

K1i(y, θ, d3) = K1c. (5)
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Here K1c and d3 are material constants. K11 = K1(y) and K12 = K1(y + d3η(θ)) are the
stress intensity factors at the ends of the fictitious crack laying along the η(θ) direction.

If the direction θ0 of fracture is considered to be known, this yields from (5):

min(K1(y), K1(y + d3η(θ0)) = K1c. (6)

For an edge crack beginning from the body boundary, there exists only one stress intensity
factor K1(y + d3η(θ0)) and the minimum disappears in (6).

Each of the criteria written above includes two material parameters: a characteristic
length di and the strength parameter σc or K1c. These two parameters can be determined
from two independent macro experiments. The following fracture tests may be, for exam-
ple, chosen: the tensile loading of a smooth specimen without concentrators and tensile
loading of the specimen with a transverse crack or with a circular hole.

3
Strength of the plate containing a central straight crack.

A body containing a straight central crack provides a convenient object for the analysis
of the NLFC validity. Consider a straight crack of a length 2a in a plate of the infinite
extent. The origin of the (x1, x2) coordinate system coincides with the center of the crack.
If a uniform tensile traction σ is applied parallel to the x2 axis at infinity, then σ22(x1, 0)
near the crack tip is approximated asymptotically (see, e.g., [13]) by the expression:

σ22(x1, 0) =
K1√

2π(x1 − a)
, (7)

where K1 is the mode 1 stress intensity factor given by the expression

K1 = σ
√

πa. (8)

Equation (7) presents only the main part of the asymptotic decomposition of the stress
field near the crack tip and it is usually considered to be quite correct for (x−a)/a ≤ 0.1.
For small cracks, however, the fracture criteria may require an accurate knowledge of the
stress distribution near the crack tip. An exact expression for the normal stress ahead of
the crack can be obtained, e.g., as a limiting case of the solution for an elliptical hole in
an infinite plate [14, Ch. III, Sect. 1]. It should be noted that the result is the same for
isotropic as well as for anisotropic plates:

σ22(x1, 0) =
K1x1√

πa(x2
1 − a2)

. (9)

The line of maximal tensile stress coincides with the continuation of the crack direction
along the x axis and all NLFC given above may be used in the simplest forms (2), (4)
and (6).

3.1 Average stress fracture criterion (ASFC)

Applying the criterion (2) to the end point of the crack in conjunction with equation (9)
yields:

K1c = σc

√
πd1η1/(1 + η1), (10)
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where η1 = a/(a + d1) is the normalized crack length. Let us denote q = σ the tensile
strength of the plate with crack. Then, from the equations (8) and (10), one can obtain
the relation between the normalized plate strength and crack length:

q

σc

=

√
1− η1

1 + η1

. (11)

It follows from (11), that q/σc → 1 when η1 → 0 (a → 0) for the short crack; and
q/σc → 0 when η1 → 1 (a →∞) for the long crack.

It is interesting to note that the critical stress intensity factor K1c used generally in the
linear fracture mechanics is not a material constant, when a non-local fracture criterion
is applied. It is the function of the crack length given by (10).
As a increases, the value K1c asymptotically approaches the limiting constant value K∞

1c

for large cracks:

K∞
1c = σc

√
πd1/2. (12)

(This value of K1c may be obtained at once if we use criterion (2) and stress asymptotics
(7) approximating (9) for sufficiently large cracks.) Just this, determined from the long
crack tests, value K∞

1c should be regarded as a material constant from the view point of
non-local fracture criteria.

If σc and K∞
1c are defined from independent experiments, we can express d1 from (12):

d1 =
2

π

(
K∞

1c

σc

)2

.

If d1 is obtained from a plate strength q′ experimentally measured for a crack length 2a′

and from σc also known from a fracture test, then

d1 = 2a′
(q′/σc)

2

1− (q′/σc)2
. (13)

3.2 Minimum stress fracture criterion (MSFC)

According to criterion (4) and equation (9), the following relation is valid for the depen-
dence of the critical stress intensity factor on the crack length:

K1c = σc

√
πd2η2(1 + η2), (14)

where η2 = a/(a + d2). Using (8) for σ = q together with (14), one can obtain

q/σc =
√

1− η2
2. (15)

As it was done in the previous section, the following results can be easily derived:

K∞
1c = σc

√
2πd2; d2 =

1

2π

(
K∞

1c

σc

)2

or

d2 = a′
1−

√
1− (q′/σc)2

√
1− (q′/σc)2

, (16)

when d2 is evaluated from a test for a plate with a finite crack of length 2a′ and from σc.
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Comparison of (13) and (16) gives

d2 = α2d1, α2 =
1

2[1 + 1/
√

1− (q′/σc)2]
=

1

2[1 +
√

(1 + η′1)/(2η′1)]
. (17)

where η′1 := a′/(a′ + d′1). Since q′/σc → 0 when a → ∞, we have from (17) the relation
d1 = 4d2 for the case when d1 and d2 are obtained from the critical stress intensity
factor K∞

1c for a long crack and from the longitudinal strength σc of the plate without
concentrators.

3.3 Fictitious crack fracture criterion (FCFC)

In accordance with this approach, one has to add the fictitious crack of the length d3 to
the considering end of the main crack of the length 2a. The stress intensity factor for this
composed crack may be written in the form:

K1 = σ
√

π(a + d3/2),

and criterion (6) gives

K∞
1c = q

√
π(a + d3/2).

For the plate without crack, we have a=0 and K∞
1c = σc

√
πd3/2. Thus

d3 =
2

π

(
K∞

1c

σc

)2

(18)

and
q

σc

=

√
1− η3

1 + η3

, (19)

where
η3 = a/(a + d3). (20)

If d3 is evaluated from a test for a plate with a crack of a finite length 2a′ and from
σc, then

d3 = 2a′
(q′/σc)

2

1− (q′/σc)2
. (21)

It follows from (13), (21), that ASFC and FCFC contain the equal characteristic length
parameters d1 = d3, when they are obtained from the experiments for a plate without
and with a crack, and lead to the same functional dependencies (11), (19) of the strength
q on the crack length a.

The plate strength q = K∞
1c /
√

πa predicted by the linear fracture mechanics can be
also presented in terms of the same non–dimensional variables if we express a in terms of
η3 and K∞

1c from relations (20), (18):

q

σc

=

√
1− η3

2η3

. (22)

One usually evaluates the critical stress intensity factor K ′
1c, instead of K∞

1c , from the
formula q′ = K ′

1c/
√

πa′, applying the test with a crack of a finite length 2a′. Using (21),
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one can rewrite the linear fracture mechanics strength prediction q/σc = (q′/σc)
√

a′/a in
the normalized form and get

q

σc

=

√
1− η3

2η3

√√√√1− q′2

σ2
c

(23)

instead of (22).
Note that it was supposed in deriving (22) that the ratio of the strength predictions

of the linear fracture mechanics and of FCFC tends to unity as a → ∞. In contrast to
that, it was supposed in deriving (23) that this ratio is equal to unity at a finite a = a′.
This explain the difference between (22) and (23).

3.4 Predicted results and comparison with experimental data

To represent all results in the same coordinates, let us introduce a common non-dimensional
crack length parameter η = a/(a + d0), then

ηi =
η

η + αi(1− η)
, (24)

where αi = di/d0. In what follows, it is assumed that d0 = d1 = d3 and all plots are
presented in the non–dimensional coordinates η = a/(a+d0) and q/σc. Then η1 = η3 = η
but η2 is given by (24) where α2 is determined by (17).

Note, that all the non–local fracture criteria give q/σc → 1 when η → 0 for small
cracks, as would be expected, while the linear fracture mechanics criterion gives the
unrealistic prediction q/σc →∞, as can be seen from (22).

From formulas (11), (15), (17), and (24), one can express the relative difference δ21 :=
(q2 − q1)/q1 in the prediction of the strength of the plate with a crack between ASFC
(coinciding with FCFC) and MSFC. It is always positive and its maximum with respect
to η is equal to δm

21 = (1 − α2)/
√

1− 2α2 − 1 and is reached at η = α2
2/(α

2
2 − 3α2 + 1),

where 0 ≤ α2 ≤ 1/4 according to (17). Thus the maximum of δ21 with respect to α2

and η is reached at α2 = 1/4 (i.e., at the case when d1, d2, d3 are obtained from the
two fracture tests: without crack and with the infinitely large crack) at η = 0.2 (i.e.,
at a = d2 = d1/4 = d3/4) and is equal to δ∗21 = (3

√
2)/4 − 1 ≈ 0.06. It means that

if d1, d2, d3 are obtained from the fracture test without a crack and from a test with
a crack of any length, the maximal relative difference between ASFC/FCFC and MSFC
predictions for the cracked plate do not exceed 6%.

Data obtained from experiments for laminated composite plates containing short
cracks [2,4,5] were chosen to apply each of the criteria described above. The test re-
sult for the crack of maximal length was used to calculate di for each material by (13),
(16), (21). Plots for the three considered criteria, whose parameters are obtained by
experiments on the different composites, are shown in Fig.4–8 together with the corre-
sponding experimental points. The dashed line corresponds to the prediction of the linear
fracture mechanics (23). All of the experimental data used was taken with an allowance
for the finite widths of the specimens.

The use of the standard non–dimensional variables η and λ = q/σc for the presentation
of the obtained results permits the marking of data of several series of experiments for
the different materials on the same plot for a chosen fracture criterion. Such common
pictures of experimental data in comparison with theoretical predictions of the average
stress fracture criterion (coinciding with the fictitious crack criterion) and the minimum
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stress fracture criterion, are given in Fig. 9 and 10, respectively. Obviously, the η–
normalizations of the experimental points differ for the different materials because of the
different values of di obtained. In addition, the limiting value 1/4 for the factor α2 was
used for the η–normalizations of the experimental points in Fig. 10.

As can be seen from these figures, all the fracture criteria overestimate somewhat the
plate strength for most short cracks (when di were determined from the tests with the
maximum length cracks).

4
Strength of the plate containing a circular hole

Consider a circular hole of a radius a in an isotropic plate of infinite extent. The origin
of an (x1, x2) coordinate system coincides with the center of the hole. The solution of
linear theory of elasticity for the plate with a hole is well known (see, e.g., [13,14]). If a
uniform tensile stress σ is applied parallel to the x2 axis at infinity, then the normal stress
σ22(x1, 0) along the x1 axis (x1 ≥ a) is given by the expression:

σ22(x1, 0)

σ
= 1 +

1

2

(
a

x1

)2

+
3

2

(
a

x1

)4

. (25)

The stress distribution in the non–dimensional coordinates, as it follows from (25), is
independent of hole size and the stress concentration factor at the edge of a hole is
independent of hole radius too, σ22(a, 0) = 3σ. However, the size of the stress concentration
region depends on the hole radius.

Let us consider the strength predictions for this plate with the smooth concentrator by
the three NLFC given above. Let us introduce, as in section 3, the normalized hole radius
parameters ηi = a/(a + di) where di are the characteristic lengths of the corresponding
criteria.

4.1 Average stress fracture criterion (ASFC)

Substituting the equation (25) into (2) and performing the integration yield the fracture
criterion for the most stressed point (a, 0) at the plate with the hole:

q

σc

=
2

(1 + η1)(2 + η2
1)

. (26)

One can easily see that for large values of the radius a (i.e., when η1 → 1), the plate
strength reduction caused by the hole is determined by the factor q/σc → 1/3, while for
small values of a (i.e., when η → 0) no strength reduction is predicted, q/σc → 1.

4.2 Minimum stress fracture criterion (MSFC)

According to criterion (4) and (25), one can obtain the following fracture criterion:

q

σc

=
2

2 + η2
2 + 3η4

2

(27)

For the limiting cases of large holes (η2 → 1) and small ones (η2 → 0) it follows from
(27) that q/σc → 1/3 and q/σc → 1, respectively.
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4.3 Fictitious crack fracture criterion (FCFC)
Placing a fictitious crack of a length d3 at the most stressed point (a, 0) of the plate along
the x1–axis direction, one obtains the concentrator of a non–symmetric form: a circular
hole with a single crack originating at its boundary. The symmetric form with two cracks
used earlier [1,4] corresponds to the simultaneous fracture at two points. It seems more
natural for us not to demand the fracture symmetry.

A linear elastic solution for the concentrator of such a form was obtained by Hsu
[15,16]. This solution gives the following expression for the stress intensity factor,

K1 = σ
√

πd3f(η3), (28)

where the function f(η3) (more exactly, f̃(ε) where ε = d3/a) is given in [15] in a table
form.

In the limiting case, when the hole radius a tends to zero, η3 → 0 and f(η3) → 1/
√

2.
So, the following fracture criterion takes place for the plate without a hole:

K1c = σc

√
πd3/2 (29)

The fracture criterion K1 = K1c together with equations (28) and (29) gives:

q

σc

=
1√

2f(η3)
. (30)

Note that for the hole with the radius a → ∞, η3 → 1 and the limiting geometry
corresponds to the half-plane with the edge crack under the tensile load 3σ. Using
the known solution of this problem (see, e.g., [17]), one can calculate the limiting value
limη3→1 f(η3) ' 3.3645.

4.4 Predicted results and comparison with experimental data

To compare predictions of all the criteria considered, we will use, as in section 3, the
common normalization λ = q/σc and η = a/(a + d0); then ηi is connected with η by (24),
where αi = di/d0. It is taken further that d0 = d1.

It should be noted in advance that the fictitious crack fracture criterion is not correct
for holes of large radius, since the reduction of strength described by (30) equals approx-
imately 0.21 in the limiting case a →∞ (η → 1) what is more intensive than 1/3 given
by linear elasticity stress concentration factor. However, the value 1/3 is true for large
holes, as experiments show.

Let us suppose, that the parameters σc (or K1c) and di for the three fracture criteria
considered are obtained from the two fracture tests: for a plate without a hole and for
the plate with a hole of a radius a′. One can then get the normalized hole diameter η′i
from the plate strength q′ = q(a′) and from formulas (26), (27), (30) for each criterion;
the characteristic lengths thus are di = (a′/η′i)− a′.

Let us now compare the maximum relative difference between the strength predictions
given by ASFC and MSFC criteria. From (24), (26), (27) we have,

δ21 :=
q2 − q1

q1

=
(1 + η)(2 + η2)

2 + η2(η + α2(1− η))−2 + 3η4(η + α2(1− η))−4
− 1. (31)

Using (26) and (27), we can express η′2 in terms of η′1 = η′ and then, using (24), express
α2 in terms of η′:

α2 =
η′

1− η′




√√√√ 6

−1 +
√

12(1 + η′)(2 + η′2)− 23
− 1


 .
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Analysis of this expression shows that 0 < α2 < 1/2 for 0 < η′ < 1, α2 → 0 when η′ → 0,
and α2 → 1/2 when η′ → 1. Analysing then the maximum of expression (31) with respect
to η and α2 such that 0 < η′ < 1, 0 < α2 < 1/2, we obtain that the maximum is reached
at α2 → 1/2 (i.e., at a′ → ∞) and at η ≈ 0.29888 (i.e., at a ≈ 0.42629d1 ≈ 0.85258d2)
and is equal to δ∗21 ≈ 0.15659. Analogously, the minimum of (31) is reached at α2 → 0
(i.e., at a′ → 0) and at η → 0 (i.e., at a → 0) and is equal to δ∗∗21 = −2/3. It means that
if d1, d2 are obtained from the two fracture test without and with a circular hole, the
MSFC strength predictions can amount from 33.3% to 115.7% of the ASFC predictions
for the plate with a circular hole.

Comparisons of predicted and experimental [1–3] data for the strength of multi-layer
composite materials are given in the Fig. 11–17. The characteristic lengths di(i = 1, 2, 3)
were determined for all criteria on the basis of the experiment for the concentrator of
the maximal size except for the experiment on the graphite–epoxy laminate with holes of
large radius [1] in Fig. 15-17, where the minimal size concentrator was used. The dashed
line corresponds to the strength evaluation on the basis of elastic stress concentration
factor.

As in the corresponding pictures of section 3, the η–normalizations of the experimental
points on Fig. 15-17, including the common set of experimental data, differ for the
different materials because of the different values of di. In addition, the values α2 = 1/4
and α3 = 1 were used for the η–normalizations of the experimental points in Fig. 16-17.

5
Some remarks about the fictitious crack fracture criteria

In addition to the remark given in the point 4.4, some more serious criticism of the
fictitious crack fracture criterion can be given.

Let us consider a rectilinear elastic plate under the action of a uniform tensile tractions
q applied to two of its sides, Fig. 18. Placing the fictitious crack parallel to the loaded
sides of the plate at a distance h from one of these sides, one can see (e.g., from [17]) that
the stress intensity factors K1 at the crack ends tend to infinity, when h tends to zero.
It means, that for any arbitrarily small q there exists sufficiently a small distance h such
that FCFC will predict the fracture, what leads to a contradiction with experimental data
and experience.

In defence of this criterion, one can say that the type of the boundary conditions such
as positive tractions prescribed, is only a mathematical (or mechanical) model and does
not exist in reality. But the rejection of this model seems to be too heavy sacrifice for
saving the criterion.

Conclusion

The following conclusions may be drawn on the basis of the performed analysis.

1. All the non–local fracture criteria considered, allow to describe the strength of bod-
ies containing smooth concentrators as well as singular ones. It was shown that
the fictitious crack fracture criterion coincides completely with the average stress
criterion for the plate with a central crack under symmetric loading.

2. Both the average stress fracture criterion and the minimum stress fracture crite-
rion describe the dependence between body strength and the size of concentrator
qualitatively correct. The fictitious crack fracture criterion gives incorrect results
for large smooth concentrators and does not enable the limiting transition to the
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local strength condition for the half-plane. In addition, it gives extremely incorrect
results even for the uniform stress state under boundary tractions.

3. The best description of experimental data was obtained on the basis of average
stress fracture criterion.

4. The considered criteria containing two material parameters do not enable the known
experimental data on the strength of bodies with small concentrators to be described
exactly. There are systematic deviations of the predicted result from the experimen-
tal data. Thus, the the non-local fracture criteria considered need to be improved.

Acknowledgements

This research was completed while the authors were visiting at the University of Stuttgart,
Germany, under support of the project “Application of a functional approach to non–local
strength conditions and fracture criteria” from the Volkswagen Foundation.

References

1. Waddoups,M.E.; Eisenmann,J.R.; Kaminski,B.E.: Macroscopic fracture mechanics
of advanced composite materials. J. Comp. Materials 5 (1971) 446–454.

2. Whitney,J.M.; Nuismer,R.J.: Stress fracture criteria for laminated composites con-
taining stress concentrations. J. Comp. Materials 8 (1974) 253–265.

3. Pipes,B.R.; Wetherhold,R.C.; Gillespire,J.M.Jr.: Notched strength of composite
materials. J. Comp. Materials 13 (1979) 148–160.

4. Pipes,B.R.; Wetherhold,R.C.; Gillespire,J.M.Jr.: Macroscopic fracture of fibrous
composites. Mater. Sci. Eng. 45 (1980) 247–253.

5. Awerbuch,J.; Hahn, H.T.: Crack–tip damage and fracture toughness of boron/alumi-
num composites. J. Comp. Materials 13 (1979)82–107.

6. Mikhailov,S.E.: A functional approach to non–local strength conditions and fracture
criteria – I. Body and point fracture. Engng Fracture Mech., 52 (1995) 731–743.

7. Mikhailov,S.E.: A functional approach to non–local strength conditions and fracture
criteria – II. Discrete fracture. Engng Fracture Mech., 52 (1995) 745–754.

8. Mikhailov,S.E.: On a functional description of non–local strength and fracture. Exis-
tence and uniqueness. In: Mechanisms and Mechanics of Damage and Failure – Proc.of
the 11th Europ. Conf. of Fracture. Poitiers–Futuroscope, France, 1996, Vol.1, pp. 195–
200.

9. Neuber,H.: Kerbspannungslehre. Springer, Berlin 1937.

10. Novozhilov,V.V.: On necessary and sufficient criterion of brittle strength. Appl. Math.
Mech. (PMM) 33 (1969) 212–222.

11. Cruse,T.A.: Tensile strength of notched composites. J. Comp. Materials 7 (1973)
218–229.

12. Caprino,G.; Halpin,J.C.; Nicolais,L.: Fracture mechanics in composite materials.
Composites 10 (1979) 223–227.

11



Archive of Applied Mechanics, 68(1998) 597-612

13. Muskhelishvili,N.I.: Some basic problems of mathematical theory of elasticity. Gronin-
gen, Noordhoff 1953.

14. Savin,G.N.: Stress concentration around holes. Oxford: Pergamon Pr., 1961.

15. Hsu,Y.C.: The infinite sheet with cracked cylindrical hole under inclined tension or
in–plane shear. Int. J. Fract. 11 (1975) 571–581.

16. Hsu,Y.C.: The infinite sheet with two radial cracks from cylindrical hole under inclined
tension or in–plane shear. Int. J. Fract. 13 (1977) 839–845 (1977).

17. Murakami, Y. (ed.) Stress intensity factors handbook: Volume 1, Oxford: Pergamon Pr.
1987.

12



Archive of Applied Mechanics, 68(1998) 597-612

13



Archive of Applied Mechanics, 68(1998) 597-612

14



Archive of Applied Mechanics, 68(1998) 597-612

15



Archive of Applied Mechanics, 68(1998) 597-612

Figure 4. Comparison of predicted and experimental results:
1,3 – ASFC and FCFC; 2 – MSFC; 4 – LFMC;

◦ – experimental data for a [0/ + 45/− 45]2s graphite-epoxy laminate [2].
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Figure 5. Comparison of predicted and experimental results:
1,3 – ASFC and FCFC; 2 – MSFC; 4 – LFMC;

2 – experimental data for a [+45/− 45/0/90]s graphite-epoxy laminate [4].
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Figure 6. Comparison of predicted and experimental results:
1,3 – ASFC and FCFC; 2 – MSFC; 4 – LFMC;

4 – experimental data for a [90/0/ + 45/− 45]s graphite-epoxy laminate [4].
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Figure 7. Comparison of predicted and experimental results:
1,3 – ASFC and FCFC; 2 – MSFC; 4 – LFMC;

♦ – experimental data for a [0/ + 45/− 45/90]s glass-epoxy laminate [4].
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Figure 8. Comparison of predicted and experimental results:
1,3 – ASFC and FCFC; 2 – MSFC; 4 – LFMC;

? – experimental data for a fibrous composite Al/B [5].
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Figure 9. Description of common set of experimental data on the basis of ASFC/FCFC.
Marks of experimental points are the same as in Fig. 4-8.
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Figure 10. Description of common set of experimental data on the basis of MSFC.
Marks of experimental points are the same as in Fig. 4-8.
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Figure 11. Comparison of predicted and experimental results:
1 – ASFC; 2 – MSFC; 3 – FCFC;

◦ – experimental data for a [0/ + 45/− 45]2s graphite-epoxy laminate [1].
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Figure 12. Comparison of predicted and experimental results:
1 – ASFC; 2 – MSFC; 3 – FCFC;

4 – experimental data for a quasi–isotropic glass–epoxy composite [2].

24



Archive of Applied Mechanics, 68(1998) 597-612

Figure 13. Comparison of predicted and experimental results:
1 – ASFC; 2 – MSFC; 3 – FCFC;

♦ – experimental data for a [+45/− 45/0/90]s graphite-epoxy laminate [3].
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Figure 14. Comparison of predicted and experimental results .
1 – ASFC; 2 – MSFC; 3 – FCFC;

? – experimental data for a [90/0/ + 45/− 45/]s graphite-epoxy laminate [3].
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Figure 15.Description of common set of experimental data on the basis of ASFC.
Marks of experimental points are the same as in Fig. 11-14;

2 – experimental data for the graphite–epoxy laminate with holes of large radius [1].
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Figure 16. Description of common set of experimental data on the basis of MSFC.
Marks of experimental points are the same as in Fig. 13-16;

2 – experimental data for the graphite–epoxy laminate with holes of large radius [1].
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Figure 17. Description of common set of experimental data on the basis of FCFC.
Marks of experimental points are the same as in Fig. 13-16;

2 – experimental data for the graphite–epoxy laminate with holes of large radius [1].
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Figure 18. A crack near the plate side loaded by tractions.
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