
A Comparative Analysis of the Efficiency of Change
Metrics and Static Code Attributes for Defect Prediction

Raimund Moser
Free University of Bolzano-Bozen

Piazza Domenicani 3
I-39100 Bolzano, Italy

+39 0471016138

Raimund.Moser@unibz.it

Witold Pedrycz
University of Alberta
T6G 2V4 Edmonton

Alberta, Canada
+1 7804923333

pedrycz@ee.ualberta.ca

Giancarlo Succi
Free University of Bolzano-Bozen

Piazza Domenicani 3
I-39100 Bolzano, Italy

+39 0471016130

Giancarlo.Succi@unibz.it

ABSTRACT
In this paper we present a comparative analysis of the predictive
power of two different sets of metrics for defect prediction. We
choose one set of product related and one set of process related
software metrics and use them for classifying Java files of the
Eclipse project as defective respective defect-free. Classification
models are built using three common machine learners: logistic
regression, Naïve Bayes, and decision trees. To allow different
costs for prediction errors we perform cost-sensitive
classification, which proves to be very successful: >75%
percentage of correctly classified files, a recall of >80%, and a
false positive rate <30%. Results indicate that for the Eclipse data,
process metrics are more efficient defect predictors than code
metrics.

Categories and Subject Descriptors
D.2.8 [Metrics]: Process metrics and product metrics. D.2.9
[Management]: Software quality assurance.

General Terms
Measurement, Experimentation.

Keywords
Defect prediction, software metrics, cost-sensitive classification.

1. INTRODUCTION
Defect prediction is an important issue in software engineering. It
can be used in assessing final product quality, estimating if
contractual quality standards or those imposed by customer
satisfaction are met. It can be utilized for decision management
regarding resource allocation for testing or formal verification.
Within the software engineering community the research on
defect prediction has a long tradition. In general, it aims at
answering one or several of the following questions:

• Which metrics that are easy to collect during the early phase
of software development are good defect predictors?

• Which models, quantitative, qualitative, hybrid, etc., should
be used for defect prediction?

• How accurate are those models?

• How much does it cost a software organization to utilize
defect prediction models and what are the benefits?

Previous research focused mainly on two different aspects of
defect prediction: the relationship between software defects and
code metrics [14],and the impact of the software process on the
defectiveness of software [27]. The results obtained so far are not
conclusive: some authors claimed that process metrics were more
effective defect indicators than code metrics [6] while other found
the latter very successful [14]. In addition, most of the defect
prediction models proposed so far do not consider the cost
associated with prediction errors (one of the few exceptions is for
example [13]). To emphasize the problem of cost-insensitive
prediction we consider binary classification: if we classify a code
unit either as defect free or defective, our model can make two –
in terms of software costs - very different mistakes: either it
classifies a unit, which is defect free, as defective or one, which is
defective, as defect free. The first type of error implies that we
will inspect or test a “clean” code unit, which is clearly a waste of
resources for testing respective inspection. However, the second
type of error implies that we do not test and eventually fix a code
unit, which is defective. It is clear that this might have more
serious consequences for software costs as in general fixing a
defect in later phases of development or maintenance requires
considerable effort.
In this research, we investigate some of the open questions arising
in the area of defect prediction using a particular large and up-to-
date data set for the Eclipse project (www.eclipse.org). The
original data set has been provided and published by
Zimmermann et al. [31]. While Zimmermann et al. used the data
for predicting defects for the Eclipse project using logistic
regression and complexity metrics our research objectives go far
beyond their work as we:

• Annotate the original data with a set of change metrics
extracted from the source code repository of the Eclipse
project (the Eclipse CVS repository, http://dev.eclipse.org).

• Perform a thorough comparative analysis between two
distinct sets of defect predictors, namely code metrics and
change metrics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00

181

• Use cost-sensitive classification and analyze its impact on
prediction models.

Framed in terms of research hypotheses we aim at rejecting H0:

H0: Code metrics have the same prediction accuracy as change
metrics for (cost-sensitive) defect prediction.

From a practical point of view this research aims at answering the
following questions a software organization might ask when
considering the usage of quantitative models for defect prediction:

(a) Are change metrics more useful in detecting defective source
code than code metrics?

(b) Which change metrics are good defect predictors?

(c) How accurate are such prediction models?

(d) How can cost-sensitive analysis be used to minimize
effectively misclassification costs and perform a cost-benefit
analysis for prediction models?

The paper is structured as follows. Section 2 presents some
related work. In Section 3, we report standard accuracy indicators
for binary classification and present the idea of cost-sensitive
classification in the context of software defect prediction. Section
4 deals with the experimental set-up, in particular the change
metrics proposed in this research. In Section 5 we present the
results of our experiments. Section 6 identifies some limitations of
this research. Finally, in Section 7 we draw the conclusions.

2. RELATED WORK
Despite the significant effort spent for defect prediction in
research and practice, the relationship between software defects
and the various artifacts produced during the software
development process are still unknown. Software organizations
require models that are both useful and easy to use. Useful means
that the prediction accuracy should be high enough to satisfy
practical needs. In particular, it should be competitive with
manual inspections (which means a percentage of correctly
identified defects to be at least around 60% [25]). Easy to use
requires that both the collection of predictor variables and the
training and application of models should not be too time-
consuming and possibly automated. As regards the collection of
predictor variables the trend goes towards the automatic mining of
the wealth of information contained in various kinds of
knowledge repositories used during software development such as
code repositories, faults databases, feature request/requirements
databases [24], and other. As regards the modeling process many
algorithms for both regression and classification have been
proposed: due to the wide availability of machine learning tools
and their interesting learning capabilities in a domain with very
little knowledge nowadays, a common approach is to consider a
set of data miners, train them on a training data set or using the
hold-out method, and select the one that minimizes a given error
function [14]. This seems to be a reasonable approach as the
many models proposed and applied so far are neither universally
applicable (i.e., they do not work across different application
domains) nor consistent, as for almost any study advertising a
particular method as the “best” we can find a counter study which
claims the opposite.
Regarding predictor variables we can identify three different
approaches for defect prediction: product-centric, process-centric,
and a combination of both. The most studied and traditional

approach for defect prediction is to relate software defects to the
product itself: this includes measures of the static or dynamic
structure of source code or measures extracted from design
documents or requirements. Along these lines there have been
various studies. Ohlsson and Alberg [18] reported on a study at
Ericsson where metrics derived automatically from design
documents were used to predict especially fault-prone modules
prior to testing. In the work of Basili et al. [1] the Chidamber and
Kemerer suite of object-oriented design metrics appeared to be
useful in predicting class fault-proneness during the early phases
of the software life cycle. Subramanyam and Krishnan [26]
confirmed these results. More recently Schröter et al. [23]
investigated the usage relationships between software components
with software defects and found it effective for predicting the
most defect prone components for the Eclipse project.
Zimmermann et al. [31] mapped defects from the bug database of
Eclipse to source code locations for three releases of the Eclipse
project and additionally annotated such data with a vast amount of
size and complexity metrics extracted from source code. They
found a significant correlation between complexity metrics and
pre- and post-release defects. Moreover, they used logistic
regression models for predicting successfully defects at a package
level. Menzies et al. [14] proposed the Naïve Bayes learner and a
feature selection method based on information theory and
obtained very accurate results for defect prediction on the MDP
repository for NASA projects. They concluded that there exists no
best set of code metrics for defect prediction but such set rather
depends on the characteristics of single data sets, feature selection
methods, and machine learners. Nagappan et al. [17] arrived at
similar conclusions as they stated: “However, there is no single
set of complexity metrics that could act as a universally best
defect predictor”. Instead, they suggested a general methodology
for selecting relevant complexity metrics for a given data set and
creating a defect prediction model using such metrics.
The second branch in defect prediction research aims at relating
various process artifacts such as change history of source files,
changes in the team structure, testing effort, or technology and
other human factors to software defects. Graves et al. [6] argued
that change data (i.e., number of modifications, the age of a file,
size of the modifications, and more) are better defect predictors
than source code metrics such as McCabe’s cyclomatic
complexity. Nagappan and Ball [16] applied successfully
statistical regression methods for predicting software defect
density using relative code churn. They found that absolute code
churn was a poor predictor of defect density. Hassan and Holt [7]
proposed Hit Rate caching for locating faults, which is based on a
list (cache) that contains the most (recently) modified subsystems
of a software system. They obtained useful results by even using
simple heuristics for updating and populating the cache. Weyuker
et al. [27] found that developer information helped to improve
their prediction model based on file size and change data. Bell et
al. [2] applied successfully negative binomial regression models
to identify the most fault prone files (20% of files, which contain
on average 75% of the total number of faults) in an industrial
software system. They used lines of code, various metrics for the
age of a file and its change history, and type of programming
language as predictor variables and found that change data
significantly improved (almost twice as much) prediction
accuracy with respect to a model, which uses only lines of code as
predictor. Based on code size, change data, and fault history

182

Ostrand et al. [20] obtained highly accurate results for predicting
the most fault prone files in a large software system: 20% of the
files with the highest predicted number of faults contained on
average 83% of the faults that were actually detected. In contrast
to the study of Bell et al. file size was found to be an important
fault predictor.
Finally, since neither the product- nor the process-centric
approach seems to be superior to the respective other, researchers
tend to combine process and product related measures in order to
build more accurate prediction models. However, using a large set
of predictor variables comes with two risks: data collection
becomes time consuming and costly; and models are overly
complicated and inefficient. Knab et al. [12] used static code
attributes, in particular software size, together with a set of
metrics derived from the change history of the Mozilla project in
order to build classification trees and obtained promising results
(up to 59% of correctly classified instances). Ratzinger et al. [22]
used 63 predictors including various size metrics, measures of the
change history, and other process related metrics (difficulty of the
problem, team structure, etc.) for short-term defect prediction.
Among other they concluded that “...not size and complexity
measures dominate defect-proneness, but many people-related
issues are important.”
Among the (algorithmic) defect prediction models, which produce
a numerical value as output, in general we can distinguish
between two different kinds of approaches: regression and
classification. The former aims at predicting the number of
defects present in a software unit whereas the latter usually aims
at inferring whether a software unit is defect free or not and hence
makes a binary classification (sometimes more than two classes
are considered, for example by using the defect severity as
additional classification index [29], but the general idea is the
same). In order to decide which approach to use we have to
consider the granularity of the code units for which we want to
predict defects: if they are fine-grained, as for example single
classes or files in a software system, the software engineer is
more interested in whether those units are defect free or not. On
the other hand if we consider packages or subsystems than it is
more reasonable to ask for how many defects are present in a
given subsystem. In this research we are interested in predicting
defects for single source files; hence, we look for models that are
concerned with binary classification.
In contrast to most of the previous work our primary goal is not to
analyze prediction accuracy for a single set of predictor variables;
instead, we focus on a thorough comparative analysis between the
product-, process-, and combined approach for defect prediction.
More specifically, we consider binary (at a file level) cost-
sensitive classification, which – surprisingly - is used only by few
authors [10][13].

3. CLASSIFICATION ACCURACY AND
COST-SENSITIVE CLASSIFICATION
The selection of the “best” model from a set of several prediction
models depends on the indicators used to measure prediction
performance. Therefore, in the following we review briefly the
standard indicators used for binary classification and their
meaning in the context of this study. This will lead us to the
question about different types of classification errors and their

respective costs, which are discussed in the subsequent Section on
cost-sensitive classification.

3.1 Assessing Classification Accuracy
A common strategy for training reliable and stable classification
(or regression) models when only one data set for both model
training and testing is available is as follows: we repeat several
times 10-fold cross-validation for computing various error
measures [28]. For each 10-fold cross-validation we calculate the
following accuracy indicators: percentage of correctly classified
instances, PC, the true positive rate, TP, and the false positive
rate, FP. We explain the meaning of those indexes with a simple
example: let us assume that for a particular data set, containing
105 instances (files in our case), a model provides the following
predictions: 43 files are defect free and 62 defective. However, in
reality 32 files are defect free and 73 have at least one defect.
Knowing the true class distribution (i.e., if a file is defect free or
not) we can summarize our prediction results using the so-called
confusion matrix (see Table 1).

Table 1. Confusion matrix.
 Predicted class

 0 1

0 20 (n11) 12 (n12) 32 (n1.)

1 23 (n21) 50 (n22) 73 (n2.)
Tr

ue
 c

la
ss

 43 (n.1) 62 (n.2) 105 (n)

1 means that a file has one or more defects while 0 means that it is
defect free. The meaning of the entries of the confusion matrix is
self-explanatory: the value in the gray shadowed cell for example
tells us that our model predicts 23 files as defect free, which in
reality have at least one defect! This is for sure not what we want
as detecting and fixing errors in later phases of development or
after the software has been deployed at a customer’s site can be
very costly. We rather prefer that our model predicts that a file
has a defect, but in reality doesn’t (our model predicts 12 such
files). In this case we waste resources for inspecting the file but in
general inspection costs are cheaper than the later fixing of an
undetected defect. However, obviously we would not like to
inspect all files, as this would be expensive too, and in general we
have to find the right balance between the two types of errors (the
off-diagonal elements of the confusion matrix). We will return to
this issue when describing cost-sensitive classification. Referring
to Table 1 the three indicators we compute for assessing a models
performance are defined as follows:

PC (percentage of correctly predicted files) = (n11+n22)/n*100%,
where n = n11+n12+n21+n22
TP (true positive rate) = n22/(n22+n21)*100%, in information
retrieval this is known as the recall
FP (false positive rate) = n12/(n12+n11)*100%

A good prediction model should yield a high value for PC (close
to 100%), a high value for TP (close to 100%), and a low value
for FP (close to 0%). If PC is high, but the recall (TP) low, this
means that our model predicts for a large number of files that they
are defect free, but in fact are not. Thus, those files pass the
software inspection or testing phase and possibly introduce

183

serious problems in later development or the final product – in the
worst case resulting in software failures. On the other hand, if FP
is high we have to inspect a lot of files, which is also not very
helpful for planning effective testing or inspections.

3.2 Cost-Sensitive Classification
The idea of cost-sensitive classification is to take into account the
costs associated with different prediction errors made by a model.
Without considering costs of distinctive types of misclassification
errors a model predicts the class with the highest associated
probability. For example, if it computes for a file a probability of
60% for being defect free and 40% for being defective, it will
choose the further as the class value (i.e., it will predict the file as
defect free). Instead, cost-sensitive classification minimizes a cost
function, expressed as a cost matrix, rather than maximizing the
probability for a certain class. To illustrate the basic idea and
algorithm we provide a simple example for binary classification:
We define the following cost matrix C (Table 2):

Table 2. Cost matrix.
 Predicted class

 0 1

0 0 1

Tr
ue

 c
la

ss

1 α 0

Furthermore, we have to define a cost function L; a common
approach for binary classification involves the following
combined loss function [3]:

L(x)=L(x, 1)+L(x, 0)
L(x, 1)=Prob(x, c=0)*C(0, 1) + Prob(x, c=1)*C(1, 1)
L(x, 0)=Prob(x, c=0)*C(0, 0) + Prob(x, c=1)*C(1, 0)

L represents the expected value of a discrete random variable that
assigns a cost to each file. This means that the optimal prediction
for file x is the class i∈{0, 1} that minimizes the value of the loss
function L(x, i). Prob(x, c=i) is the probability for class i given
file x; and C(i, j) is the number sitting in row i and column j of the
cost matrix C (Table 2). Let’s make a concrete example: Suppose
we have a file x for which the predicted probability of being
defect free is 60%. Then, using cost matrix C in Table 2,
L(x,1)=0.6 and L(x,0)=0.4*α. If we choose α=1 then
L(x,1)>L(x,0), which means that by minimizing the cost function
the model chooses class 0 for prediction. In this special case
minimizing the cost function is equal to maximizing the
prediction probability, thus the model assigns the class value
according to the highest probability. However, if we choose for
example α=5 then L(x,0)=2, which is higher than L(x,1). In this
case, by minimizing the cost function L, the model predicts class
1. Although it has a lower probability than class 0, its cost
function has a lower value than the one for class 0; thus, it is more
efficient when considering a cost-benefit analysis with respect to
misclassification errors, i.e., when minimizing the costs accounted
for by the prediction errors. In our context, specifying values of α
larger than 1 means that we account for the fact that false
negatives implicate higher costs than false positives; or in other
words, that it is more costly to fix an undetected defect during the

later life cycle of the software than inspect a file, which is defect-
free. There is no optimal value of α. Its value is problem-
dependent. A value too high deteriorates prediction accuracy and
will produce a large number of false positives. A value too low
will result in a model, which is not significantly different from a
cost-insensitive model. The only way to determine a useful value
for α is by trial and error: run a model with different values for α
and choose the one that yields the most benefits (right balance
between number of false positives and negatives) for your
business domain (considering possibly real costs associated with
both types of errors).

4. DATA AND EXPERIMENTAL SET-UP
In our experiments, we use a public data set, which includes a
large number of static code metrics (198 attributes) and pre- and
post-release defects for the Eclipse releases 2.0, 2.1, and 3.0. It is
available for download in the PROMISE repository
(http://promisedata.org/repository). The authors of the data set,
Zimmermann et al. [31], extracted the data from the Eclipse code
repository and bug database and mapped defects to source code
locations (files) using some heuristics based on pattern matching.
In addition to the data provided by Zimmermann et al. we
extracted 18 change metrics from the Eclipse CVS repository and
annotated the original data set with them. We skipped a subset of
the original files because they did not show a complete CVS
history as is needed for our experiments (i.e., they were
added/removed during this time period in the CVS repository). In
this study we analyze the relationship of change and code metrics
with post-release defects only at a file level. Moreover, we
complete a binary classification, as we are not interested in
predicting the number of defects per file but only whether or not it
is defect-free. Table 3 shows a summary of our augmented data
set and the class distribution, i.e., the number of defective and
defect free files.

We do not use all static code attributes included in the original
data set but only a subset of 31 metrics, which were used by
Zimmermann et al. for defect prediction at a file level. The
utilization of all 198 code attributes would involve overly
complex models and not yield better performance as most of the
measures are highly correlated with each other. The percentage in
brackets in column 2 of Table 3 shows the size of our data set
with respect to the original one.

Table 3. Summary of the Eclipse data used in the study.

Release # Files Metrics Defect
free Defective

2.0 3851 (57%) 2665 1186
2.1 5341 (68%) 4087 1254

3.0 5347 (81%)

31code
metrics and
18 change

metrics 3622 1725

Zimmermann et al. used only code metrics and related them using
correlation analysis, logistic regression, and ranking analysis to
post-release defects. They obtained promising results for
predicting the presence of defects in packages, but only fair
results for classifying single files as defect free respective
defective. These mixed results were in part the motivation for this

184

research: we suspect that change data contain more information
about defect proneness of source files than the structure of source
code itself. Therefore, in addition to code metrics, we consider a
second set of predictors concerning change history of files. Then,
we compare the model used by Zimmermann et al. with the one
based on change data and a combination of the two. In choosing
suitable change metrics we have consulted and in part followed
previous work on this topic such as the one presented in the
papers of Graves et al. [6], Nagappan and Ball [16], and Ostrand
et al. [20]. We extracted the following metrics, referred to as
change metrics, from the CVS repository of the Eclipse project
(Table 4):

Table 4. List of Change metrics used in the study.

Metric name Definition
REVISIONS Number of revisions of a file

REFACTORINGS Number of times a file has been
refactored1

BUGFIXES Number of times a file was involved in
bug-fixing2

AUTHORS Number of distinct authors that checked
a file into the repository

LOC_ADDED Sum over all revisions of the lines of
code added to a file

MAX_
LOC_ADDED

Maximum number of lines of code added
for all revisions

AVE_ LOC_ADDED Average lines of code added per revision

LOC_DELETED Sum over all revisions of the lines of
code deleted from a file

MAX_
LOC_DELETED

Maximum number of lines of code
deleted for all revisions

AVE_
LOC_DELETED

Average lines of code deleted per
revision

CODECHURN Sum of (added lines of code – deleted
lines of code) over all revisions

MAX_
CODECHURN

Maximum CODECHURN for all
revisions

AVE_
CODECHURN

Average CODECHURN per revision

MAX_CHANGESET Maximum number of files committed
together to the repository

AVE_CHANGESET Average number of files committed
together to the repository

AGE Age of a file in weeks (counting
backwards from a specific release)

WEIGHTED_AGE See equation (1)

1 Computed by using the following query for determining if the

origin of a revision was a refactoring: ... revision comment
ILIKE '%refactor%'

2 Computed by using the following query for determining if the
origin of a revision was a bug fix: ... revision comment ILIKE
'%Fix%' AND comment NOT ILIKE '% prefix %' AND
comment NOT ILIKE '% postfix %'

Regarding the definition of change metrics in Table 4 we have to
make a few remarks: first, our set of change metrics is obviously
only one possible proposal for change metrics we can extract
from a CVS repository. Other researchers proposed slightly
different metrics such as relative code churn [16], weighted damp
measures [6], month with most revisions, average days between
revisions, or relative measures for code added/deleted, and other
[22]. We introduce a new change metric, which could have an
impact on code quality, namely the number of times a file has
been refactored. We compute such metric and the BUGFIXES
metric of Table 4, i.e., the number of times a file was involved in
bug fixing activities, from CVS comments using very simple
pattern matching. Obviously, they are only as reliable as the CVS
comments made by the developers. However, as a first step our
approach is easy to implement and provides approximate
estimations for refactoring and bug-fixing activities. It can be
refined in future work if it turns out to be successful. As regards
the change set metrics, i.e., MAX/AVE_CHANGESET in Table
4, they are defined as follows: the change set of a file x is the
number of files that have been committed together with file x
(within a time frame of 2 minutes) to the repository (it is similar
to the notion of co-changes [5]). The two metrics compute the
maximum respective the average of all change sets for a single
file. Finally, we compute the AGE of a file in weeks, starting
from the release date and going back to its first appearance in the
code repository. The WEIGHTED_AGE is defined as follows:

Weighted Age =
Age(i)× LOC _ ADDED(i)

i=1

N

∑

LOC _ ADDED(i)
i=1

N

∑
 (1)

In formula (1) Age(i) is the number of weeks starting from the
release date for revision i and LOC_ADDED(i) is the number of
lines of code added at revision i. The WEIGHTED_AGE takes
into account that defect proneness not only depends on the size of
a file’s changes but also when such changes occurred [6].
Intuitively large and recent changes should have a higher impact
on defects present in a file than older changes, which probably
have already undergone some inspection and testing. Based on
our practical experience and the results reported in previous
studies, we expect files to be defect prone if they show the
following change characteristics: high revision numbers, large
code churn, many different authors, involvement in bug fixing
activities, and no refactoring.

All predictors used in this research are numerical variables and
the dependent variable can be encoded using two values (1 for
defective and 0 for defect free). For analyzing our Null hypothesis
potentially we could use all kind of (machine) learners that can do
binary classification. However, the goal of this research is not to
find the best algorithm for doing defect classification on a
particular data set, but rather to determine which set of predictors
offers more information regarding defect proneness of source
files. To decide which classifiers to use for this purpose we make
the following considerations:

• We want to compare our results with those obtained by
Zimmermann et al. [31], thus we have to include logistic
regression.

185

• We follow the principle of Occam’s razor, which means that
if a simple model serves our purpose there is no need to use
more complex models.

Naïve Bayes is a very simple classification architecture, which
nevertheless has demonstrated to perform surprisingly well in
practice; Menzies et al. [14] used it successfully for defect
classification using static code attributes and concluded that it is
superior to decision trees and the OneR algorithm. On the other
hand decision trees have been used for a long time for defect
classification and are easy to interpret [12]. Therefore, we
envisage logistic regression, Naïve Bayes, and decision trees as
the classifiers of choice for tackling our research problem. If they
provide consistent results we may safely assume that other, more
complex machine learners do so, too. We use the Weka tool [28]
and the “Weka Experiment Environment” for running all
experiments. A proper introduction and explanation of the
classifiers are out of scope of this research and can be found in
many texts on pattern recognition and data mining (for instance
[28][3]). While logistic regression and Naïve Bayes are fairly
simple algorithms, which do not offer too many parameters for
model tuning, decision trees are a bit trickier as they come in very
different flavors. We use the J48 algorithm of Weka, which is a
Java implementation of Quinlan’s C4.5 (version 8) algorithm
[21].

5. EXPERIMENTS
The first step of our experiment consists in building three models,
one using only our proposed change metrics, referred to as change
model, one using only the static code metrics used in [31],
referred to as code model, and one using both types of metrics,
referred to as combined model, for predicting the presence or
absence of defects in files.

5.1 Standard Defect Prediction
A comparison of the performance, i.e., percentage of correctly
classified instances (PC), true positive rate TP (recall), and false
positive rate FP, of the 3 models and for the 3 machine learners
applied is displayed in Table 5. Three releases of the Eclipse
project, 2.0, 2.1, and 3.0 have been taken into consideration for
which the data have been analyzed. Table 5 has to be interpreted
as follows: each row represents the average and standard
deviation of the accuracy indexes for repeated 10-fold cross-
validation. The indexes themselves are average values for each
single 10-fold cross-validation. We repeated 10-fold cross-
validation 10 times to make sure that results are not biased by the
data distribution of one specific 10-fold cross-validation. The
shading of the cells of Table 5 has the following meaning: a dark
solid cell means that its value is significantly better (either higher
or lower depending on the index) than the values of all other cells
in the same row and for the same accuracy indicator. Gray shaded
cells indicate that their values are significantly better than the
value of the remaining clear cell, but not significantly different
from each other – again for the same index and within the same
row. Significance is computed using a Kruskal-Wallis test with
the value of α set up to 0.05 [8].

Table 5. Prediction results for repeated (10 times) 10-fold
cross-validation.

 Change
metrics

Code metrics Change + code
metrics

2.0 PC TP FP PC TP FP PC TP FP

NB 73 25 4 66 54 28 73 44 13

LR 76 38 6 74 34 7 78 47 8

J48 82 69 11 72 44 15 81 69 12

2.1 PC TP FP PC TP FP PC TP FP

NB 77 24 5 74 40 15 76 36 10

LR 79 28 5 79 27 4 80 38 6

J48 83 60 10 77 38 10 81 58 11

3.0 PC TP FP PC TP FP PC TP FP

NB 74 30 4 71 28 7 73 30 6

LR 78 47 6 73 38 9 79 51 7

J48 80 65 13 71 46 17 78 64 14

NB – Naïve Bayes, LR – Logistic Regression, J48 – decision
tree. All values are in percentages.

To give an example: for release 2.1 the change model that uses a
decision tree has a significantly higher percentage of correctly
classified instances than the other two models using the same
classifier. However, as regards the recall (TP) it performs still
significantly better than the code model but similar to the
combined model (both cells are gray shaded). Regarding the
number of false positives (FP) it has similar performance to the
code model and both models are significantly better than the
combined model.
As expected the performance of the three models depends on both
the machine learner and the data set (Eclipse release), see Table 5.
However, we can make some general observations, which seem to
support our hypothesis that change metrics are better defect
predictors than code metrics. In particular, those are:
For Eclipse release 2.0:

• Regarding the percentage of correctly classified instances the
change model performs significantly better than the code
model. The same is true with respect to the other two
indicators (TP and FP): The code model produces only for
the Naïve Bayes a clearly higher recall.

• The combined model shows only similar performance to the
change model, thus it seems not to be worth to collect code
metrics in addition to change metrics.

• As regards the performance of the different learners decision
trees are the most successful.

For Eclipse release 2.1:

• We obtain similar results that confirm the findings of release
2.0. The only remarkable difference is that for the logistic
regression learner the combined model performs significantly

186

better than the remaining two, which show comparable
accuracy.

• Decision trees again perform best.

For Eclipse release 3.0:

• For Naïve Bayes and J48 the change model outperforms the
code model with respect to all 3 accuracy indicators. The
logistic model produces similar results to the one obtained
for release 2.1.

• Decision trees produce highly accurate (PC=80%,
TP=65.3%, FP=13.2%) results.

Overall, we find that the change model clearly outperforms the
code model for three types of machine learners and with respect to
the percentage of correctly classified instances, the recall, and the
false positive rate. The combined model performs similar to the
change model, but not significantly better. Thus, it does not pay
off the extra effort to collect such larger set of predictor variables.
Moreover, the results suggest that code and change metrics are
not orthogonal predictors; it seems rather that code metrics are a
weaker subset of change metrics with regard to the ability of
detecting defects. These results are consistent for the Naïve Bayes
and decision tree learners, and only the logistic regression
deviates to some extent by favoring the combined model. They
also do not change if we select a subset of features by applying a
principal components analysis before building the models.
By analyzing the decision trees a small set of predictors emerges
as the most important ones: MAX/AVE_CHANGESET,
REVISIONS, REFACTORINGS, and BUGFIXES. The splitting
thresholds for each attribute change from release to release.
However, the general conclusions remain the same: files with a
large MAX_CHANGESET or low revision numbers tend to be
defect free. Those with a smaller MAX_CHANGESET, and a low
revision number, and those that have been refactored several
times are likely to be defect free. Finally, files with higher values
for BUGFIXES are defective, which could indicate that fault
elimination activities tend to induce new defects. Such insights
are valuable for understanding the underlying model of defect
generation and constructing causal models for defect prediction.

5.2 Cost-Sensitive Defect Prediction
For cost-sensitive analysis we report only results for the decision
tree learner. As with cost-insensitive classification it turns out that
prediction results for the other two learners in general are not as
good as the ones for the J48 decision tree.
For the previous cost-insensitive models the percentage of
correctly identified classes is sufficiently high (for the change
model using decision trees for example higher than 80%, see
Table 5) and the false positive rate tolerable (less than 30%).
However, in general the recall (the true positive rate) is relatively
low (for example less than 65% for release 3.0). A low false
positive rate means that in practice we would not waste too many
resources for inspecting or testing defect free files, which is good.
A low recall means that we do not at all inspect a quite large
number of files, which in fact are defective! This is for sure
undesirable as costs for fixing defects in later phases of
development increase dramatically.
To take into account the different costs associated in practice with
the two types of errors (low recall and high false positive rate) we

perform cost-sensitive analysis as explained in Section 3.2. While
in theory simple, in practice it is not easy to apply reasonable
cost-sensitive classification as we do not know the real cost
associated with a concrete type of misclassification error. Based
on the experiences reported in the literature and our own we
assume that on average inspecting a set of files costs less than
fixing defects in later phases of development or maintenance,
which have not been disclosed by the prediction model. A
quantification of such cost, which is reflected by the α value of
the cost matrix (Section 3.2), is hardly possible. However, we can
use the following strategy: we know that our cost factor α has to
be greater than 1 as in general inspection costs are lower than
costs caused by overlooking defective files, which in turn have to
be fixed in later phases of development. We use different values
for α, starting from 2, 3... and plot false positive rate versus recall
for each α value. The resulting curves are similar to the ROC
(Receiver Operating Characteristics) curves, which are commonly
used for evaluating data mining schemes [28]. The only
difference is that instead of plotting the (TP, FP) pair for different
class probabilities we plot it for different values of α. Figure 1
shows such plot for α values ranging from 0.1 to 100 and the
change model using the J48 learner for release 2.0.

Figure 1. Recall and false positive rate for different cost

factors α.

Clearly, for a good predictor the upper left corner is the place to
be: there it has a high recall (i.e., most of the defective files are
detected) and a low number of false positives. If we do not
consider costs, which means α=1, then the overall prediction
accuracy for the predictor in Figure 1 is fairly high (82%), but the
recall is only about 69% with a false positive rate of 12%. A
software organization clearly would prefer a model, which has a
higher recall and instead take into account a higher false positive
rate. By applying cost-sensitive classification using cost factors
larger than 1 we shift the recall towards its upper bound (100%)
and simultaneously the false positive rate to the right (see Figure
1). It is evident that an increase of the recall implies an increase of
the false positive rate as we can always obtain a recall of 100% by
simply predicting that all files are defective. To determine when
to stop increasing the recall we have to use some heuristics. Based
on the results of previous work [14] we define that for a good
prediction model the false positive rate should not be higher than
around 30%. This implies that a cost factor around α=5 is a
reasonable choice for our data (it turns out that this holds for all
three releases). Clearly, such choice is truly experimental as it

187

relies on an inspection of the empirical curve of Figure 1. For
different development environments and software projects we
cannot expect a priori that a cost factor of 5 would yield the best
tradeoff between recall and false positive rate, but we have to re-
compute it.
Using a cost factor of 5 we repeat our earlier experiment for the
decision tree learner J48 and the 3 different models. Table 6,
which is similar to Table 5, shows the results of repeated (10
times) 10-fold cross-validation.

Table 6: Prediction results of repeated (10 times) 10-fold
cross-validation and a cost factor α=5.

 Change
metrics Code metrics Change + code

metrics

2.0 PC TP FP PC TP FP PC TP FP

J48 77 87 26 63 77 42 79 81 21

2.1 PC TP FP PC TP FP PC TP FP

J48 80 80 19 70 65 28 80 74 17

3.0 PC TP FP PC TP FP PC TP FP

J48 75 83 29 62 75 43 75 79 26

Cost-sensitive classification produces surprisingly good results: it
does not affect too much classification accuracy and false positive
rates, but produces excellent results for the recall. The change model
has for all releases a recall higher than 80% and a false positive rate
of less than 30%. Moreover, it outperforms clearly the code model,
for which we can report results similar to the one found by Menzies
et al. [14], but still much better than those reported in [31]. The
combined model shows similar classification accuracy to the change
model, but a significantly lower recall. Hence, it not only does not
pay of the extra effort to accomplish it, but it even seems to
deteriorate the recall with respect to a model that uses only change
metrics as predictors.
Overall, change metrics are very efficient defect predictors and
provide clearly better results than models based on static code
measures not only in the context of this study but also with respect
to previous work [14][31].
The original data sets used in this work include an additional
predictor we did not consider so far, namely the number of pre-
release defects. Repeating our experiments using such variable as
additional predictor we find that it improves dramatically our results
(CP around 95%, TP around 90% with a FP of less than 2%). A
closer look reveals that such predictor is highly correlated with post-
release defects; hence, it is able to predict the post-release defect
distribution. Thus, given the availability of such information for the
Eclipse project we would highly recommend to use a simple model
based on pre-release defects only rather than collecting change and
code metrics. However, for other software projects this seems not to
work, as the post-release defect distribution might be completely
different from the pre-release defect distribution [19].
Finally, we apply the change model for the 3 machine learners and
using a cost factor of α=5 for actual defect prediction. It means, that
we build the model using data from release n (training data) and

apply it on release n+1 (test data). Due to space constraints we do
not report the details. However, not surprisingly a model trained on
data of release n-1 does not provide as accurate prediction results for
a future release n than for the same release. In particular, in some
cases the values for the recall and false positive rate are rather
unsatisfactory. However, we can observe that the 3 learners provide
good results for single accuracy indicators. To improve overall
prediction accuracy we might consider a combination of several
models and use majority voting to decide whether or not a file is
defect free. Another proposal for improving prediction accuracy
when building models in an iterative way, i.e. for several releases of
the same project, could be to consider the past defect distribution as
additional input variable. We applied this idea successfully for effort
prediction [15]. However, it turns out that for defect prediction such
model does not enhance significantly the change model considered
so far.
To conclude the results obtained by (cost-sensitive) defect
prediction provide strong evidence for rejecting our Null hypothesis.
In the context of this study defect predictors based on change data
outperform significantly those based on static code attributes. This
result holds for the considered machine learners, predictors, and
accuracy indicators, and is even more manifest in the context of
cost-sensitive classification.

6. LIMITATIONS
Drawing general conclusions from empirical studies in software
engineering is difficult because any process depends to a large
degree on a potentially large number of relevant context variables.
For this reason, we cannot assume a priori that the results of a study
generalize beyond the specific environment in which it was
conducted. However, the results of this study are in line with a
number of observations made by other researchers. We hope that
our experiment contributes towards strengthening the existing
empirical body of knowledge and laying the foundations for a future
theory of defect prediction.
As regards the internal validity of our study we base our conclusions
on only three, although very common, data miners. In theory there
could be an algorithm, which for example provides much better
results for the code model. However, the fact that we use rather
simple learners that are proven to work well in many practical
situations, gives us some confidence that we should not expect very
different results when using more sophisticated techniques.
Improvements of more advanced models are likely to produce
analytic continuations of the findings of this study rather than abrupt
changes.
A possible threat to the conclusion validity is our particular choice
for code and change metrics as representatives for the defect
information contained in source code respective its change history.
Although those metrics are widely used and accepted by other
researchers there is no consensus as concerns their universality. We
do not yet understand the complex mechanism of why and how
defects are generated during the software development process.
Thus, in theory there could be other, much more complex metrics
hidden in source code, which are very powerful defect indicators but
nobody discovered them yet. In this light it would be safer to claim
that change data offer more defect information with respect to the
common size and complexity metrics used so far, not with respect to
any kind of code metrics.

188

Finally, the results of any experiment depend on the reliability of
the data. In our case there are several possible sources for erroneous
data: the mapping between defects and locations in source code
could be flawed; or the extraction of the code or change metrics
from the respective repositories; or some of the change metrics that
are based on developers’ reliability in writing appropriate CVS
comments could be incorrect. Since we use a public data set we
cannot validate data quality directly. As regards the change metrics
we used an in-house developed tool to extract them automatically
from the Eclipse CVS repository and are very confident about their
accuracy. The only source of ambiguity comes with the fact that we
use two change metrics, the number of refactorings and the number
of fault fixes applied to a file, which depend on CVS comments
whose reliability we are unable to assess. As regards the public
Eclipse data set Zimmermann et al. [31] described in detail how
they mined the Eclipse CVS repository and bug database and
created the final data set, which makes us feel very confident about
its correctness.

7. DISCUSSION AND CONCLUSIONS
The results of this research strongly endorse building defect
predictors using change data of source code, which can be retrieved
easily from code repositories such as CVS [30]. A set of 18 change
metrics, the J48 decision tree learner, and a cost factor of α=5 for
cost-sensitive classification generated very accurate results for three
releases of the Eclipse project: >75% percentage of correctly
classified files, a recall of >80%, and a false positive rate <30%.
These results are very promising as they clearly outperform
predictors based on static code attributes for the Eclipse project and
also the state of the art in defect prediction using code metrics as
reported in [14].
The findings of this research confirm observations made by other
researchers that change data, and more in general process related
metrics, contain more discriminatory and meaningful information
about the defect distribution in software than the source code itself
[6][22]. We offer a simple explanation for this phenomenon: while
complexity metrics are related with the cognitive effort for
understanding the source code they are not necessarily sound
indicators for software defects. For example, a source file may be
very complex and still defect free, because the developer who coded
it was very skilled and did a very prudent job. However, a
prediction model based on complexity metrics would classify it as
defective. On the other hand, if a file is involved in many changes
throughout its life cycle there is a high probability that at least one
of those changes introduces a defect, regardless of its complexity.
Obviously there is also some correlation between code complexity
and defects, as otherwise defect prediction models based on code
metrics wouldn’t work as well as they do [14].
Our high-level conclusions are that overall change data are
effectively better indicators for the presence or absence of software
defects than static code attributes. Therefore, future research on
defect prediction could focus to a significant extent on the following
issues:
(a) Which information contained in change data and other process

related knowledge repositories is relevant for defect prediction
(we should aim at defining a causal model)?

(b) How to extract automatically such information from those
repositories and turn it into powerful defect predictors?

While most of the past research effort has been invested in code
metrics based approaches and only produced mixed results [4] there
remains much more to be explored in the area of how the software
process impacts the generation of software defects during the
software’s life cycle.
As a practical result of this research we recommend to software
practitioners, who are interested in estimating defects, to use the
following guidelines:

• First, the past pre- or post-release defect distribution might give
a first clue where most defects are.

• Second, build a simple prediction model using change data that
can be easily extracted from a revision management system
such as the number of revisions of a file.

• Third, if a simple model does not produce satisfactory results,
consider all change metrics proposed in this study for defect
prediction.

• Fourth, if the recall is rather low tune the model using cost-
sensitive classification and determine a cost matrix, which is
reasonable for your business.

• Finally, if you dispose of code metrics you could consider a
combined model, which in some cases might produce slightly
better prediction results.

Our results also comment on the relative merits of certain
predictors: it turns out that of all 18 considered change metrics a few
of them are very powerful defect indicators. They have a
straightforward interpretation: first, files with high revision numbers
are by nature defect prone. Second, files that are part of large CVS
commits are likely to be defect free. We explain this by the fact that
larger CVS commits probably follow from a more time-intensive
development session, in which files have been analyzed or modified
more carefully. Third, bug-fixing activities are likely to introduce
new defects. And finally, refactoring seems to improve software
quality as files that have been refactored several times show very
few defects. The last two findings can be turned into simple
recommendations for software developers: in order to contain
defects pay particularly attention when fixing defects and be ready
to refactor those files, which have been often changed or are
involved in many bug-fixing activities.

8. REFERENCES
[1] Basili, V. R., Briand, L. C., and Melo, W. L. 1996. A

Validation of Object Oriented Design Metrics as Quality
Indicators. IEEE Transactions on Software Engineering,
22(10): 267-271.

[2] Bell, R. M., Ostrand, T. J., Weyuker, E. J. 2006. Looking For
Bugs in All the Right Places. International Symp. on Software
Testing and Analysis, (Portland, Maine, USA, July 17-20,
2006), ISSTA’06.

[3] Duda, R. O., Hart, and P. E., Stork, D. G. 2002. Pattern
Classification. 2nd edition, Wiley Interscience.

[4] Fenton, N., Neil, M. 1999. A Critique of Software Defect
Prediction Models. IEEE Transactions on Software
Engineering, 25(5): 675 – 689 (October 1999).

[5] Gall, H., Jazayeri, M., Ratzinger, J. 2003. CVS release history
data for detecting logical couplings. Proc. of the International
Workshop on Principles of Software Evolution (Lisbon,
Portugal), IEEE Computer Society Press, pp.13–23.

189

[6] Graves, T. L., Karr, A. F., Marron, J. S., Siy, H. 2000.
Predicting fault incidence using software change history. IEEE
Transactions on Software Engineering, 26(7): 653 – 661 (July
2000).

[7] Hassan A. E., and Holt, R. C. 2005. The Top Ten List:
Dynamic Fault Prediction. Proc. 21st IEEE International
Conference on Software Maintenance (Budapest, Hungary,
September 25 - 30, 2005).

[8] Hollander, M. and Wolfe, D. A. 1973. Nonparametric
Statistical Methods. Wiley.

[9] Hall, M. M., and Holmes, G. 2003. Benchmarking Attribute
Selection Techniques for Discrete Class Data Mining. IEEE
Trans. Knowledge and Data Eng., 15(6): 1437-1447 (June
2003).

[10] Khoshgoftaar, T. M., Bhattacharyya, B. B., Richardson, G. D.
1992. Predicting Software Errors, During Development, Using
Nonlinear Regression Models: A Comparative Study. IEEE
Transactions on Reliability, 41(3): 390-395 (September 1992).

[11] Khoshgoftaar, T. M., Geleyn, E., Nguyen, L., and Bullard, L.
2002. Cost-Sensitive Boosting In Software Quality Modeling.
Proc. of the 7th IEEE international Symposium on High
Assurance Systems Engineering (October 23 - 25, 2002),
Hase'02.

[12] Knab, P., Pinzger, M., Bernstein, A. 2006. Predicting Defect
Densities in Source Code Files with Decision Tree Learners.
Proc. International Workshop on Mining Software Repositories
(Shanghai, China, May 22–23, 2006), MSR’06.

[13] Lanubile, F., Visaggio, G. 1997. Evaluating Predictive Quality
Models Derived from Software Measures: Lessons Learned.
Journal Systems Software, 38: 225-234.

[14] Menzies, T., Greenwald, J., Frank, A. 2007. Data Mining
Static Code Attributes to Learn Defect Predictors. IEEE
Transactions on Software Engineering, 32(11): 1-12 (January
2007).

[15] Moser, R., Pedrycz, W., Succi, G. 2007. Incremental effort
prediction models in Agile Development using Radial Basis
Functions. Proc. 19th International Conf. on Software
Engineering & Knowledge Engineering (Boston, MA, USA,
July 9-11, 2007), SEKE'07, pp. 519-522.

[16] Nagappan, N., Ball, T. 2005. Use of Relative Code Churn
Measures to Predict System Defect Density. Proc. of 27th
International Conference on Software Engineering (St. Louis,
MO, USA, May 15–21, 2005), ICSE ’05.

[17] Nagappan, N., Ball, T., Zeller, A. 2006. Mining Metrics to
Predict Component Failures. Proc. of 28th International
Conference on Software Engineering (Shanghai, China, May
20–28, 2006), ICSE’06.

[18] Ohlsson, N., and Alberg, H. 1996. Predicting Error-Prone
Software Modules in Telephone Switches. IEEE Transactions
on Software Engineering, 22(12): 886-894.

[19] Ohlsson, N., and Fenton, N. 2000. Quantitative Analysis of
Faults and Failures in a Complex Software System. IEEE
Transactions on Software Engineering, 26(8): 797—814.

[20] Ostrand, T. J., Weyuker, E. J., Bell, R. M. 2005. Predicting the
Location and Number of Faults in Large Software Systems.
IEEE Transactions on Software Engineering (April 2005),
31(4): 340-355.

[21] Quinlan, R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers (San Mateo, CA, 1993).

[22] Ratzinger, J., Pinzger, M., Gall, H. 2007. EQ-Mine: Predicting
Short-Term Defects for Software Evolution. Proc. of FASE’07
(Braga, Portugal, 24 March - 1 April, 2007), pp. 12-26.

[23] Schröter, A., Zimmermann, T., Zeller, A. 2006. Predicting
Component Failures at Design Time. Proc. of ACM-IEEE 5th
International Symposium on Empirical Software Engineering
(Rio de Janeiro, Brazil, 2006), ISESE’06.

[24] Schröter, A., Zimmermann, T., Premraj, R., and Zeller, A.
2006. If Your Bug Database Could Talk Proc. of ACM-
IEEE 5th International Symposium on Empirical Software
Engineering, Volume II: Short Papers and Posters (Rio de
Janeiro, Brazil, 2006), ISESE’06.

[25] Shull, F., Boehm, V. B., Brown, A., Costa, P., Lindvall, M.,
Port, D., Rus, I., Tesoriero, R., and Zelkowitz, M. 2002. What
We Have Learned About Fighting Defects. Proc. of 8th Int’l
Software Metrics Symp., pp. 249-258.

[26] Subramanyam, R., and Krishnan, M. S. Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects. 2003. IEEE Transactions on
Software Engineering (April 2003), 29(4): 297-310.

[27] Weyuker, E. J., Ostrand, T. J., Bell, R. M. 2007. Using
Developer Information as a Factor for Fault Prediction. Proc.
3rd International Workshop on Predictor Models in Software
Engineering (Minneapolis, MN, USA, May 20, 2007),
PROMISE’07.

[28] Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. 2nd Edition, Morgan
Kaufmann (San Francisco, 2005).

[29] Zhou, Y., and Leung, H., Empirical Analysis of Object-
Oriented Design Metrics for Predicting High and Low Severity
Faults. 2006. IEEE Transactions on Software Engineering
(October 2006), 32(10): 771—789.

[30] Zimmermann, T., and Weißgerber, P. 2004. Preprocessing
CVS Data for Fine-Grained Analysis. Proc. of International
Workshop on Mining Software Repositories (Edinburgh,
Scotland, UK, May 25, 2004), MSR’04.

[31] Zimmermann, T., Premraj, R., Zeller, A. 2007. Predicting
Defects for Eclipse. Proc. 3rd International Workshop on
Predictor Models in Software Engineering (Minneapolis, MN,
USA, May, 2007), PROMISE’07.

190

