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ABSTRACT 
In this paper we present a comparative analysis of the predictive 
power of two different sets of metrics for defect prediction. We 
choose one set of product related and one set of process related 
software metrics and use them for classifying Java files of the 
Eclipse project as defective respective defect-free. Classification 
models are built using three common machine learners: logistic 
regression, Naïve Bayes, and decision trees. To allow different 
costs for prediction errors we perform cost-sensitive 
classification, which proves to be very successful: >75% 
percentage of correctly classified files, a recall of >80%, and a 
false positive rate <30%. Results indicate that for the Eclipse data, 
process metrics are more efficient defect predictors than code 
metrics. 

Categories and Subject Descriptors 
D.2.8 [Metrics]: Process metrics and product metrics. D.2.9 
[Management]: Software quality assurance. 

General Terms 
Measurement, Experimentation. 

Keywords 
Defect prediction, software metrics, cost-sensitive classification. 

1. INTRODUCTION 
Defect prediction is an important issue in software engineering. It 
can be used in assessing final product quality, estimating if 
contractual quality standards or those imposed by customer 
satisfaction are met. It can be utilized for decision management 
regarding resource allocation for testing or formal verification. 
Within the software engineering community the research on 
defect prediction has a long tradition. In general, it aims at 
answering one or several of the following questions: 

• Which metrics that are easy to collect during the early phase 
of software development are good defect predictors? 

• Which models, quantitative, qualitative, hybrid, etc., should 
be used for defect prediction? 

• How accurate are those models? 

• How much does it cost a software organization to utilize 
defect prediction models and what are the benefits? 

Previous research focused mainly on two different aspects of 
defect prediction: the relationship between software defects and 
code metrics [14],and the impact of the software process on the 
defectiveness of software [27]. The results obtained so far are not 
conclusive: some authors claimed that process metrics were more 
effective defect indicators than code metrics [6] while other found 
the latter very successful [14]. In addition, most of the defect 
prediction models proposed so far do not consider the cost 
associated with prediction errors (one of the few exceptions is for 
example [13]). To emphasize the problem of cost-insensitive 
prediction we consider binary classification: if we classify a code 
unit either as defect free or defective, our model can make two – 
in terms of software costs - very different mistakes: either it 
classifies a unit, which is defect free, as defective or one, which is 
defective, as defect free. The first type of error implies that we 
will inspect or test a “clean” code unit, which is clearly a waste of 
resources for testing respective inspection. However, the second 
type of error implies that we do not test and eventually fix a code 
unit, which is defective. It is clear that this might have more 
serious consequences for software costs as in general fixing a 
defect in later phases of development or maintenance requires 
considerable effort. 
In this research, we investigate some of the open questions arising 
in the area of defect prediction using a particular large and up-to-
date data set for the Eclipse project (www.eclipse.org). The 
original data set has been provided and published by 
Zimmermann et al. [31]. While Zimmermann et al. used the data 
for predicting defects for the Eclipse project using logistic 
regression and complexity metrics our research objectives go far 
beyond their work as we: 

• Annotate the original data with a set of change metrics 
extracted from the source code repository of the Eclipse 
project (the Eclipse CVS repository, http://dev.eclipse.org). 

• Perform a thorough comparative analysis between two 
distinct sets of defect predictors, namely code metrics and 
change metrics. 
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• Use cost-sensitive classification and analyze its impact on 
prediction models. 

Framed in terms of research hypotheses we aim at rejecting H0: 

H0: Code metrics have the same prediction accuracy as change 
metrics for (cost-sensitive) defect prediction. 

From a practical point of view this research aims at answering the 
following questions a software organization might ask when 
considering the usage of quantitative models for defect prediction: 

(a) Are change metrics more useful in detecting defective source 
code than code metrics? 

(b) Which change metrics are good defect predictors? 

(c) How accurate are such prediction models? 

(d) How can cost-sensitive analysis be used to minimize 
effectively misclassification costs and perform a cost-benefit 
analysis for prediction models? 

The paper is structured as follows. Section 2 presents some 
related work. In Section 3, we report standard accuracy indicators 
for binary classification and present the idea of cost-sensitive 
classification in the context of software defect prediction. Section 
4 deals with the experimental set-up, in particular the change 
metrics proposed in this research. In Section 5 we present the 
results of our experiments. Section 6 identifies some limitations of 
this research. Finally, in Section 7 we draw the conclusions. 

2. RELATED WORK 
Despite the significant effort spent for defect prediction in 
research and practice, the relationship between software defects 
and the various artifacts produced during the software 
development process are still unknown. Software organizations 
require models that are both useful and easy to use. Useful means 
that the prediction accuracy should be high enough to satisfy 
practical needs. In particular, it should be competitive with 
manual inspections (which means a percentage of correctly 
identified defects to be at least around 60% [25]). Easy to use 
requires that both the collection of predictor variables and the 
training and application of models should not be too time-
consuming and possibly automated. As regards the collection of 
predictor variables the trend goes towards the automatic mining of 
the wealth of information contained in various kinds of 
knowledge repositories used during software development such as 
code repositories, faults databases, feature request/requirements 
databases [24], and other. As regards the modeling process many 
algorithms for both regression and classification have been 
proposed: due to the wide availability of machine learning tools 
and their interesting learning capabilities in a domain with very 
little knowledge nowadays, a common approach is to consider a 
set of data miners, train them on a training data set or using the 
hold-out method, and select the one that minimizes a given error 
function [14]. This seems to be a reasonable approach as the 
many models proposed and applied so far are neither universally 
applicable (i.e., they do not work across different application 
domains) nor consistent, as for almost any study advertising a 
particular method as the “best” we can find a counter study which 
claims the opposite. 
Regarding predictor variables we can identify three different 
approaches for defect prediction: product-centric, process-centric, 
and a combination of both. The most studied and traditional 

approach for defect prediction is to relate software defects to the 
product itself: this includes measures of the static or dynamic 
structure of source code or measures extracted from design 
documents or requirements. Along these lines there have been 
various studies. Ohlsson and Alberg [18] reported on a study at 
Ericsson where metrics derived automatically from design 
documents were used to predict especially fault-prone modules 
prior to testing. In the work of Basili et al. [1] the Chidamber and 
Kemerer suite of object-oriented design metrics appeared to be 
useful in predicting class fault-proneness during the early phases 
of the software life cycle. Subramanyam and Krishnan [26] 
confirmed these results. More recently Schröter et al. [23] 
investigated the usage relationships between software components 
with software defects and found it effective for predicting the 
most defect prone components for the Eclipse project. 
Zimmermann et al. [31] mapped defects from the bug database of 
Eclipse to source code locations for three releases of the Eclipse 
project and additionally annotated such data with a vast amount of 
size and complexity metrics extracted from source code. They 
found a significant correlation between complexity metrics and 
pre- and post-release defects. Moreover, they used logistic 
regression models for predicting successfully defects at a package 
level. Menzies et al. [14] proposed the Naïve Bayes learner and a 
feature selection method based on information theory and 
obtained very accurate results for defect prediction on the MDP 
repository for NASA projects. They concluded that there exists no 
best set of code metrics for defect prediction but such set rather 
depends on the characteristics of single data sets, feature selection 
methods, and machine learners. Nagappan et al. [17] arrived at 
similar conclusions as they stated: “However, there is no single 
set of complexity metrics that could act as a universally best 
defect predictor”. Instead, they suggested a general methodology 
for selecting relevant complexity metrics for a given data set and 
creating a defect prediction model using such metrics. 
The second branch in defect prediction research aims at relating 
various process artifacts such as change history of source files, 
changes in the team structure, testing effort, or technology and 
other human factors to software defects. Graves et al. [6] argued 
that change data (i.e., number of modifications, the age of a file, 
size of the modifications, and more) are better defect predictors 
than source code metrics such as McCabe’s cyclomatic 
complexity. Nagappan and Ball [16] applied successfully 
statistical regression methods for predicting software defect 
density using relative code churn. They found that absolute code 
churn was a poor predictor of defect density. Hassan and Holt [7] 
proposed Hit Rate caching for locating faults, which is based on a 
list (cache) that contains the most (recently) modified subsystems 
of a software system. They obtained useful results by even using 
simple heuristics for updating and populating the cache. Weyuker 
et al. [27] found that developer information helped to improve 
their prediction model based on file size and change data. Bell et 
al. [2] applied successfully negative binomial regression models 
to identify the most fault prone files (20% of files, which contain 
on average 75% of the total number of faults) in an industrial 
software system. They used lines of code, various metrics for the 
age of a file and its change history, and type of programming 
language as predictor variables and found that change data 
significantly improved (almost twice as much) prediction 
accuracy with respect to a model, which uses only lines of code as 
predictor. Based on code size, change data, and fault history 
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Ostrand et al. [20] obtained highly accurate results for predicting 
the most fault prone files in a large software system: 20% of the 
files with the highest predicted number of faults contained on 
average 83% of the faults that were actually detected. In contrast 
to the study of Bell et al. file size was found to be an important 
fault predictor. 
Finally, since neither the product- nor the process-centric 
approach seems to be superior to the respective other, researchers 
tend to combine process and product related measures in order to 
build more accurate prediction models. However, using a large set 
of predictor variables comes with two risks: data collection 
becomes time consuming and costly; and models are overly 
complicated and inefficient. Knab et al. [12] used static code 
attributes, in particular software size, together with a set of 
metrics derived from the change history of the Mozilla project in 
order to build classification trees and obtained promising results 
(up to 59% of correctly classified instances). Ratzinger et al. [22] 
used 63 predictors including various size metrics, measures of the 
change history, and other process related metrics (difficulty of the 
problem, team structure, etc.) for short-term defect prediction. 
Among other they concluded that “...not size and complexity 
measures dominate defect-proneness, but many people-related 
issues are important.” 
Among the (algorithmic) defect prediction models, which produce 
a numerical value as output, in general we can distinguish 
between two different kinds of approaches: regression and 
classification. The former aims at predicting the number of 
defects present in a software unit whereas the latter usually aims 
at inferring whether a software unit is defect free or not and hence 
makes a binary classification (sometimes more than two classes 
are considered, for example by using the defect severity as 
additional classification index [29], but the general idea is the 
same). In order to decide which approach to use we have to 
consider the granularity of the code units for which we want to 
predict defects: if they are fine-grained, as for example single 
classes or files in a software system, the software engineer is 
more interested in whether those units are defect free or not. On 
the other hand if we consider packages or subsystems than it is 
more reasonable to ask for how many defects are present in a 
given subsystem. In this research we are interested in predicting 
defects for single source files; hence, we look for models that are 
concerned with binary classification. 
In contrast to most of the previous work our primary goal is not to 
analyze prediction accuracy for a single set of predictor variables; 
instead, we focus on a thorough comparative analysis between the 
product-, process-, and combined approach for defect prediction. 
More specifically, we consider binary (at a file level) cost-
sensitive classification, which – surprisingly - is used only by few 
authors [10][13]. 

3. CLASSIFICATION ACCURACY AND 
COST-SENSITIVE CLASSIFICATION 
The selection of the “best” model from a set of several prediction 
models depends on the indicators used to measure prediction 
performance. Therefore, in the following we review briefly the 
standard indicators used for binary classification and their 
meaning in the context of this study. This will lead us to the 
question about different types of classification errors and their 

respective costs, which are discussed in the subsequent Section on 
cost-sensitive classification. 

3.1 Assessing Classification Accuracy 
A common strategy for training reliable and stable classification 
(or regression) models when only one data set for both model 
training and testing is available is as follows: we repeat several 
times 10-fold cross-validation for computing various error 
measures [28]. For each 10-fold cross-validation we calculate the 
following accuracy indicators: percentage of correctly classified 
instances, PC, the true positive rate, TP, and the false positive 
rate, FP. We explain the meaning of those indexes with a simple 
example: let us assume that for a particular data set, containing 
105 instances (files in our case), a model provides the following 
predictions: 43 files are defect free and 62 defective. However, in 
reality 32 files are defect free and 73 have at least one defect. 
Knowing the true class distribution (i.e., if a file is defect free or 
not) we can summarize our prediction results using the so-called 
confusion matrix (see Table 1). 
 

Table 1. Confusion matrix. 
  Predicted class  

 0 1  

0 20 (n11) 12 (n12) 32 (n1.) 

1 23 (n21) 50 (n22) 73 (n2.) 
Tr

ue
 c

la
ss

 
 43 (n.1) 62 (n.2) 105 (n) 

 

1 means that a file has one or more defects while 0 means that it is 
defect free. The meaning of the entries of the confusion matrix is 
self-explanatory: the value in the gray shadowed cell for example 
tells us that our model predicts 23 files as defect free, which in 
reality have at least one defect! This is for sure not what we want 
as detecting and fixing errors in later phases of development or 
after the software has been deployed at a customer’s site can be 
very costly. We rather prefer that our model predicts that a file 
has a defect, but in reality doesn’t (our model predicts 12 such 
files). In this case we waste resources for inspecting the file but in 
general inspection costs are cheaper than the later fixing of an 
undetected defect. However, obviously we would not like to 
inspect all files, as this would be expensive too, and in general we 
have to find the right balance between the two types of errors (the 
off-diagonal elements of the confusion matrix). We will return to 
this issue when describing cost-sensitive classification. Referring 
to Table 1 the three indicators we compute for assessing a models 
performance are defined as follows: 

PC (percentage of correctly predicted files) = (n11+n22)/n*100%, 
where n = n11+n12+n21+n22 
TP (true positive rate) = n22/(n22+n21)*100%, in information 
retrieval this is known as the recall 
FP (false positive rate) = n12/(n12+n11)*100% 

A good prediction model should yield a high value for PC (close 
to 100%), a high value for TP (close to 100%), and a low value 
for FP (close to 0%). If PC is high, but the recall (TP) low, this 
means that our model predicts for a large number of files that they 
are defect free, but in fact are not. Thus, those files pass the 
software inspection or testing phase and possibly introduce 
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serious problems in later development or the final product – in the 
worst case resulting in software failures. On the other hand, if FP 
is high we have to inspect a lot of files, which is also not very 
helpful for planning effective testing or inspections. 

3.2 Cost-Sensitive Classification 
The idea of cost-sensitive classification is to take into account the 
costs associated with different prediction errors made by a model. 
Without considering costs of distinctive types of misclassification 
errors a model predicts the class with the highest associated 
probability. For example, if it computes for a file a probability of 
60% for being defect free and 40% for being defective, it will 
choose the further as the class value (i.e., it will predict the file as 
defect free). Instead, cost-sensitive classification minimizes a cost 
function, expressed as a cost matrix, rather than maximizing the 
probability for a certain class. To illustrate the basic idea and 
algorithm we provide a simple example for binary classification: 
We define the following cost matrix C (Table 2): 
 

Table 2. Cost matrix. 
  Predicted class 

 0 1 

0 0 1 

Tr
ue

 c
la

ss
 

1 α 0 

  
Furthermore, we have to define a cost function L; a common 
approach for binary classification involves the following 
combined loss function [3]: 

L(x)=L(x, 1)+L(x, 0) 
L(x, 1)=Prob(x, c=0)*C(0, 1) + Prob(x, c=1)*C(1, 1)  
L(x, 0)=Prob(x, c=0)*C(0, 0) + Prob(x, c=1)*C(1, 0) 

L represents the expected value of a discrete random variable that 
assigns a cost to each file. This means that the optimal prediction 
for file x is the class i∈{0, 1} that minimizes the value of the loss 
function L(x, i). Prob(x, c=i)  is the probability for class i given 
file x; and C(i, j) is the number sitting in row i and column j of the 
cost matrix C (Table 2). Let’s make a concrete example: Suppose 
we have a file x for which the predicted probability of being 
defect free is 60%. Then, using cost matrix C in Table 2, 
L(x,1)=0.6 and L(x,0)=0.4*α. If we choose α=1 then 
L(x,1)>L(x,0), which means that by minimizing the cost function 
the model chooses class 0 for prediction. In this special case 
minimizing the cost function is equal to maximizing the 
prediction probability, thus the model assigns the class value 
according to the highest probability. However, if we choose for 
example α=5 then L(x,0)=2, which is higher than L(x,1). In this 
case, by minimizing the cost function L, the model predicts class 
1. Although it has a lower probability than class 0, its cost 
function has a lower value than the one for class 0; thus, it is more 
efficient when considering a cost-benefit analysis with respect to 
misclassification errors, i.e., when minimizing the costs accounted 
for by the prediction errors. In our context, specifying values of α 
larger than 1 means that we account for the fact that false 
negatives implicate higher costs than false positives; or in other 
words, that it is more costly to fix an undetected defect during the 

later life cycle of the software than inspect a file, which is defect-
free. There is no optimal value of α. Its value is problem-
dependent. A value too high deteriorates prediction accuracy and 
will produce a large number of false positives. A value too low 
will result in a model, which is not significantly different from a 
cost-insensitive model. The only way to determine a useful value 
for α is by trial and error: run a model with different values for α 
and choose the one that yields the most benefits (right balance 
between number of false positives and negatives) for your 
business domain (considering possibly real costs associated with 
both types of errors). 

4. DATA AND EXPERIMENTAL SET-UP 
In our experiments, we use a public data set, which includes a 
large number of static code metrics (198 attributes) and pre- and 
post-release defects for the Eclipse releases 2.0, 2.1, and 3.0. It is 
available for download in the PROMISE repository 
(http://promisedata.org/repository). The authors of the data set, 
Zimmermann et al. [31], extracted the data from the Eclipse code 
repository and bug database and mapped defects to source code 
locations (files) using some heuristics based on pattern matching. 
In addition to the data provided by Zimmermann et al. we 
extracted 18 change metrics from the Eclipse CVS repository and 
annotated the original data set with them. We skipped a subset of 
the original files because they did not show a complete CVS 
history as is needed for our experiments (i.e., they were 
added/removed during this time period in the CVS repository). In 
this study we analyze the relationship of change and code metrics 
with post-release defects only at a file level. Moreover, we 
complete a binary classification, as we are not interested in 
predicting the number of defects per file but only whether or not it 
is defect-free. Table 3 shows a summary of our augmented data 
set and the class distribution, i.e., the number of defective and 
defect free files.  

We do not use all static code attributes included in the original 
data set but only a subset of 31 metrics, which were used by 
Zimmermann et al. for defect prediction at a file level. The 
utilization of all 198 code attributes would involve overly 
complex models and not yield better performance as most of the 
measures are highly correlated with each other. The percentage in 
brackets in column 2 of Table 3 shows the size of our data set 
with respect to the original one. 

 

Table 3. Summary of the Eclipse data used in the study. 

Release # Files Metrics Defect 
free Defective 

2.0 3851 (57%) 2665 1186 
2.1 5341 (68%) 4087 1254 

3.0 5347 (81%) 

31code 
metrics and 
18 change 

metrics 3622 1725 

 

Zimmermann et al. used only code metrics and related them using 
correlation analysis, logistic regression, and ranking analysis to 
post-release defects. They obtained promising results for 
predicting the presence of defects in packages, but only fair 
results for classifying single files as defect free respective 
defective. These mixed results were in part the motivation for this 

184



research: we suspect that change data contain more information 
about defect proneness of source files than the structure of source 
code itself. Therefore, in addition to code metrics, we consider a 
second set of predictors concerning change history of files. Then, 
we compare the model used by Zimmermann et al. with the one 
based on change data and a combination of the two. In choosing 
suitable change metrics we have consulted and in part followed 
previous work on this topic such as the one presented in the 
papers of Graves et al. [6], Nagappan and Ball [16], and Ostrand 
et al. [20]. We extracted the following metrics, referred to as 
change metrics, from the CVS repository of the Eclipse project 
(Table 4): 

 

Table 4. List of Change metrics used in the study. 

Metric name Definition 
REVISIONS Number of revisions of a file 

REFACTORINGS Number of times a file has been 
refactored1 

BUGFIXES Number of times a file was involved in 
bug-fixing2 

AUTHORS Number of distinct authors that checked 
a file into the repository 

LOC_ADDED Sum over all revisions of the lines of 
code added to a file 

MAX_ 
LOC_ADDED 

Maximum number of lines of code added 
for all revisions 

AVE_ LOC_ADDED Average lines of code added per revision 

LOC_DELETED Sum over all revisions of the lines of 
code deleted from a file 

MAX_ 
LOC_DELETED 

Maximum number of lines of code 
deleted for all revisions 

AVE_ 
LOC_DELETED 

Average lines of code deleted per 
revision 

CODECHURN Sum of (added lines of code – deleted 
lines of code) over all revisions 

MAX_ 
CODECHURN 

Maximum CODECHURN for all 
revisions 

AVE_ 
CODECHURN 

Average CODECHURN per revision 

MAX_CHANGESET Maximum number of files committed 
together to the repository 

AVE_CHANGESET Average number of files committed 
together to the repository 

AGE Age of a file in weeks (counting 
backwards from a specific release) 

WEIGHTED_AGE See equation (1) 
 

                                                                 
1 Computed by using the following query for determining if the 

origin of a revision was a refactoring: ... revision comment 
ILIKE '%refactor%' 

2 Computed by using the following query for determining if the 
origin of a revision was a bug fix: ... revision comment ILIKE 
'%Fix%' AND comment NOT ILIKE '% prefix %' AND 
comment NOT ILIKE '% postfix %' 

Regarding the definition of change metrics in Table 4 we have to 
make a few remarks: first, our set of change metrics is obviously 
only one possible proposal for change metrics we can extract 
from a CVS repository. Other researchers proposed slightly 
different metrics such as relative code churn [16], weighted damp 
measures [6], month with most revisions, average days between 
revisions, or relative measures for code added/deleted, and other 
[22]. We introduce a new change metric, which could have an 
impact on code quality, namely the number of times a file has 
been refactored. We compute such metric and the BUGFIXES 
metric of Table 4, i.e., the number of times a file was involved in 
bug fixing activities, from CVS comments using very simple 
pattern matching. Obviously, they are only as reliable as the CVS 
comments made by the developers. However, as a first step our 
approach is easy to implement and provides approximate 
estimations for refactoring and bug-fixing activities. It can be 
refined in future work if it turns out to be successful. As regards 
the change set metrics, i.e., MAX/AVE_CHANGESET in Table 
4, they are defined as follows: the change set of a file x is the 
number of files that have been committed together with file x 
(within a time frame of 2 minutes) to the repository (it is similar 
to the notion of co-changes [5]). The two metrics compute the 
maximum respective the average of all change sets for a single 
file. Finally, we compute the AGE of a file in weeks, starting 
from the release date and going back to its first appearance in the 
code repository. The WEIGHTED_AGE is defined as follows: 

Weighted Age =
Age(i)× LOC _ ADDED(i)

i=1

N

∑

LOC _ ADDED(i)
i=1

N

∑
                   (1) 

In formula (1) Age(i) is the number of weeks starting from the 
release date for revision i and LOC_ADDED(i) is the number of 
lines of code added at revision i. The WEIGHTED_AGE takes 
into account that defect proneness not only depends on the size of 
a file’s changes but also when such changes occurred [6]. 
Intuitively large and recent changes should have a higher impact 
on defects present in a file than older changes, which probably 
have already undergone some inspection and testing. Based on 
our practical experience and the results reported in previous 
studies, we expect files to be defect prone if they show the 
following change characteristics: high revision numbers, large 
code churn, many different authors, involvement in bug fixing 
activities, and no refactoring. 

All predictors used in this research are numerical variables and 
the dependent variable can be encoded using two values (1 for 
defective and 0 for defect free). For analyzing our Null hypothesis 
potentially we could use all kind of (machine) learners that can do 
binary classification. However, the goal of this research is not to 
find the best algorithm for doing defect classification on a 
particular data set, but rather to determine which set of predictors 
offers more information regarding defect proneness of source 
files. To decide which classifiers to use for this purpose we make 
the following considerations:  

• We want to compare our results with those obtained by 
Zimmermann et al. [31], thus we have to include logistic 
regression.  
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• We follow the principle of Occam’s razor, which means that 
if a simple model serves our purpose there is no need to use 
more complex models. 

Naïve Bayes is a very simple classification architecture, which 
nevertheless has demonstrated to perform surprisingly well in 
practice; Menzies et al. [14] used it successfully for defect 
classification using static code attributes and concluded that it is 
superior to decision trees and the OneR algorithm. On the other 
hand decision trees have been used for a long time for defect 
classification and are easy to interpret [12]. Therefore, we 
envisage logistic regression, Naïve Bayes, and decision trees as 
the classifiers of choice for tackling our research problem. If they 
provide consistent results we may safely assume that other, more 
complex machine learners do so, too. We use the Weka tool [28] 
and the “Weka Experiment Environment” for running all 
experiments. A proper introduction and explanation of the 
classifiers are out of scope of this research and can be found in 
many texts on pattern recognition and data mining (for instance 
[28][3]). While logistic regression and Naïve Bayes are fairly 
simple algorithms, which do not offer too many parameters for 
model tuning, decision trees are a bit trickier as they come in very 
different flavors. We use the J48 algorithm of Weka, which is a 
Java implementation of Quinlan’s C4.5 (version 8) algorithm 
[21]. 

5. EXPERIMENTS 
The first step of our experiment consists in building three models, 
one using only our proposed change metrics, referred to as change 
model, one using only the static code metrics used in [31], 
referred to as code model, and one using both types of metrics, 
referred to as combined model, for predicting the presence or 
absence of defects in files. 

5.1 Standard Defect Prediction 
A comparison of the performance, i.e., percentage of correctly 
classified instances (PC), true positive rate TP (recall), and false 
positive rate FP, of the 3 models and for the 3 machine learners 
applied is displayed in Table 5. Three releases of the Eclipse 
project, 2.0, 2.1, and 3.0 have been taken into consideration for 
which the data have been analyzed. Table 5 has to be interpreted 
as follows: each row represents the average and standard 
deviation of the accuracy indexes for repeated 10-fold cross-
validation. The indexes themselves are average values for each 
single 10-fold cross-validation. We repeated 10-fold cross-
validation 10 times to make sure that results are not biased by the 
data distribution of one specific 10-fold cross-validation. The 
shading of the cells of Table 5 has the following meaning: a dark 
solid cell means that its value is significantly better (either higher 
or lower depending on the index) than the values of all other cells 
in the same row and for the same accuracy indicator. Gray shaded 
cells indicate that their values are significantly better than the 
value of the remaining clear cell, but not significantly different 
from each other – again for the same index and within the same 
row. Significance is computed using a Kruskal-Wallis test with 
the value of α set up to 0.05 [8]. 

 

Table 5. Prediction results for repeated (10 times) 10-fold 
cross-validation. 

 Change 
metrics 

Code metrics Change + code 
metrics 

2.0 PC TP FP PC TP FP PC TP FP 

NB 73 25 4 66 54 28 73 44 13 

LR 76 38 6 74 34 7 78 47 8 

J48 82 69 11 72 44 15 81 69 12 

2.1 PC TP FP PC TP FP PC TP FP 

NB 77 24 5 74 40 15 76 36 10 

LR 79 28 5 79 27 4 80 38 6 

J48 83 60 10 77 38 10 81 58 11 

3.0 PC TP FP PC TP FP PC TP FP 

NB 74 30 4 71 28 7 73 30 6 

LR 78 47 6 73 38 9 79 51 7 

J48 80 65 13 71 46 17 78 64 14 

NB – Naïve Bayes, LR – Logistic Regression, J48 – decision 
tree. All values are in percentages. 

 

To give an example: for release 2.1 the change model that uses a 
decision tree has a significantly higher percentage of correctly 
classified instances than the other two models using the same 
classifier. However, as regards the recall (TP) it performs still 
significantly better than the code model but similar to the 
combined model (both cells are gray shaded). Regarding the 
number of false positives (FP) it has similar performance to the 
code model and both models are significantly better than the 
combined model. 
As expected the performance of the three models depends on both 
the machine learner and the data set (Eclipse release), see Table 5. 
However, we can make some general observations, which seem to 
support our hypothesis that change metrics are better defect 
predictors than code metrics. In particular, those are:  
For Eclipse release 2.0: 

• Regarding the percentage of correctly classified instances the 
change model performs significantly better than the code 
model. The same is true with respect to the other two 
indicators (TP and FP): The code model produces only for 
the Naïve Bayes a clearly higher recall. 

• The combined model shows only similar performance to the 
change model, thus it seems not to be worth to collect code 
metrics in addition to change metrics. 

• As regards the performance of the different learners decision 
trees are the most successful. 

 
For Eclipse release 2.1: 

• We obtain similar results that confirm the findings of release 
2.0. The only remarkable difference is that for the logistic 
regression learner the combined model performs significantly 
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better than the remaining two, which show comparable 
accuracy. 

• Decision trees again perform best. 
 
For Eclipse release 3.0: 

• For Naïve Bayes and J48 the change model outperforms the 
code model with respect to all 3 accuracy indicators. The 
logistic model produces similar results to the one obtained 
for release 2.1. 

• Decision trees produce highly accurate (PC=80%, 
TP=65.3%, FP=13.2%) results. 

 
Overall, we find that the change model clearly outperforms the 
code model for three types of machine learners and with respect to 
the percentage of correctly classified instances, the recall, and the 
false positive rate. The combined model performs similar to the 
change model, but not significantly better. Thus, it does not pay 
off the extra effort to collect such larger set of predictor variables. 
Moreover, the results suggest that code and change metrics are 
not orthogonal predictors; it seems rather that code metrics are a 
weaker subset of change metrics with regard to the ability of 
detecting defects. These results are consistent for the Naïve Bayes 
and decision tree learners, and only the logistic regression 
deviates to some extent by favoring the combined model. They 
also do not change if we select a subset of features by applying a 
principal components analysis before building the models. 
By analyzing the decision trees a small set of predictors emerges 
as the most important ones: MAX/AVE_CHANGESET, 
REVISIONS, REFACTORINGS, and BUGFIXES. The splitting 
thresholds for each attribute change from release to release. 
However, the general conclusions remain the same: files with a 
large MAX_CHANGESET or low revision numbers tend to be 
defect free. Those with a smaller MAX_CHANGESET, and a low 
revision number, and those that have been refactored several 
times are likely to be defect free. Finally, files with higher values 
for BUGFIXES are defective, which could indicate that fault 
elimination activities tend to induce new defects. Such insights 
are valuable for understanding the underlying model of defect 
generation and constructing causal models for defect prediction. 

5.2 Cost-Sensitive Defect Prediction 
For cost-sensitive analysis we report only results for the decision 
tree learner. As with cost-insensitive classification it turns out that 
prediction results for the other two learners in general are not as 
good as the ones for the J48 decision tree. 
For the previous cost-insensitive models the percentage of 
correctly identified classes is sufficiently high (for the change 
model using decision trees for example higher than 80%, see 
Table 5) and the false positive rate tolerable (less than 30%). 
However, in general the recall (the true positive rate) is relatively 
low (for example less than 65% for release 3.0). A low false 
positive rate means that in practice we would not waste too many 
resources for inspecting or testing defect free files, which is good. 
A low recall means that we do not at all inspect a quite large 
number of files, which in fact are defective! This is for sure 
undesirable as costs for fixing defects in later phases of 
development increase dramatically. 
To take into account the different costs associated in practice with 
the two types of errors (low recall and high false positive rate) we 

perform cost-sensitive analysis as explained in Section 3.2. While 
in theory simple, in practice it is not easy to apply reasonable 
cost-sensitive classification as we do not know the real cost 
associated with a concrete type of misclassification error. Based 
on the experiences reported in the literature and our own we 
assume that on average inspecting a set of files costs less than 
fixing defects in later phases of development or maintenance, 
which have not been disclosed by the prediction model. A 
quantification of such cost, which is reflected by the α value of 
the cost matrix (Section 3.2), is hardly possible. However, we can 
use the following strategy: we know that our cost factor α has to 
be greater than 1 as in general inspection costs are lower than 
costs caused by overlooking defective files, which in turn have to 
be fixed in later phases of development. We use different values 
for α, starting from 2, 3...  and plot false positive rate versus recall 
for each α value. The resulting curves are similar to the ROC 
(Receiver Operating Characteristics) curves, which are commonly 
used for evaluating data mining schemes [28]. The only 
difference is that instead of plotting the (TP, FP) pair for different 
class probabilities we plot it for different values of α. Figure 1 
shows such plot for α values ranging from 0.1 to 100 and the 
change model using the J48 learner for release 2.0. 
 

 
Figure 1. Recall and false positive rate for different cost 

factors α. 
 
Clearly, for a good predictor the upper left corner is the place to 
be: there it has a high recall (i.e., most of the defective files are 
detected) and a low number of false positives. If we do not 
consider costs, which means α=1, then the overall prediction 
accuracy for the predictor in Figure 1 is fairly high (82%), but the 
recall is only about 69% with a false positive rate of 12%. A 
software organization clearly would prefer a model, which has a 
higher recall and instead take into account a higher false positive 
rate. By applying cost-sensitive classification using cost factors 
larger than 1 we shift the recall towards its upper bound (100%) 
and simultaneously the false positive rate to the right (see Figure 
1). It is evident that an increase of the recall implies an increase of 
the false positive rate as we can always obtain a recall of 100% by 
simply predicting that all files are defective. To determine when 
to stop increasing the recall we have to use some heuristics. Based 
on the results of previous work [14] we define that for a good 
prediction model the false positive rate should not be higher than 
around 30%. This implies that a cost factor around α=5 is a 
reasonable choice for our data (it turns out that this holds for all 
three releases). Clearly, such choice is truly experimental as it 
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relies on an inspection of the empirical curve of Figure 1. For 
different development environments and software projects we 
cannot expect a priori that a cost factor of 5 would yield the best 
tradeoff between recall and false positive rate, but we have to re-
compute it. 
Using a cost factor of 5 we repeat our earlier experiment for the 
decision tree learner J48 and the 3 different models. Table 6, 
which is similar to Table 5, shows the results of repeated (10 
times) 10-fold cross-validation. 
 

Table 6: Prediction results of repeated (10 times) 10-fold 
cross-validation and a cost factor α=5. 

 Change 
metrics Code metrics Change + code 

metrics 

2.0 PC TP FP PC TP FP PC TP FP 

J48 77 87 26 63 77 42 79 81 21 

2.1 PC TP FP PC TP FP PC TP FP 

J48 80 80 19 70 65 28 80 74 17 

3.0 PC TP FP PC TP FP PC TP FP 

J48 75 83 29 62 75 43 75 79 26 

 

Cost-sensitive classification produces surprisingly good results: it 
does not affect too much classification accuracy and false positive 
rates, but produces excellent results for the recall. The change model 
has for all releases a recall higher than 80% and a false positive rate 
of less than 30%. Moreover, it outperforms clearly the code model, 
for which we can report results similar to the one found by Menzies 
et al. [14], but still much better than those reported in [31]. The 
combined model shows similar classification accuracy to the change 
model, but a significantly lower recall. Hence, it not only does not 
pay of the extra effort to accomplish it, but it even seems to 
deteriorate the recall with respect to a model that uses only change 
metrics as predictors. 
Overall, change metrics are very efficient defect predictors and 
provide clearly better results than models based on static code 
measures not only in the context of this study but also with respect 
to previous work [14][31]. 
The original data sets used in this work include an additional 
predictor we did not consider so far, namely the number of pre-
release defects. Repeating our experiments using such variable as 
additional predictor we find that it improves dramatically our results 
(CP around 95%, TP around 90% with a FP of less than 2%). A 
closer look reveals that such predictor is highly correlated with post-
release defects; hence, it is able to predict the post-release defect 
distribution. Thus, given the availability of such information for the 
Eclipse project we would highly recommend to use a simple model 
based on pre-release defects only rather than collecting change and 
code metrics. However, for other software projects this seems not to 
work, as the post-release defect distribution might be completely 
different from the pre-release defect distribution [19]. 
Finally, we apply the change model for the 3 machine learners and 
using a cost factor of α=5 for actual defect prediction. It means, that 
we build the model using data from release n (training data) and 

apply it on release n+1 (test data). Due to space constraints we do 
not report the details. However, not surprisingly a model trained on 
data of release n-1 does not provide as accurate prediction results for 
a future release n than for the same release. In particular, in some 
cases the values for the recall and false positive rate are rather 
unsatisfactory. However, we can observe that the 3 learners provide 
good results for single accuracy indicators. To improve overall 
prediction accuracy we might consider a combination of several 
models and use majority voting to decide whether or not a file is 
defect free. Another proposal for improving prediction accuracy 
when building models in an iterative way, i.e. for several releases of 
the same project, could be to consider the past defect distribution as 
additional input variable. We applied this idea successfully for effort 
prediction [15]. However, it turns out that for defect prediction such 
model does not enhance significantly the change model considered 
so far. 
To conclude the results obtained by (cost-sensitive) defect 
prediction provide strong evidence for rejecting our Null hypothesis. 
In the context of this study defect predictors based on change data 
outperform significantly those based on static code attributes. This 
result holds for the considered machine learners, predictors, and 
accuracy indicators, and is even more manifest in the context of 
cost-sensitive classification. 

6. LIMITATIONS 
Drawing general conclusions from empirical studies in software 
engineering is difficult because any process depends to a large 
degree on a potentially large number of relevant context variables.  
For this reason, we cannot assume a priori that the results of a study 
generalize beyond the specific environment in which it was 
conducted. However, the results of this study are in line with a 
number of observations made by other researchers. We hope that 
our experiment contributes towards strengthening the existing 
empirical body of knowledge and laying the foundations for a future 
theory of defect prediction. 
As regards the internal validity of our study we base our conclusions 
on only three, although very common, data miners. In theory there 
could be an algorithm, which for example provides much better 
results for the code model. However, the fact that we use rather 
simple learners that are proven to work well in many practical 
situations, gives us some confidence that we should not expect very 
different results when using more sophisticated techniques. 
Improvements of more advanced models are likely to produce 
analytic continuations of the findings of this study rather than abrupt 
changes. 
A possible threat to the conclusion validity is our particular choice 
for code and change metrics as representatives for the defect 
information contained in source code respective its change history. 
Although those metrics are widely used and accepted by other 
researchers there is no consensus as concerns their universality. We 
do not yet understand the complex mechanism of why and how 
defects are generated during the software development process. 
Thus, in theory there could be other, much more complex metrics 
hidden in source code, which are very powerful defect indicators but 
nobody discovered them yet. In this light it would be safer to claim 
that change data offer more defect information with respect to the 
common size and complexity metrics used so far, not with respect to 
any kind of code metrics. 
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Finally, the results of any experiment depend on the reliability of 
the data. In our case there are several possible sources for erroneous 
data: the mapping between defects and locations in source code 
could be flawed; or the extraction of the code or change metrics 
from the respective repositories; or some of the change metrics that 
are based on developers’ reliability in writing appropriate CVS 
comments could be incorrect. Since we use a public data set we 
cannot validate data quality directly. As regards the change metrics 
we used an in-house developed tool to extract them automatically 
from the Eclipse CVS repository and are very confident about their 
accuracy. The only source of ambiguity comes with the fact that we 
use two change metrics, the number of refactorings and the number 
of fault fixes applied to a file, which depend on CVS comments 
whose reliability we are unable to assess. As regards the public 
Eclipse data set Zimmermann et al. [31] described in detail how 
they mined the Eclipse CVS repository and bug database and 
created the final data set, which makes us feel very confident about 
its correctness. 

7. DISCUSSION AND CONCLUSIONS 
The results of this research strongly endorse building defect 
predictors using change data of source code, which can be retrieved 
easily from code repositories such as CVS [30]. A set of 18 change 
metrics, the J48 decision tree learner, and a cost factor of α=5 for 
cost-sensitive classification generated very accurate results for three 
releases of the Eclipse project: >75% percentage of correctly 
classified files, a recall of >80%, and a false positive rate <30%. 
These results are very promising as they clearly outperform 
predictors based on static code attributes for the Eclipse project and 
also the state of the art in defect prediction using code metrics as 
reported in [14]. 
The findings of this research confirm observations made by other 
researchers that change data, and more in general process related 
metrics, contain more discriminatory and meaningful information 
about the defect distribution in software than the source code itself 
[6][22]. We offer a simple explanation for this phenomenon: while 
complexity metrics are related with the cognitive effort for 
understanding the source code they are not necessarily sound 
indicators for software defects. For example, a source file may be 
very complex and still defect free, because the developer who coded 
it was very skilled and did a very prudent job. However, a 
prediction model based on complexity metrics would classify it as 
defective. On the other hand, if a file is involved in many changes 
throughout its life cycle there is a high probability that at least one 
of those changes introduces a defect, regardless of its complexity. 
Obviously there is also some correlation between code complexity 
and defects, as otherwise defect prediction models based on code 
metrics wouldn’t work as well as they do [14]. 
Our high-level conclusions are that overall change data are 
effectively better indicators for the presence or absence of software 
defects than static code attributes. Therefore, future research on 
defect prediction could focus to a significant extent on the following 
issues:  
(a) Which information contained in change data and other process 

related knowledge repositories is relevant for defect prediction 
(we should aim at defining a causal model)?  

(b) How to extract automatically such information from those 
repositories and turn it into powerful defect predictors? 

 

While most of the past research effort has been invested in code 
metrics based approaches and only produced mixed results [4] there 
remains much more to be explored in the area of how the software 
process impacts the generation of software defects during the 
software’s life cycle. 
As a practical result of this research we recommend to software 
practitioners, who are interested in estimating defects, to use the 
following guidelines: 

• First, the past pre- or post-release defect distribution might give 
a first clue where most defects are. 

• Second, build a simple prediction model using change data that 
can be easily extracted from a revision management system 
such as the number of revisions of a file. 

• Third, if a simple model does not produce satisfactory results, 
consider all change metrics proposed in this study for defect 
prediction. 

• Fourth, if the recall is rather low tune the model using cost-
sensitive classification and determine a cost matrix, which is 
reasonable for your business.  

• Finally, if you dispose of code metrics you could consider a 
combined model, which in some cases might produce slightly 
better prediction results. 

 
Our results also comment on the relative merits of certain 
predictors: it turns out that of all 18 considered change metrics a few 
of them are very powerful defect indicators. They have a 
straightforward interpretation: first, files with high revision numbers 
are by nature defect prone. Second, files that are part of large CVS 
commits are likely to be defect free. We explain this by the fact that 
larger CVS commits probably follow from a more time-intensive 
development session, in which files have been analyzed or modified 
more carefully. Third, bug-fixing activities are likely to introduce 
new defects. And finally, refactoring seems to improve software 
quality as files that have been refactored several times show very 
few defects. The last two findings can be turned into simple 
recommendations for software developers: in order to contain 
defects pay particularly attention when fixing defects and be ready 
to refactor those files, which have been often changed or are 
involved in many bug-fixing activities. 
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