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Mobile phone calling is one of the most widely used communication methods in modern society. The
records of calls among mobile phone users provide us a valuable proxy for the understanding of human
communication patterns embedded in social networks. Mobile phone users call each other forming a
directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling
network. The preferential communication behavior between two connected users can be statistically tested
and it results in two Bonferroni networks with statistically validated edges. We perform a comparative
analysis of the statistical properties of these four networks, which are constructed from the calling records of
more than ninemillion individuals in Shanghai over a period of 110 days.We find that these networks share
many common structural properties and also exhibit idiosyncratic features when compared with previously
studied large mobile calling networks. The empirical findings provide us an intriguing picture of a
representative large social network that might shed new lights on the modelling of large social networks.

I
n the past two decades, the number of mobile phone users in China increased dramatically. There were 47.5
thousand users in 1991. This number increased to 84.5 million in 2000. In October 2013, it was released by the
Ministry of Industry and Information Technology of China that there were 1.216 billion mobile phone users.

The number of people using mobile phones is certainly less than that number, because it is not uncommon that a
person owns two or more mobile phone numbers. Nevertheless, the actual population of mobile phone users is
huge. Hence, the records ofmobile phone calls provide us great opportunities to study human’smobility patterns,
communication dynamics, and social structure.

González et al. studied 16,264,308 displacements between successive mobile phone calls of 100,000 individuals
randomly selected from a sample ofmore than 6million anonymizedmobile phone users over a six-month period
in a European country and found that the density function follows a shifted power lawwith an exponential cutoff1.
An analysis of human movements based on the trajectories of 464,670 dollar bills obtained from a bill-tracking
system in the United States shows that jumps in human trajectories are distributed as a power law2. In contrast,
there is evidence showing that intra-urban human mobility does not follow a power law but an exponential
distribution according to mobile phone records3 and taxi trips data4–6. It is crucial to point out that, when
compared to human’s mobility patterns at the aggregate level, individuals’ patterns might not be homogeneous
but exhibit different features7. In addition, different data from different regions may also give different results8.
Intriguingly, human’s mobility patterns are largely predictable9–11. It is unmistakable to foresee that mobile phone
data will play a more significant role along the progress of constructing smart cities.

Understanding the temporal patterns of human’s communication dynamics is essential in the tracking and
management of information spreading and social contagion. According to the analysis of durations between two
consecutive calls1,12–15 and short-message correspondences16–18, it is well documented that the distribution of
inter-communication durations has a fat tail and human interactions exhibit non-Poissonian characteristics. The
non-Poissonian communication patterns are also observed in other situations such as email communications19,20

and letter correspondences21–23.
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Mobile phone communication data also provide a useful channel
for the study of social structure from the perspective of complex
networks24–27. For instance, one can infer friendship network structure
by using mobile phone data, offering an alternative method to the
standard self-report survey28. The investigation of temporal motifs in
the calling networks unveils the existence of temporal homophily in
the sense that similar individuals tend to participate in mutual com-
munications29. The topological properties of a large calling network
constructed from European data have been investigated in detail30,
which enhanced our understanding of human social networks and
shed new light on modelling weighted large-scale social networks.
In this paper, we investigate the statistical properties of four calling

networks (directed calling network (DCN), mutual calling network
(MCN), statistically validated directed calling network (SVDCN)
and statistically validated mutual calling network (SVMCN), see
Methods section for the details of network construction) constructed
from the detailed call records of more than nine million different
mobile phone numbers from amobile service provider in China. The
DCN is a calling network, in which all mobile phone users in our
dataset are treated as nodes and a directed link is drawn from a call
initiator to a call receiver. TheMCN is a bidirectional calling network
in which an edge is only drawn between any two mobile users with
reciprocal calls.We also extract fromDCNandMCN twoBonferroni
networks SVDCN and SVMCN in which the links are filtered by a
statistical validation test31.

Results
Size distribution of isolated components and the small-world
effect. Since we can only access the calling records of one mobile
service provider, the constructed networks are fragmented into
isolated subnetworks or ‘‘components’’. The original calling
network (DCN) contains 236,738 components and its statistically
validated calling network (SVDCN) has 468,138 components.
There are 3,456,437 nodes and 16,269,689 edges in the giant
component of the DCN (GCDCN) and 1,044,522 nodes and
1,440,366 edges for the giant component of the SVDCN,
respectively. In contrast, there are 260,799 components in the
mutual calling network (MCN) and 198,323 components in the
statistically validated mutual calling network (SVMCN). The giant
component of theMCN, denoted GCMCN, has 1,978,680 nodes and
4,677,642 edges, while the giant component of the SVMCN has
526,234 nodes and 765,213 edges. We summarize this information
in Table 1.
Panels (a) and (b) of Fig. 1 show the empirical distributions of

component size s, which is defined as the number of nodes in a
component for the four communication networks. In Fig. 1, the giant
components are not included. It is found that the four distributions
exhibit an asymptotic power-law decay

p sð Þ*s{ 1zað Þ
, ð1Þ

where the tail exponent a is 2.89 for the DCN, 2.60 for the SVDCN,
2.75 for the MCN, and 2.58 for the SVMCN. The statistical validated
networks SVDCN and SVMCN have a shallower slope and therefore
a wider distribution of component sizes than the DCN and MCN.

This observation is due to the fact that the giant component of each
original network has been segmented by removing the edges that are
not statistical validated as illustrated in Fig. 1(c).We also find that the
component size distributions of the statistically validated networks of
GCDCN and GCMCN have power-law tails and both tail exponents
are a 5 2.54.
We now turn to investigate the local structure of DCN and MCN

through their ego networks13. For a randomly chosen source node, its
ego network of distance , contains all the nodes whose distance to the
source node is not longer than ,. An example of ego network
extracted from the GCMCN is illustrated in Fig. 1(c).The number
of nodes of an ego network of distance ,,Ns(,), is plotted as a function
of , in Fig. 1(d) and (e) for several random chosen source nodes and
their average. It can be seen that the number of nodes increases
exponentially when , # 6 and saturates to the size of the whole
network with a slower growth rate when ,. 6. Hence, the two giant
components GCDCN and GCMCN exhibit a small-world effect32.

Degree distribution. Since the DCN and the SVDCN are directed,
we investigate their in-degree and out-degree distributions as shown
in Fig. 2(a). All the four probability distributions can be well fitted by
an exponentially truncated power law33:

p kð Þ~ak{cke{k=kc
, ð2Þ

where coutk ~1:52 and koutc ~34:65 for the out-degree distribution of

the DCN, cink ~1:49 and kinc ~40:36 for the in-degree distribution of

the DCN, coutk ~2:90 and koutc ~23:96 for the out-degree distribution

of the SVDCN, and cink ~2:76 and kinc ~27:12 for the in-degree
distribution of the SVDCN. Figure 2(b) plots the in-degree and
out-degree distributions of the giant components of the DCN and
the SVDCN, denoted GCDCN and GCSVDCN in the legend. These
distributions can also be nicely fitted by the exponentially truncated
power law of Eq. (2). The estimated parameters are coutk ~1:42 and

koutc ~34:60 for the out-degree distribution of the GCDCN, cink ~1:38

and kinc ~33:71 for the in-degree distribution of the GCDCN,

coutk ~2:00 and koutc ~10:00 for the out-degree distribution of the

GCSVDCN, and cink ~1:98 and kinc ~10:37 for the in-degree
distribution of the GCSVDCN.
According to Fig. 2(a) and (b), the corresponding distributions of a

network and its giant component are very similar and share quite a
few common features. The first feature is that there is no evident
difference between the in-degree and out-degree distributions for all
the four networks. However, the distribution of an original network
exhibits a much heavier tail than its statistically validated network.
For instance, the average degree of the two giant components
(GCMCN and GCSVMCN) are ÆkGCMCNæ 5 4.73 and ÆkGCSVMCNæ 5
2.91, which means that a mobile phone user on average reciprocally
exchanges calls with more than 4 people of whom about 3 people are
frequent contacts. However, there are outliers with very large in-
degrees and out-degrees that cannot be modelled by the exponen-
tially truncated power law. In addition, there are users characterized
by a very large number of out-calls and a small or average number of
in-calls. Most of these outliers are not typical mobile phone users but

Table 1 | Sizes of the four calling networks and their giant components.NnodeandNedgeare respectively the number of nodes and edges of
a calling network.NComp is the number of components of a calling network.NGC,node andNGC,edge are respectively the number of nodes
and edges of the giant component of a calling network

CN Nnode Nedge NComp NGC,node NGC,edge

DCN 4,032,884 16,753,635 236,738 3,456,437 16,269,689
SVDCN 2,410,757 2,453,678 468,138 1,044,522 1,440,366
MCN 2,615,247 5,065,397 260,799 1,978,680 4,677,642
SVMCN 1,042,751 1,099,254 198,323 526,234 765,213
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hot lines or ‘‘robots’’15. After filtering out the edges that do not pass
the statistical validation, the number of outliers reduces significantly
in the distributions of Bonferroni networks.
In Fig. 2(c) and (d), we present the degree distributions of the

MCN, of the SVMCN, and of the two giant components of these
two networks (GCMCN and GCSVMCN). These four networks are

not directed since the edges stand for reciprocal calls between any
two users. These degree distributions can also be well fitted by the
exponentially truncated power law of Eq. (2). The estimated para-
meters are ck5 1.46 and kc5 20.81 for theMCN, ck5 1.20 and kc5
4.27 for the SVMCN, ck5 1.40 and kc5 21.00 for the GCMCN, and
ck5 0.40 and kc5 3.35 for the GCSVMCN. For comparison, we note

Figure 1 | Network components. (a) Component size distributions of the calling network (DCN), the statistically validated calling network (SVDCN),

and the statistically validated network of the DCN giant component (SVGCDCN). (b) Component size distributions of the mutual calling network

(MCN), the statistically validated bidirectional calling network (SVMCN), and the statistically validated network of the MCN giant component

(SVGCMCN). (c) An ego network extracted from the MCN, containing all nodes within a distance , 5 5 from the source node (%) and the

corresponding edges. The nodes having themaximum distance from the source node are drawn as triangles (D) and other nodes are drawn as circles (#).

The solid lines represent the validated calling relationship in the SVMCN, while the dashed lines are the original edges in the MCN. Nodes with the same

color form a component. (d) NumberNs(,) of nodes in the ego network within a distance of , from the source node obtained by snowball sampling as a

function of distance , for the random choices of the source node (solid lines) and their average (dashed line) for the GCDCN. The dotted black line refers

to the maximum size of the GCDCN. (e) Number Ns(,) as a function of distance , for the GCMCN.

Figure 2 | Degree distribution. (a) Distributions of in-degree and out-degree of the DCN and the SVDCN. (b) Distributions of in-degree and out-degree

of the giant components of the DCN and SVDCN. (c) Degree distributions of the MCN and the SVMCN. (d) Degree distributions of the giant

components of the MCN and the SVMCN. The dashed red lines are the fitted curves using exponentially truncated power-law distributions.

www.nature.com/scientificreports
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that the degree distribution for the European GCDCN has a shifted
power-law form p kð Þ~a kzk0ð Þ{ck with k0 5 10.9 and ck 5 8.425.
Most of the features of the MCN networks are similar to those of the
DCN networks. An interesting difference is that the right-end tails
become much narrower, because the reciprocal calling criterion for
the construction of MCN has the ability to filter out most of those
abnormal calls associated with hot lines and robots which are often
unidirectional.

Degree-degree correlation. The mixing patterns of complex
networks have significant implications on the structure and
function of the underlying complex systems34. Most social
networks are reported to be assortative, i.e., people with many
contacts are connected to others who also have many contacts.
This may lead to a positive degree-degree correlation in the
network, suggesting that the degree of a node positively correlates
to the average degree of its neighborhood. The average nearest

neighbors degree of a node i is defined as knn,i~ 1=kið Þ
X

j[N i
kj,

where N i is the neighbor nodes set of i. In the calculation of knn for
the DCN and the SVDCN, we do not consider the direction of the
edges. By averaging this value over all nodes in the network for a
given degree k, one can calculate the average nearest neighbors
degree denoted by Æknnjkæ. A network is said to be assortatively
mixed if Æknnjkæ increases with k and disassortatively mixed if it
decreases as a function of k.
In Fig. 3(a) and (b), we show the dependence of Æknnjkæ as a func-

tion of k for the giant components of the four networks. We find that
Æknnjk 5 1æ . Æknnjk 5 2æ for all curves. This observation was also
present in the investigation of a large European dataset30. For k values
larger than 2, the Æknnjkæ function exhibits an evident increasing
trend to reach amaximum. After themaximum, there is a decreasing
region for large k. We notice that the overall shape of the two curves
for the twoMCN networks is qualitatively similar to that observed in
the investigation of the European dataset30. A closer scrutiny of the
GCDCN curve unveils an approximate plateau for the largest

degrees. This can be partly explained by the fact that the nodes with
the largest degrees usually correspond to hot lines or robots who
receive calls from or call to diverse people. Figure 3(a) shows that
mobile phone users with a ‘‘reasonable’’ number of contacts form an
assortative network, while users with an abnormally large number of
contacts exhibit a disassortative mixing pattern.
We also compute two weighted average nearest neighbors degrees

defined as kNnn,i~

X

j[N i
kjw

N
ij

.

sNi and kDnn,i~

X

j[N i
kjw

D
ij

.

sDi to

measure the degree-degree correlations30,35, where wN
ij is the number

of calls between i and j, sNi is the total number of calls between i and

her contacts,wD
ij is the call duration between i and j, and s

D
i is the total

call duration between i and her contacts. In the calculation of kNnn,i

and kDnn,i for the DCN and the SVDCN, we do not consider the

direction of the edges. We average these two weighted degrees over

all users with the same degree k to get kNnn,i kj
D E

and kDnn,i kj
D E

. We

show in Fig. 3(c) and (d) the weighted average nearest neighbour
degrees for the four giant components of the four networks. We note
that there is no significant difference between the two curves with
number and duration weights for each network. The weight-based
curves in Fig. 3(c) and (d) exhibit almost the same behaviors as the
unweighted results in Fig. 3(a) and (b).

Edge weight distribution. For a calling network, we have defined
two kinds of weight for each edge between two users. For the DCN

and the SVDCN, the number-based edge weightwN
ij is the number of

calls occurred between user i and user j and the duration-based edge

weight wD
ij is the total time elapsed during users i and i talk to each

other through their mobile phones. Following Ref. 30, we focus on
the giant components of the four networks. For the GCSVMCN, two
connected users talked with each other on average ÆwNæ < 23.98
times and ÆwDæ < 2234 seconds (37 minutes). Figure 4 shows the
distributions of the giant components of the four networks.

Figure 3 | Degree-degree correlation. (a) Average nearest neighbor degree Æknn |kæ as a function of degree k for the GCDCN and GCSVDCN. (b) Average

nearest neighbor degree Æknn |kæ as a function of degree k for the GCMCN and GCSVMCN. (c) Weighted average nearest neighbor degree kNnn kj
� �

and

kDnn kj
� �

as a function of degree k for the GCDCN and the GCSVDCN. (d)Weighted average nearest neighbor degree kNnn kj
� �

and kDnn kj
� �

as a function of

degree k for the GCMCN and the GCSVMCN.
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SCIENTIFIC REPORTS | 4 : 5132 | DOI: 10.1038/srep05132 4



Figure 4(a) shows that the distribution for the GCSVDCN exhibits
an obvious kink at wN

< 120. It is not clear why there is such a kink.
We can use a bi-power-law distribution to fit the data

p wð Þ*w{a1
, 1vwv120 ð3Þ

p wð Þ*w{a2
, ww120 ð4Þ

where the two power-law exponents are a1 5 1.79 and a2 5 2.97. In
contrast, the distribution for the GCDCN can be fitted by an expo-
nentially truncated power law

p wð Þ~aw{cwe{w=wc
, ð5Þ

where cNw~1:60 and wN
c ~140:1. The two distributions in Fig. 4(b)

can also be fitted by Eq. (5), except for the region defined bywN
, 10.

The estimated parameters are cNw~1:35 and wN
c ~174:1 for the

GCMCN and cNw~1:37 and wN
c ~120:45 for the GCSVMCN. We

note that, rather than using themaximum likelihood estimation as in
Ref. 33, the least-squares regression approach is adopted to fit the
curves throughout this work. Indeed the method proposed in Ref. 33
cannot be applied straightforwardly to truncated power-laws.
The distributions of duration-based edge weight wD for the giant

component of the four networks are shown in Fig. 4(c) and (d). The
distributions for the original network and its corresponding statist-
ically validated network are very similar. There is amaximum in each
distribution occurring for a value, which is close to 100 seconds.
These distributions cannot be well fitted by the exponentially trun-
cated power law expressed in Eq. (5), nor a power law.

Correlations between edgeweights.Onewould expect that there is a
positive correlation between the weights of call number wN

ij and call

duration wD
ij . In Fig. 5(a) and (b), we illustrate the scatter plots of

duration-based weights wD
ij and number-based weights wN

ij of a

random sample of 5000 edges selected in the giant component of

the MCN and the SVMCN. The two weights are strongly correlated
as expected. The Pearson’s linear correlation coefficient r between

wN
ij and wD

ij is r wN
ij ,w

D
ij

� �

~0:660 for the GCMCN and

r wN
ij ,w

D
ij

� �

~0:726 for the GCSVMCN, indicating the existence of

a strong positive correlation. The relationship between the two link
weights can also be characterized by Spearman’s rank correlation
coefficient r, which is a non-parametric measure of the statistical
dependence between two variables. We obtain that

r wN
ij ,w

D
ij

� �

~0:8802 for the GCMCN and r wN
ij ,w

D
ij

� �

~0:864 for

the GCSVMCN. Since Spearman’s correlation is higher than
Pearson’s correlation, the correlation has a nonlinear component
in spite of the presence of a linear trend in the association between

wN
ij and wD

ij . The results for the GCDCN and the GCSVDCN are

similar.
To analyze in more detail the correlation, we equally partition the

interval [min(wN), max(wN)] into 30 intervals by logarithmic binning
and assign each link into one of the 30 groups. We obtain the call
number weight wD as a function of call duration weight wN by cal-
culating the mean and standard deviation of wN and wD in each
group. Specifically, we plot ÆwD/wNæ as a function of wN for the
GCDCN and the GCSVDCN in Fig. 5(c) and for the GCMCN and
the GCSVMCN in Fig. 5(d). The average duration of a call is close to
200 seconds for all the networks and it is almost independent of the
number of calls. We observe that the statistical validated networks
have lower ÆwD/wNæ values and lower fluctuations. Another interest-
ing feature is that the call duration fluctuates more for small or large
number of calls.

Node strength distribution. For each user, we define two node
strengths based on the number and duration of calls. The number-

based node strength sNi ~
X

j[N i
wN
ij is the total number of calls the

user made, while the duration-based node strength sDi ~
X

j[N i
wD
ij

is the total duration of calls the user performed. For the directed

Figure 4 | Edge weight distributions for the giant components of the four networks. (a) Distributions of number-based edge weightwN for the GCDCN

and the GCSVDCN. (b) Distributions of number-based edge weight wN for the GCMCN and the GCSVMCN. (c) Distributions of duration-based edge

weight wD for the GCDCN and the GCSVDCN. (d) Distributions of duration-based edge weight wD for the GCMCN and the GCSVMCN.
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networks, we can further distinguish incoming and outgoing node
strengths.
The distributions of number-based node strength are shown in

Fig. 6(a) and (b) for the giant components of the four networks. The
distributions for the GCDCN, the GCMCN and the GCSVMCN can
be fitted by an exponentially truncated power-law function

p sð Þ*s{csexp {s=scð Þ: ð6Þ

The fitted curves are shown as dashed red lines in Fig. 6(a) and (b).

We estimate that cN,out
s ~1:15, sN ,out

c ~332:11, cN,in
s ~1:15 and

sN,in
c ~403:89 for the GCDCN, cNs ~0:9 and sNc ~470:5 for the

GCMCN, and cNs ~0:77 and sNc ~179 for the GCSVMCN. For the
GCSVDCN, the distribution curves are not smooth and the fitting
would be of poor quality.
The distributions of duration-based node strength are shown in

Fig. 6(c) and (d) for the giant components of the four networks.
These distributions share a very similar shape, which is reminiscent
of the inter-call durations at the population level12,14,15. For the direc-
ted networks, there is no difference between incoming and outgoing
call durations. Figure 6(d) shows that the statistical validation
method is able to filter out the nodes with very short or very long
mutual call durations.

Correlations between node strength. For nodes, besides the degree-
degree correlation, we also study the correlation between node
strength. The number-based and duration-based correlation of

node strengths are calculated as follows: sNnn~ 1=kið Þ
X

j[N i
sNj and

sDnn~ 1=kið Þ
X

j[N i
sDj . The results for the giant components of the

four networks are illustrated in Fig. 7(a)–(d). In the figure, all curves
show a very slow increase for small sD and sN values and then a more
pronounced increase for large values of s. For small s , sx,
independence can be observed, whereas a dependence of the form
Æsnnjsæ, sa is observed for large sD and sN values. For strong ties with

wD
. 2 3 104, which form 1.6% of all edges of the original giant

component, the strength of both adjacent nodes depends almost on
the weight of this single edge (si 5 wij 5 sj). This explains the linear
trend in the strength-strength correlation of the original GC network
(aD,MCN

< 1). In contrast, we find that aN,MCN
< 0.5 when sN,MCN

.

200, aD,MCN
< 1 when sD,MCN

. 104, aN,SVMCN
< 0.5 when sN,SVMCN

.

50, and aD,SVMCN
< 0.67 when sD,SV MCN

. 200.
Similar to Fig. 5(c) and (d), we calculate and plot ÆsD/sNæ as a

function of sN for the giant components in Fig. 7(e) and (f). It is found
that all the curves exhibit a slight decreasing trend both in the mean
and in the standard deviation as a function of node strength. In
addition, the curves for the statistically validated networks are lower
than their original counterparts.

Cross-correlations between node strength, edge weight and node
degree. We now turn to the cross-correlations between node
strength, edge weight and node degree. Figure 8(a) and (b) plot the
dependence of the node strengths on the node degree for the giant
components of the four networks. The curves have a power-law
dependence: Æsjkæ , ka. The best fitting power-law exponents are
the following: aN,out 5 aN,in < 1.0 and aD,out 5 aD,in < 0.85 for the
GCDCN, aN,out 5 aN,in < 1.1 and aD,out 5 aD,out < 0.95 for the
GCSVDCN, aN < 0.95 and aD < 0.86 for the GCMCN, and aN <
1.01 and aD< 1.23 for the GCSVMCN. For the GCMCN, the average
call durations of individuals who have high degrees are slightly less
than that of individuals with low degrees. These results confirm that
the statistical validation procedure filters out communications
occurring between users linked by underlying social relationships.
We also observe that aN . aD for the GCMCN, suggesting that
individuals who talk to a large quantity of users appear to spend
less time per callee than those who spend less time on phone.
We present the correlation between strength product sisj and

degree product kikj in Fig. 8(c) and (d). Also in this case we observe
a clear power-law dependence Æsisjjkikjæ , Ækikjæ

b. According to Ref.
30, if Æsiæ 5 kiÆwæ, one would expect that Æsisjjkikjæ 5 Æwæ2Ækikjæ.

Figure 5 | Edgeweight correlations. (a) Scatter plot of duration-basedweightswD
ij and number-basedweightswN

ij of a random sample of 5000 edges in the

giant component of theMCN. (b) Scatter plot ofwD
ij andw

N
ij of a random sample of 5000 edges in the giant component of the SVMCN. (c) Plot of ÆwD/wNæ

as a function of wN for the GCDCN and the GCSVDCN. (d) Plot of ÆwD/wNæ as a function of wN for the GCMCN and the GCSVMCN.
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Differently than expected, we obtain that bN
< 1.12 and bD

< 1 for
the GCDCN, bN

< 1.35 and bD
< 1.48 for the GCSVDCN, bN

< 0.9,
bD
< 0.8 for the GCMCN, and bN

< 1.2 and bD
< 1 for the

GCSVMCN. The discrepancy of b ? 1 indicates that there are cor-
relations between node degree and the weights of the edges adjacent
to the node.
We also study the correlation between edge weight and node

degree product (Fig. 8(e) and (f)) and the correlation between edge

weight and node strength product (Fig. 8(g) and (h)). The wD
ij kikj
�

�

D E

curve and the wN
ij kikj
�

�

D E

curve are very similar for each network, and

there are evident difference between the Æwijjkikjæ curves of an ori-
ginal network and its statistically validated network. However, the
dependence of the Æwijjkikjæ curves on the degree product kikj is weak.

In contrast, the wij s
N
i s

N
j

�

�

�

D E

curves increase rapidly and exhibit

roughly power laws: Æwijjsisjæ , (sisj)
d, where dN < 0.43 and dD <

0.44 for the GCDCN, dN< 0.42 and dD< 0.47 for the GCSVDCN, dN

< 0.3 and dD< 0.45 for the GCMCN, and dN< 0.4 and dD< 0.5 for
the GCSVMCN.

Clustering coefficients. Clustering coefficient is an important
metric of complex networks. It represents the local cohesiveness
around a node. The clustering coefficient of node i is defined as Ci

5 2ti/[ki(ki2 1)], where ti is the number of triangles of node iwith its
neighbours. For the directed networks (DCN and SVDCN), we treat
edges as undirected. We find that the average clustering coefficients
of the giant components of the four networks are 0.11 (DCN), 0.02
(SVDCN), 0.12 (MCN), and 0.11 (SVMCN). The relatively small
values of the average clustering coefficients suggest that tree-
shaped subgraphs are quite frequent in the local structure of the
four networks. Indeed, the clustering coefficient of about 72.5% of
the users is zero. It is worth noting that the clustering coefficients of
the communication networks of European users are also small30. We
also observe that the average clustering coefficient in the SVDCN is
smaller than in the DCN network. This observation reflects the fact

that the statistical validation approach, while minimizing the
presence of links not related to an underlying social relationship,
may also remove edges with meaningful social relationships. See
the Methods section for a more detailed discussion of this aspect.
Panels (a) and (b) of Fig. 9 show the dependence of ÆCjkæ on k for

the four networks. Surprisingly, we do not observe a power-law decay
as observed for the European users30. On the contrary, high-degree
users have a relatively high clustering coefficient. This can be par-
tially explained by the fact that one main promotion strategy of the
mobile phone service provider is to make contract with institutions
with lower communication prices. The users with more contacts are
usually ‘‘secretaries’’ and their contacts also call each other fre-
quently. Figure 9(c) and (d) present the dependence of average

weighted clustering coefficient ~C sj
� �

30 on s for the four networks.

The increasing trend in these curves is also observed in the European
case30.

Topological overlap of two connected nodes. The topological
overlap of the neighborhood of two connected nodes i and j is
estimated by considering the relative overlap of their common
neighbors30,

Oij~
nij

kizkj{2{nij
ð7Þ

where ki and kj are the degrees of the two nodes and nij is the number
of neighbors common to both nodes i and j. Overlap is the fraction of
common neighbors that a pair of connected nodes has, which is
different from the edges-clustering coefficient reflecting the
probability that a pair of connected vertices has a common
neighbor36. In the calculation of overlap for the directed networks,
we ignore the direction of edges and treat the directed networks as
undirected networks.
Fig. 10(a) illustrates the average overlap ÆOjwNæ as a function of the

number-based edge weight wN for the four networks. The two curves
for the MCN and the SVMCN are similar, while the curve for the
DCN is higher than that for the SVDCN indicating that a significant

Figure 6 | Node strength distributions. (a) Distributions of number-based node strength sN for the GCDCN and the GCSVDCN. (b) Distributions of

number-based node strength sN for the GCMCN and the GCSVMCN. (c) Distributions of duration-based node strength sD for the GCDCN and the

GCSVDCN. (d) Distributions of duration-based node strength sD for the GCMCN and the GCSVMCN.
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fraction of common neighbors have been removed by the statistical
validation method. In addition, all the curves exhibit an increasing
trend and the two blue curves seemingly decrease after wN

< 2000.
The curve for theMCN is very different from the European case with
a bell shape curve with amaximum atwN

< 5030. Fig. 10(b) illustrates
the average overlap ÆOjwDæ as a function of duration-based edge
weight wD for the four networks. Similar to the European case30, all
the average overlap curves ÆOjwDæ increase up to wD

< 2 3 104,
whereas after that they decline quickly. In Fig. 10(c) and (d), we show
the average overlap ÆOjPc(w

N)æ and ÆOjPc(w
D)æ against the cumulat-

ive edge weight Pc(w
N) and Pc(w

D) respectively. Different from the
behavior observed in the European case30, all the curves increase.
Fig. 10 shows that the statistical validation method does not change
much the overlap structure of themutual calling networks. However,
the overlap reduces remarkably after applying the statistical valid-
ation method on the edges of the directed calling networks.

Discussion
We have constructed and investigated four calling networks from a
dataset of more than nine million phone users. These networks are

the directed calling network, the mutual calling network and their
statistically validated networks. The statistical properties of these
four calling networks have been investigated in a comparative way.
Specifically, we have considered the distributions of the degree, the
edge weight, the node strength, the relative overlap of two connected
nodes, and their mutual dependence. We found that these networks
share many common topological properties and also exhibit idio-
syncratic characteristics in both qualitative and quantitative ways.
When compared with the results observed for a mutual calling net-
work of an European dataset of mobile phone users30, the results
obtained for the Shanghai dataset exhibit some different commun-
ication behaviors.
The differences between the two original calling networks (DCN

and MCN) and their statistically validated networks are of great
interest. We have observed that the size of statistically validated
network is significantly smaller than its original network. Also, the
Bonferroni networks have thinner degree distributions, indicating
fewer highly connected nodes. This finding suggests that a large
proportion of edges in high-degree nodesmight not be directly assoc-
iated with an underlying social motivation, which is consistent with

Figure 7 | Node strength correlations. (a) Average number-based node strength sNnn sN
�

�

� �

as a function of sN for the GCDCN and the GCSVDCN. (b)

Average number-based node strength sNnn sN
�

�

� �

as a function of sN for theGCMCNand theGCSVMCN. (c) Average duration-based node strength sDnn sD
�

�

� �

as a function of sD for the GCDCN and the GCSVDCN. (d) Average duration-based node strength sDnn sD
�

�

� �

as a function of sD for the GCMCN and the

GCSVMCN. (e) Plot of ÆsD/sNæ as a function of sN for the GCDCN and the GCSVDCN. (f) Plot of ÆsD/sNæ as a function of sN for the GCMCN and the

GCSVMCN.
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the finding that there are hot lines and robots calling a large number
of different users and characterized by an ultra lownumber of incom-
ing calls15. For the original networks the average call durations of
high-degree users are slightly less than that of low-degree users, while
for the statistical validated networks, we observe the opposite situ-
ation that high-degree individuals have larger average call durations
than low-degree individuals. Our comparative analysis shows the
importance of investigating statistically validated networks because
the original networks contain users whose communication patterns

do not reflect a social motivation. The calling profile of these users
makes it difficult to uncover the true communication behavior of the
system.
It is natural that the networks for the Shanghai dataset and the

European dataset share many common topological properties.
However, we also observed several discrepancies. The differences
are of crucial interest as they might point to different mechanisms
at play in mobile communication networks (and more generally in
social networks) located at different parts of the world. For instance,

Figure 8 | Cross-correlations between node strength, edge weight and node degree. (a), (b) Power-law dependence of the average number-based and

duration-based node strength on the node degree for the giant components of the four networks. (c), (d) Dependence of sNi s
N
j kikj
�

�

D E

and sDi s
D
j kikj
�

�

D E

on

the degree product. (e), (f) Average duration-based edge weight wD
ij kikj
�

�

D E

and number-based edge weight wN
ij kikj
�

�

D E

as a function of degree product kikj.

(g,h) Average duration-based edge weight wD
ij s

D
i s

D
j

�

�

�

D E

and number-based edge weight wN
ij sNi s

N
j

�

�

�

D E

as a function of strength product sDi s
D
j . The curves for

number-weighted node strength have been shifted rightwards horizontally by a factor of 1000 for clarity.

Figure 9 | Clustering coefficient. (a) Average clustering coefficient ÆC |kæ as a function of k for the GCDCN and the GCSVDCN. (b) Average clustering

coefficient ÆC |kæ as a function of k for the GCMCN and the GCSVMCN. (c) Average weighted clustering coefficient ~C sN
�

�

� �

and ~C sD
�

�

� �

as a function of s

for the GCDCN and the GCSVDCN. (d) Average weighted clustering coefficient ~C sN
�

�

� �

and ~C sD
�

�

� �

as a function of s for the GCMCN and the

GCSVMCN.
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we observed a different broadness of degree distributions, which
might originate from different dynamics in social ties formation
and disappearance37. The different behaviors that might explain
formation and deletion of social ties indicate the presence of different
elementary mechanisms governing social dynamics under different
cultures and social norms. However, a detailed investigation of these
issues is beyond the scope of this work.
The setting of the statistical validation and its threshold depends

on the problem investigated. One can choose to use a more or less
conservative threshold (as it is done when one chooses a 0.05 or
0.01 or 0.001 univariate threshold). To investigate the possible
impacts of different thresholds, we repeat all the analyses by using
a Bonferroni threshold 0.01/NE, where NE is the number of pairs of
subscribers that had at least one call over the entire period for the
DCN or the number of pairs of subscribers with mutual calls in the
MCN. In this way we have two new Bonferroni networks for the
DCN and MCN networks obtained with the least restrictive
Bonferroni threshold we can set. It is obvious that the new
Bonferroni networks have larger sizes. We find that the results
are qualitatively the same as the more restrictive Bonferroni
threshold. The differences are only quantitative. For instance, the
degree distributions become broader simply because there are
more nodes with higher degrees.
It might be worth discussing more in detail the implications of the

statistical validation. While the statistical validation is useful to filter
edges like hot lines and robots, it also removes a consistent fraction of
possible edges with meaningful social relationships. We argue that
any other filtering methods also suffer a similar shortcoming. For
instance the filtering method keeping bidirectional links while
removing unidirectional links30 or the method extracting the ‘‘multi-
scale backbone’’ of the original network in which the edges are stat-
istically validated by identifying which links of a node carry
disproportionate fraction of the weights38. For such large social net-
works, we will never be able to identify all the true social ties but
rather any filtering procedure will present false positive links, that is,
links present in the filtered network but without a social origin, and

false negative links, that is, links that are absent in the filtered net-
work but have a social origin. In this respect, we can say that our
statistical validation method minimizes the number of false positive
links while does not put constraints on the number of false negative
links. For example, a similar approach has been pursued (i) in Ref. 39
to investigate preferential credit links between banks and firms based
on their mutual credit relationships or (ii) in Ref. 40 to identify
clusters of investors from their real trading activity in a financial
market. Further details about the methodology, specifically applied
to mobile phone data, can also be found in Ref. 41, where interesting
evolution patterns of triadic motifs are discussed.

Methods
Data description. Our dataset comprises the detailed call records of more than nine
million different mobile phone numbers from one mobile operator in Shanghai
during two separated periods. One is from 28 June 2010 to 24 July 2010 and the other
is from 1October 2010 to 31 December 2010. Because the records in several hours are
missing on October 12, November 6, 21, 27, and December 6, 8, 21, 22, these days are
excluded from our sample. The sample has a total of 110 days of call records. Each
entry of the records contains the following information, caller number, callee number,
call starting time, call length, as well as call status. The caller and callee numbers are
encrypted for protecting personal privacy. Call status with a value of 1 means that the
call gets through successfully and is terminated normally. When we construct
communication networks, only the calls with the call status equaling to 1 are
considered.

Construction of networks. There are three mobile operators in mainland China.We
only have access to the entire call records used for billing purpose of one operator.We
thus focus on the calling networks between mobile phone users that are costumers of
the operator. We construct four calling networks as follows.

The directed calling network (DCN) is composed of all users. If user i calls user j, a
directed edge is assigned from i to j. There are a total of 4,032,884 nodes and
16,753,635 directed edges in the DCN. The mutual calling network (MCN) contains
part of the users. An edge is drawn between user i and user j if and only if there are
reciprocal calls between them. All isolate nodes are not included in the MCN. There
are totally 2,615,247 nodes and 5,065,397 edges in the MCN. One can see that about
70% edges are not reciprocal in the DCN.

We then perform statistical validation on each edge of the DCN and the MCN as
described below. Edges that are consistent with the null hypothesis of random
selection of the receiver are removed together with the nodes that become isolated.
With our procedure we obtain a statistical validated directed calling network

Figure 10 | Topological overlap. (a) Average overlap ÆO |wNæ as a function of number-based edge weight wN for the four networks. (b) Average overlap

ÆO |wDæ as a function of duration-based edge weight wD for the four networks. (c) Average overlap ÆO |C(wN)æ as a function of cumulative number-based

edgeweightwN for the four networks. (d) Average overlap ÆO |C(wD)æ as a function of cumulative duration-based edgeweightC(wD) for the four networks.
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(SVDCN) which has 2,410,757 nodes and 2,453,678 edges and a statistical validated
mutual calling network (SVMCN) which has 1,042,751 nodes and 1,099,254 edges.
The sizes of the two original networks reduce significantly.

Statistical validation of edges. The statistical validation is performed by comparing
the number of calls observed between each pair of caller and receiver with a null
hypothesis of random matching between the caller and the receiver. The null
hypothesis takes into account the heterogeneity in the number of calls performed by
subscribers. The method is a variant of the approach originally proposed in Ref. 31
and used in different systems39–41. Here the statistical validation is done by
considering the number of calls done by a caller, the number of calls received by a
receiver and checking whether or not the number of calls exchanged between them is
compatible with the null hypothesis that these calls were made by selecting randomly
the receiver. The test is performed as detailed hereafter. The test allows to assign a
p-value to each pair of caller and receiver. The p-values are then compared with a
statistical threshold set at 1%.However, since the null hypothesis of random pairing is
tested for all pairs of subscribers, we have to perform a multiple hypothesis test
correction in order to control the number of false positives. In this work, we use the
Bonferroni correction which is the most restrictive amongst all possible corrections
minimizing the number of false positives.When a link between two subscribers i and j
has a p-value less than the Bonferroni threshold we assume that the calls from i to j
have a social origin.

The p-value is obtained as follows. Let us denote N as the total number of phone
calls of all users in the calling network,Nic the number of calls initiated by individual i
and Njr the number of calls received by individual j. Assuming that X 5 Nicjr is the
number of calls initiated by individual i and received by individual j. The probability
of observing X co-occurrences is given as follows31,42:

H X Nj ,Nic,Njr

� �

~
CX
Nic
C
Njr{X
N{Nic

C
Njr

N

, ð8Þ

whereCX
Nic

is a binomial coefficient.We can associate a p-value to the observedNicjr as

follows:

p Nicjr

� �

~1{
X

Nicjr{1

X~0

H X N,Nic,Njr

�

�

� �

: ð9Þ

The Bonferroni correction for the multiple testing hypothesis is pb 5 0.01/NT where
NT is the number of performed tests. For the DCN, we performNT5 16,753,635 tests.
If the estimated p(Nicjr) is less than pb, we conclude that the calls between user i and
user j cannot be explained by a null hypothesis of random calls from i to j performed
according to the heterogeneity of the caller and the receiver. When the test does not
reject the null hypothesis, the directed edge from i to j is removed.

In the validation of the MCN network, we need to estimate the p-value of the
number of callsNjcir initiated by j and received by i in a similar way. For the MCN, we
need to conduct NT 5 23 5,065,397 5 10,130,794 tests. The Bonferroni correction
for the multiple hypothesis test is again pb 5 0.01/NT. If the estimated p(Nicjr) is less
than pb, we can conclude that i preferentially calls j. We also need to estimate the p-
value of the number of calls Njcir initiated by j and received by i in a similar way. The
edge between i and j is included in the statistically validated network if and only if the
two directional links are both validated.

To illustrate how this method works, we present a few quantitative examples with
typical values of calls extracted from Fig. 1(c). We consider the DCN, in which
pb5 0.01/NT5 1/16,753,6355 9.873 10210. The root node (square) is linked to one
node close to it. For calls the root node made, Nic 5 14, Njr 5 81, and Nicjr 5 14,
leading to p(Nicjr)5 6.363 10288. For calls the root node received,Nic5 58,Njr5 81,
and Nicjr 5 14, resulting in p(Nicjr) 5 0. These two directed links between the root
node and her unique contact are thus statistically significant. Consider the dashed
link connecting a node in the lime green cluster and a node in the gray cluster, located
in the southeast of Fig. 1(c). For the direct link from the lime green node to the
gray node, Nic 5 400, Njr 5 824, Nicjr 5 2, and p(Nicjr)5 3.413 1026. For the direct
link from the lime green node to the gray node, Nic 5 289, Njr 5 459, Nicjr 5 1, and
p(Nicjr) 5 1.05 3 1023. In spite of the low p-values, these two directed links are
statistically compatible with the null hypothesis of random selection of the receiver
when a Bonferroni correction is applied. More information about the distribution of
p-values can be found in Ref. 41.

It is worth pointing out that many of the links not statistically validated might also
be associated with a social origin. In fact, with our choice of the Bonferroni correction
we primarily control the absence of false positives. This is done at the cost of observing
an admittedly high level of false negative. Themotivation behind our choice is that we
aim to detect with our methodology a backbone of social interaction that is not
affected by the presence of false positives.
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