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ABSTRACT

Understanding gene regulation is a key challenge in

today’s biology. The new technologies of protein-

binding microarrays (PBMs) and high-throughput

SELEX (HT-SELEX) allow measurement of the

binding intensities of one transcription factor (TF)

to numerous synthetic double-stranded DNA

sequences in a single experiment. Recently, Jolma

et al. reported the results of 547 HT-SELEX experi-

ments covering human and mouse TFs. Because

162 of these TFs were also covered by PBM

technology, for the first time, a large-scale compari-

son between implementations of these two in vitro

technologies is possible. Here we assessed the

similarities and differences between binding

models, represented as position weight matrices,

inferred from PBM and HT-SELEX, and also

measured how well these models predict in vivo

binding. Our results show that HT-SELEX- and

PBM-derived models agree for most TFs. For

some TFs, the HT-SELEX-derived models are

longer versions of the PBM-derived models,

whereas for other TFs, the HT-SELEX models

match the secondary PBM-derived models.

Remarkably, PBM-based 8-mer ranking is more

accurate than that of HT-SELEX, but models

derived from HT-SELEX predict in vivo binding

better. In addition, we reveal several biases in

HT-SELEX data including nucleotide frequency

bias, enrichment of C-rich k-mers and oligos and

underrepresentation of palindromes.

INTRODUCTION

The questions of how, when and where genes are expressed
have been fundamental in the field of cell research in the

past decades. Transcription factors (TFs) are known to be
the main regulators of gene transcription and thus have
been a subject for extensive study. These proteins bind to
specific short DNA sequence, mainly in the promoter and
enhancer regions, and by that impede or encourage tran-
scription. They bind with variable affinity, depending on
the sequence and on other factors, and this affinity affects
transcription. Learning and modeling the binding prefer-
ences of TFs is a central goal in gene regulation research.
Many high-throughput technologies have been

developed to study TF binding. Technologies that
measure in vivo binding include ChIP-chip (1), ChIP-seq
(2) and the recently developed ChIP-exo (3). However,
measuring in vivo binding may not reveal the full
picture. First, the accessible sites may not cover the full
spectrum of possible DNA k-mers. Second, in vivo binding
is affected by additional factors, such as chromatin struc-
ture, nucleosome positioning and co-factors. As opposed
to in vivo binding, in vitro binding is purely because of
direct TF–DNA interaction (or cooperative binding of
specific factors) and allows sampling of the full spectrum
of DNA k-mers. Technologies that measure in vitro
binding include protein-binding microarray (PBM) (4)
and mechanically induced trapping of molecular
interactions (5), both of which measure the binding of a
specific protein to a set of oligo sequences designed to
cover all k-mers. A newer technology is high-throughput
SELEX (HT-SELEX), which consists of several cycles of
incubating the DNA-binding protein with a mixture of
DNA sequences, enrichment of the bound DNA se-
quences, sequencing a sample of them and feeding them
to the next cycle (6–8).
PBMs have gained great popularity, thanks to their

high-throughput and unbiased nature. The public
database UniPROBE contains experiments of >400 TFs
(9). Although the models derived from this technology
have been used extensively, it is unclear how accurate
these models are in predicting in vivo binding. Several
studies have shown that using these positional weight
matrix (PWM) models to predict in vivo binding leads to
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poorer results compared with in vitro binding prediction
(10,11). This performance gap can be explained by several
reasons related to in vivo binding, such as indirect binding
and inaccessibility of genomic DNA. Another possible
explanation is that these models include PBM-specific
biases. Thus, an independent in vitro measurement is
required to evaluate the validity of these models.
Recently, a study covering >500 TFs in >800

HT-SELEX experiments was conducted by the Taipale
laboratory (12). For the first time, a high number of
TFs have available experimental data in two independent
in vitro technologies: 162 TFs were tested both in HT-
SELEX and PBM experiments by the Taipale and Bluyk
laboratories, respectively. Jolma et al. (12) compared
SELEX models with PBMmodels by length and presented
several examples where the SELEX models are more
accurate than PBM models based on ChIP-seq data.
However, a much broader systematic comparison of the
binding models produced by each technology is required.
In this study we aim to analyze and measure the

similarities and differences between the two technologies.
First, we ask how well HT-SELEX-derived PWM models
predict PBM binding. Second, to compare the methods
without depending on inferred binding models, we study
how well the top k-mers of the two technologies correlate,
and which technology is better in k-mer ranking. Third,
we test which technology produces better models in
predicting in vivo binding. Fourth, we uncover biases in
HT-SELEX technology. We aim to highlight the advan-
tages of each technology compared with the other. Our
observations may help in developing a new method to
learn binding models based on HT-SELEX data.

MATERIALS AND METHODS

Data

PBM data and PBM-derived PWM models were
downloaded from UniPROBE database (9). We used
normalized PBM probe data, as available in the
database (i.e. the median signal intensity values and
corresponding nucleotide probe sequences). Only the 36
bp of unique sequence were used. HT-SELEX experimen-
tal data and HT-SELEX-PWM models were downloaded
from (12). Human ChIP-seq data were downloaded from
ENCODE (13).

Binding prediction

PWMs were used to represent TF binding preferences
(14). For each TF, the set of PWMs reported was used
for the binding prediction. In many cases, multiple models
were available. In general, we did not distinguish between
mouse and human and between the full protein and the
binding domain only. For each sequence (either PBM
probe or a ChIP-seq peak), the maximum sum occupancy
score over the set of PWMs was its predicted binding
intensity. For probe sequence s and PWM � of length
k, the sum occupancy score is

fðs,�Þ ¼
Xjsj�k

t¼0

Yk

i¼1
�i½st+i�

where �i(x) is the probability of base x in position i of the
PWM. A PBM probe is defined as a positive hit for � if its
binding intensity is greater than the median by at least 4 *
(MAD/0.6745), where MAD is the median absolute devi-
ation from the binding intensity median (MAD=0.6745
for the normal distribution N(0,1)) (15). The positive
ChIP-seq peaks are defined as the 500 peaks with the
smallest reported P-value. We used the 250 bp around
the center of the peak as the positive sequence and the
250-bp-long genomic sequence 300 bp downstream of the
peak center as the negative sequence. Spearman rank
coefficient, sensitivity at 1% false-positive and area
under the receiver operating characteristic curve were
used to gauge the binding prediction (see (15) for
details). For ChIP-seq data, when several experiments
were available for the same TF, the average area under
curve (AUC) over these experiments is reported.

Model independent comparison

For each experiment, the scores of the top 100 8-mers
according to one technique were compared with their
scores in the other technique. PBM 8-mers were scored
by average (or median) binding intensity. For a probe pi,
let s(pi) be its intensity. The score of 8-mer w is the
average binding intensity: avgðwÞ ¼ ð

P
w2pi

sðpiÞÞ=ð
P

w2pi
1Þ.

HT-SELEX 8-mers were scored by either their fre-
quency or ratio of frequencies (frequency in cycle i
divided by frequency in cycle i-1). The top 100 8-mers
according to their PBM scores were selected, and
Pearson correlation was calculated between the PBM
scores and the HT-SELEX scores on these 8-mers.
Similarly, the top 100 HT-SELEX 8-mers were chosen
and their HT-SELEX scores were compared with their
PBM scores using Pearson correlation.

Logo drawing

Motif logos were plotted using http://demo.tinyray.com/
weblogo.

RESULTS

HT-SELEX-derived models predict PBM binding
accurately for most TFs

We first used the HT-SELEX-derived PWM models
published in (12) to predict bound probes in PBM experi-
ments and compared their performance with PBM-derived
PWM models. We used the SCI09 data set of (16), which
includes 115 paired PBM experiments of 104 mouse TFs
[in paired experiments, two array designs are used to study
the same TF, and so a model learned on one array can be
evaluated on the other, see (15)]. For 128 PBM experi-
ments (out of 230), an HT-SELEX-derived model was
available for the same TF; this set covers 56 different
TFs. For some TFs, Jolma et al. reported several
PWMs, either because of multiple experiments or
because of construction of several PWMs by their algo-
rithm. Occasionally, for a TF analyzed by PBM, both a
primary motif and a secondary motif are reported. When
multiple PWMs were reported for the same TF by one
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technology, we assigned to each sequence the highest score
obtained by such a model. We used five algorithms to
generate PWMs from PBM experiments: Amadeus-PBM
(10), Seed-and-Wobble (4), RankMotif++ (15), BEEML-
PBM (17) and RAP (18). The performance of the models
generated by each algorithm was reported in (18). For
each paired experiment, these models were learned on
one array and tested on the other to avoid overfitting.
Testing of a model was by predicting the binding intensity
for each probe in the other array and comparing it with
the measured binding intensity. Scores for the comparison
were the Spearman rank coefficient on the positive probes,
the sensitivity (true positive ratio) at 1% false-positive and
AUC of the receiver operating characteristic curve (see
Methods). We report the average results in Table 1 (for
complete results see Supplementary Table S1).

The results show good agreement between the two
technologies (Table 1 and Figure 1A). The average
accuracy of HT-SELEX models is significantly lower
than that obtained by PBM-derived models (e.g. AUC
of 0.825 compared with 0.899 for the best PBM-derived
models, P-value=7.68·10�14 Wilcoxon signed-rank test).
This is expected because the evaluation is using PBM
measurements. In an additional test on two other PBM
data sets covering 115 human and mouse E26
transformation-specific (ETS) and homeodomain TFs
tested on a single array (19,20), HT-SELEX-derived
models achieved an average AUC of 0.928 (see
Supplementary Information). These results may reflect
properties of specific TF families.

We found no significant difference between binding
models based on mouse and human proteins and between
models based on full proteins and binding domains; in both
cases the two models performed essentially equally in pre-
dicting PBM binding that used mouse binding domains
(see Supplementary Information). Note that sample sizes
were small and broader tests are still needed.

For some TFs, the HT-SELEX prediction results were
poorer than those achieved by PBM models. We define a
set of HT-SELEX-derived models for the same TF as a
failure if it achieved an AUC lower by at least 0.1 than the
average of the five PBM models. HT-SELEX models
failed in 20 TFs (covered by 42 experiments), including
all Sox, E2F and Rfx proteins, as well as the individual
TFs Hnf4a, Rara, Rxra, Smad3, Sry and Zscan4
(Figure 1A and B). These failures occur in particular TF
families, including the E2F, Sox, NR, Rfx, MAD and
znfC2H2 families [experiments on HMG and znfC2H2

proteins had a low success rate (12)]. The high-mobility
group (HMG) super-family includes the Sox, Lef and
Tcf protein families. It was suggested that for this family
of proteins the DNA structure plays a larger role for
binding site recognition than sequence specificity (21),
which may explain the failure for this protein family.
The recent observation that E2F1 and Smad1 ChIP-seq
peaks do not contain the in vitro binding site (22) may
explain the failures for E2F and Smad3. Figure 1C
presents the differences in the models for some of these
cases.

A model-independent comparison

To avoid dependency on model learning, we performed a
model-independent comparison. For each HT-SELEX
experiment, we selected one arbitrary PBM experiment
of the same TF from Cell08, SCI09 or EMBO10 studies.
This resulted in 238 PBM-SELEX data sets. We chose to
summarize the measurements of each method using 8-mer
statistics, and focus on the top ranking 8-mers, which are
expected to contain most of the information relevant for
TF binding. For PBM 8-mer scores, we used average
binding intensity, which is an accurate estimate of
binding affinities (18). For HT-SELEX 8-mer scores, we
tested two options: 8-mer frequency and 8-mer ratio
(frequency in cycle i divided by frequency in cycle i-1)
for all cycles (see Methods). With these scores at hand,
for each data set we used the set of top 100 8-mers,
according to one technology, and calculated the Pearson
correlation of its scores with the scores of the same set in
the other. Figure 2 shows the results for the different
cycles, different scores and different selection of top
8-mers. Complete results are available in Supplementary
Table S2. Using the Spearman rank correlation provided
similar results (data not shown).
The results show that frequency scores give consistently

better correlation with PBM scores than ratios. Hence, for
the data analyzed in this study, frequency is superior to
ratio, and we used it henceforth. The highest average cor-
relation (just over 0.74) is achieved at cycle 3, when the top
8-mers are selected by PBM data, and HT-SELEX 8-mers
are ranked by frequency (Figure 2A). The k-mer ranking
becomes more specific as the cycles progress [as was noted
in (12)]. At some point it becomes too specific, overrepre-
senting a small number of top k-mers and thus less
accurate for medium- and low-affinity k-mers; we refer
to this phenomenon as overspecification. Figure 2B

Table 1. Accuracy of HT-SELEX- and PBM-based PWM models in predicting TF binding to PBMs

Model based on HT-SELEX PBM

Algorithm Jolma et al. Amadeus-PBM Seed-and-Wobble RankMotif++ BEEML-PBM RAP

Spearman rank coefficient 0.282 0.230 0.272 0.301 0.335 0.339
Sensitivity at 1% false-positive 0.288 0.327 0.293 0.277 0.403 0.400
AUC 0.825 0.877 0.872 0.882 0.899 0.898

Note. Results show average Spearman rank coefficient, sensitivity at 1% false-positive and AUC for predicting positive binding in 128 paired PBM
experiments (covering 56 different TFs). PBM data were taken from (16) and HT-SELEX models were taken from (12). Prediction results for the
different PBM-based algorithms were taken from (18). For each experiment the PWM models learned by HT-SELEX or by the other PBM array
were used to predict the bound probes (see Methods).
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Figure 1. Quality of binding prediction based on PBM data. (A) Accuracy in predicting PBM binding. For each PBM experiment, PBM probes are
ranked according to motifs inferred by five PBM algorithms (AM=Amadeus-PBM, SW=Seed-and-Wobble, RM=RankMotif++,
BE=BEEML-PBM and RAP) and by the HT-SELEX-derived models. This ranking is compared with the true ranking by calculating the AUC
for predicting the bound PBM probes. Each dot is the average result of one algorithm in two or four experiments (TF names are listed at the bottom,
TF family names are at the top, as given in Jolma et al.). (B) Sensitivity results in predicting PBM binding. For each PBM experiment, the bound
probes were predicted using BEEML-PBM and HT-SELEX PWM models. The plot shows the sensitivity (true positive rate) at 1% false-positive rate
of these predictions. Colors correspond to protein families. (C) Disagreement between HT-SELEX- and PBM-derived models. The logos are of the
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shows, for each combination of cycle, source of top 8-mers
and HT-SELEX 8-mer score and the number of times
the maximum correlation is achieved by that
combination. Cycles 1, 2 and 3 have the highest
numbers, supporting the idea of a trade-off between spe-
cificity and variability.

The results also suggest that 8-mers ranking using PBM
is more reliable than using HT-SELEX. The top 100 PBM
8-mers have greater correlation than the top 100 HT-
SELEX 8-mers. Identification of these 8-mers is important
for learning the binding preference of the protein. At the
current read coverage of HT-SELEX experiments, PBM

Figure 1. Continued
PWMs learned from HT-SELEX (top), and PBM (middle and bottom) taken from Jolma et al. and UniPROBE, respectively. The middle and
bottom models learned from PBM for each TF are the primary and secondary models, respectively. 1, 2: examples where HT-SELEX produces
motifs that are similar to the primary PBM model, but too long for PBM technology; 3, 4: cases where HT-SELEX models agree with PBM
secondary model; 5: an example where the HT-SELEX model disagrees with both PBM models. (TCF3 was excluded from the analysis because each
technology tested a different TF with that name: a bHLH Tcf3 was tested by HT-SELEX, whereas the HMG Tcf3 was tested by PBM).

Figure 2. Correlation between the top 8-mers as ranked by PBM and HT-SELEX data. For each HT-SELEX experiment 8-mers were scored by
frequency or by the ratio of the frequency to the frequency in the previous cycle. The 8-mers of a PBM experiment on the same TF were scored by
average binding intensity. For the 100 top scoring 8-mers according to PBM, the correlation between their PBM scores and their HT-SELEX
frequency and ratio scores was computed. Similarly, for the 100 top scoring 8-mers according to HT-SELEX frequency (ratio), their correlation with
the PBM scores was computed. (A) Average correlation in each cycle. Bar names indicate the technology used to determine the top 100 8-mers. The
plot is based on average correlation over 238 TFs. (B) Distribution of the maximum correlation for different parameter combinations. The plot
shows the number of times the maximum correlation is achieved by each combination of cycle, source of top 8-mers and HT-SELEX 8-mers score.
(Because only 39 HT-SELEX experiments included data for a fifth cycle, we excluded it from the comparison; none of these experiments had
maximum score at the fifth cycle).
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data are more robust in identifying the top 8-mers.
Sequencing a larger sample of the bound oligos may
improve 8-mer scores and thus affect the binding models
derived from them.
No significant differences were observed when

comparing mouse versus human models as well as full
protein versus binding domains (see Supplementary
Information). Using median binding intensity to score
PBM 8-mers instead of the average showed similar
results (data not shown).

HT-SELEX models predict in vivo binding more
accurately than PBM models

We compared the performance of PBM PWM models
with HT-SELEX PWM models in predicting in vivo
binding. We used human ChIP-seq data from the
ENCODE project (13) for TFs that had both PBM and
HT-SELEX data. In total, 15 human TFs covered by 111
ChIP-seq experiments were included in this comparison.
The top 500 peaks in each experiment were used as a
positive set, taking for each peak 250 bp around its
center. The negative set consisted of 250-bp-long
sequences taken from flanking sequences 300 bp down-
stream of each positive sequence. This choice is aimed to
select negative sequences with statistical features, such as
GC-content and k-mer counts, similar to those of the
positive ones (23). PBM and HT-SELEX PWM models
were taken from UniPROBE database (9) and Jolma et al.
(12), respectively. When multiple models were reported by
one technology, we assigned to each genomic sequence the
highest score obtained by such a model. We did not dis-
tinguish between human and mouse TFs because Jolma
et al. (12) reported conservation of binding specificities
between these species. Average AUC over the set of
ChIP-seq experiments for each TF is reported. Complete
results are shown in Supplementary Table S3.
Our results show that HT-SELEX models are more

accurate in predicting in vivo binding (average AUC of
0.756 compared with 0.715, P-value=9·10�5 Wilcoxon
signed-rank test) (Figure 3A). Trimming the PWM to the
eight most informative positions results in average AUC of
0.732 and 0.719 (P-value=0.18 Wilcoxon signed-rank
test), respectively, hinting that the advantage of HT-
SELEX models may be due to the addition of flanking
positions. We note that the test set is too small to draw
definitive conclusions, but we believe it points to an advan-
tage of HT-SELEX models in predicting in vivo binding.
For Tcf7, Srf, Mafk, Gata3 and Hnf4a HT-SELEX
models, AUC is greater than that of PBM models by >

0.05 (Figure 1C and 3B). When excluding secondary PBM
models, for Tcf7 and Mafk the average AUC increased
from 0.61 to 0.81 and from 0.87 to 0.92, respectively, sug-
gesting that some secondary models are wrong. At the same
time, for Hnf4a the AUC dropped from 0.86 to 0.65.
Similar results were observed on mouse ChIP-seq experi-
ments downloaded from the ENCODE project (data not
shown). Using the upstream sequences as control gave
similar results (data not shown). When using a larger set
of 1000 peaks, the advantage of HT-SELEX was smaller
but still significant (data not shown).

We checked the effect of the source organism on pre-
dicting in vivo binding in human. Similarly, we compared
the prediction quality based on experiments with full
proteins compared to experiments using only the TF
binding domains. None of the comparisons showed a
significant difference (see Supplementary Information).

HT-SELEX experiments show systematic biases

Binding models for HT-SELEX use the most frequent
k-mer in some cycle as a seed (6). To study the perform-
ance of these models on PBM data, we selected the most
frequent 8-mer from each cycle and compared it with the
top PBM 8-mer (determined by average binding intensity),
when PBM data for the same TF were available (see
Methods). We define a positive identification if the top
8-mer is identical with up to two mismatches to the top
PBM 8-mer allowing an offset of up to two positions
between the aligned sequences. The results are
summarized in Figure 4A. Notably, in a substantial
number of experiments, the most frequent HT-SELEX
8-mer in the last cycles did not match the top PBM
8-mer. Only 184 of 225 (81%) of the top HT-SELEX
8-mers in cycle 4 matched the top PBM 8-mer.
Complete results are available in Supplementary Table S5.

Among the most frequent 8-mers in the different cycles,
we observed many A-rich and C-rich 8-mers. To quantify
this phenomenon, we focused on poly(A) and poly(C)
8-mers, defined as 8-mers containing at least 7 As or 7
Cs, respectively. Figure 4A shows an overabundance of
such 8-mers as the most frequent 8-mers, especially in
cycles 0–2. When comparing the distributions of
poly(A), poly(C) and of other 8-mers in each cycle over
all experiments, poly(A) and poly(C) 8-mers are much
more abundant in the initial pool than the other 8-mers
(median frequency 1.0·10�3 and 5.66·10�4 in cycle 0 and
9.4·10�4 and 9.43·10�4 in cycle 1, respectively,
P-value< 3·10�5 assuming a uniform null 8-mer
distribution).

Moreover, certain 8-mers behaved differently in terms
of their frequency changes between cycles. The poly(C)
8-mers were magnified from cycle to cycle much more
than other 8-mers (Figure 4B). We also tested palindromic
8-mers (i.e. 8-mers that are identical to their reverse com-
plement). We observed that palindromic 8-mers are less
frequent initially (P-value=0.002 in cycle 0 assuming a
uniform null 8-mer distribution) and are less magnified
than the rest of the 8-mers (Figure 4B, P-value=2.2·10�6

using a K–S test for comparing the rate of change between
cycle 3 and cycle 4 of the palindromes with the other
non-poly(A) and non-poly(C) 8-mers). Complete results
are available in Supplementary Table S6. Ratio-based
statistics showed the same phenomenon (data not shown).

Several reasons can explain the uneven abundance and
magnification of k-mers. First, it can arise from techno-
logical artifacts. PCR biases have been observed and
studied (24), and sequence bias is known to exist in
high-throughput sequencing technologies, including the
technologies used in Jolma et al. study (Illumina
Genome Analyzer IIX and Hiseq2000) (25). We
observed that nucleotide frequencies in the data are far
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from uniform, which can be explained by biased oligo
generation (see Supplementary Information). Note that
both the oligo generation and sequencing processes are
strand-specific, so the frequencies of A and T (and of G
and C) need not be equal. The systematic overrepre-
sentation of specific k-mers has been observed both
in vivo [in ChIP-seq data (26)] and in vitro [in PBMs
(27), where it was termed ‘sticky k-mers’]. According to
Jiang et al., in PBM the set of sticky k-mers are all A-rich
except CCCCGCCC, in partial agreement with our obser-
vations on HT-SELEX data. An alternative explanation
suggested by a recent theoretical study was that TFs bind
non-specifically to homogenous sequences (28). The
underrepresentation of palindromes may be due to the
formation of secondary structures that hinder PCR of
such sequences (See Supplementary Information).

False oligos are common in HT-SELEX

Because whole reads (oligos) are sequenced and selected
by the HT-SELEX technology, we also conducted an

analysis of the abundance and magnification properties
of oligos. For each TF, we identified the most frequent
oligos in the last cycles. For the 100 most frequent oligos,
we defined as false oligos those that do not contain any of
the seeds reported in (12) allowing one mismatch. We also
measured the oligo enrichment ratio, defined as the oligo’s
frequency in the last cycle divided by its frequency in the
previous cycle.
The false oligos were on average 25% of the 100 most

frequent oligos in the last cycle. In 113 experiments (of
547), at least 50 of the 100 most frequent oligos in the
last cycle were false. We observed two characteristics
common to them. First, they tended to have more
skewed nucleotide distribution than true oligos, with
high frequency of one nucleotide (C in 75% of the
cases). In all, 35% of the false oligos had one nucleotide
composing at least 50% of the sequence, compared with
14% in the true oligos. Second, they tended to be
extremely magnified, rising from a low count (or zero) in
one cycle to a high count in the next. For example, 41% of

Figure 3. Predicting in vivo binding using HT-SELEX- and PBM-derived PWM models. The PWMs learned from HT-SELEX and PBM were taken
from Jolma et al. and UniPROBE, respectively. In vivo binding was measured by the ENCODE project using ChIP-seq. (A) AUC results for each
ChIP-seq experiment for which HT-SELEX and PBM experiments on the same TF are available. (B) Examples where HT-SELEX predicts in vivo
binding better. For all these examples, the average AUC achieved by the HT-SELEX models exceeds that of the PBM models by >0.05.
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the false oligos were not observed in the one-before-last
cycle, compared with 19% of the true oligos (note that an
oligo present in a particular cycle may have not been
observed because of limited sampling). Figure 4C shows
an example of Atf7 HT-SELEX experiment. Complete
results are available in Supplementary Table S8. Of the
previous studies, we observed similar biases in (6) and
(8), but not in (7) (see Supplementary Information).

DISCUSSION

Protein–DNA binding has been in the focus of gene

regulation studies for years. In the past, binding sites

were defined based on few examples and thus had low

resolution and limited accuracy. With technological devel-

opments, the ability to measure and predict binding sites

has improved. A large leap came in the form of PBMs,

Figure 4. Systematic biases in HT-SELEX technology. (A) Properties of the most frequent 8-mer in different cycles. For each cycle, the fraction of
times the most frequent 8-mer in the HT-SELEX experiment was poly(A), poly(C) or matched the most frequent 8-mer computed from PBM data is
presented (see text). (B) The 8-mer frequency density plots for each cycle. The 8-mers were partitioned into three categories: palindromes,
poly(C) and all the rest. For each category, a smoothed density plot of its 8-mer frequencies is shown. (C) Abundant false oligos in Atf7
HT-SELEX experiment. For cycles 3, 4 and 5, the seven most frequent oligos are shown along with their counts. The consensus sequence is
highlighted in yellow (none of the top seven oligos in cycle 5 contain the consensus).
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which measure in vitro the binding intensity of a specific
TF to thousands of probes, designed to cover all 10-mers
(4). Binding models derived from these data performed
well on other PBM data but less so on in vivo data (10).
One possible explanation was that they reflect PBM arti-
facts together with the specific binding. How well PBM
models represent in vivo TF–DNA binding remained an
open question.

The emergence of new high-throughput in vitro
technologies allowed us to deepen our understanding on
this question. The HT-SELEX technology measures TF–
DNA binding using high-throughput sequencing (6–8).
Recently, Jolma et al. (12) reported HT-SELEX experi-
ments covering hundreds of TFs, where many of them had
been tested on PBM as well. This gave the first opportun-
ity to compare on a large-scale models derived from two
independent high-throughput in vitro technologies.
Through this comparison, we could identify some of the
advantages and disadvantages of each technology and
determine how relevant in vitro models are to in vivo
binding. A small-scale comparison by Jolma et al. (12)
covering 14 models reported a few differences.

Our comparison shows that for most TFs the PBM and
HT-SELEX technologies produce PWM models that are
in good agreement. On average over 246 PBM experi-
ments, the AUC when using the HT-SELEX-derived
model for predicting PBM probe binding was 0.875.
Moreover, in a model-independent comparison, the
average correlation between HT-SELEX 8-mer counts in
cycle 3 and PBM average binding intensities over the set of
top 100 PBM-ranked 8-mers was 0.74. We observed that
PBM-based 8-mer ranking is more accurate and robust
than HT-SELEX-based ranking, and that the ranking
8-mers by their occurrence frequency in the Jolma et al.
HT-SELEX data is better than ranking by between-cycle
ratio score. We speculate that this is due to the relatively
low read coverage in these experiments [compared with
SELEX-seq data, where ratio-based scores were used
(7)]. Although each HT-SELEX experiment reported
hundreds of thousands of oligos, the SELEX-seq experi-
ments had millions. We conclude that high coverage is
necessary to derive accurate ratio scores. For some
families of TFs, the two technologies give discordant
results, perhaps because of differences in DNA structure
[e.g. the HMG proteins, for which structure plays a larger
role in binding (21)]. In comparison with in vivo data from
ChIP-seq experiments, HT-SELEX models had better
binding prediction, partly because of the ability to
model the side positions more accurately. However, the
set of TFs for which HT-SELEX, PBM and ChIP-seq
data were available was rather modest, and larger tests
are needed.

In analyzing the similarity between the top 8-mers
determined by PBM and by HT-SELEX in each cycle,
we observed the previously reported phenomenon of
overspecification. Although 8-mer frequencies in the
initial HT-SELEX cycles are too non-specific and similar
to the initial pool (i.e. closer to random), the last cycles
can, in some cases, be too specific. There is a trade-off
between better coverage of top k-mers in later cycles,
which can improve the binding model accuracy, and

overrepresentation of few top k-mers, which can make
the model too narrow, disregarding weaker binding
motifs. This was noted in (6) and in previous studies
using the SELEX technology (29).
In the course of our analysis, we observed and

characterized several strong biases in many experiments
in the HT-SELEX technology. First, we found a system-
atic bias toward certain types of k-mers [similar but not
identical to the ‘sticky k-mers’, reported for PBM data
(27)]. For many TFs, in the last cycle C-rich 8-mers are
among the most frequent (Figure 4). For example, in 7%
of the experiments the most frequent 8-mer in the last
cycle contained at least 7 Cs. These phenomena can be
explained by PCR and sequencing biases (25) or perhaps
by non-specific TF binding (28). Moreover, when
measuring oligo (whole read) frequencies, we found that
in some experiments the oligos with the highest frequency
and those whose frequencies increased fastest between
cycles did not contain the binding site; we call them
‘false oligos’. We observed these phenomena in the
previous studies (6) and (8), but not in (7). Slattery et al.
were the only ones to isolate bound oligos through a
mobility shift assay, which suggests that this phase
removes false oligos and thus improves the quality of
the data.
Our analysis suggests that each of the HT-SELEX and

PBM technologies has its advantages. PBM data are more
accurate and robust in 8-mer ranking; HT-SELEX seems
to be superior in in vivo binding prediction and allows
better learning of longer motifs. We recommend using
higher read coverage in HT-SELEX experiments, as was
done in (7), to produce more sensitive models. We note
that our comparisons and conclusions are limited to the
specific technological implementations of HT-SELEX and
PBM tested, for which the large-scale overlap exists.
Unfortunately, we could not compare SELEX-seq and
context-genomic PBMs because of fewer data sets.
Our study aimed to provide deeper and broader analysis

of the properties of HT-SELEX experiments and to put

them in the context of other high-throughput technologies

for evaluating TF–DNA binding in vivo and in vitro. In the

future, we plan to extend this work in several directions.

First, we intend to use the new insights to design better

motif finding algorithms based on HT-SELEX data.

Second, we can learn a binding model based on the

biomechanical mechanism of TF–DNA binding using

regression methods that use k-mer counts [as in (8)].

Third, we plan to learn more complex binding models.

More specifically, we plan to incorporate in the models

2-mer features as well as DNA shape features, as was

done recently using custom PBM (30), and demonstrated

using existing motif databases (31). The rich and broadly

available HT-SELEX data provide a great opportunity to

improve our understanding of TF–DNA binding.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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