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ABSTRACT

Euclidean distance measure has been used in comparing feature

vectors of images, while cosine angle distance measure is used in

document retrieval. In this paper, we theoretically analyze

these two distance measures based on feature vectors normalized

by image size and experiment with them in the context of color

image database. We find that the cosine angle distance, in

general, works equally well for image databases. We show, for

a given query vector, characteristics of feature vectors that will

be favored by one measure but not by the other. We compute

k-nearest neighbors for query images using both Euclidean and

cosine angle distance for a small image database. The

experimental data corroborate our theoretical results.

1. INTRODUCTION

Vector model is widely used for capturing and storing objects in

information retrieval systems. One important issue to consider

in using the vector model is the choice of appropriate distance

measure that provides the metric for finding similarity between

two objects. Several distance measures, such as the L1 metric

(Manhattan Distance) and the L2 metric (Euclidean distance),

have been proposed to compare the similarity of feature vectors.

In content-based image retrieval systems Euclidean distance is

commonly used to determine similarities between a pair of

images. In document retrieval systems, on the other hand,

distance measure based on cosine angle is more commonly used

for similarities between two documents [1][2]. Even though

both the Euclidean and the cosine angle based distances coincide

when the components of the feature vectors are normalized by

the norm of the vector, they differ when they are normalized

otherwise. In image processing applications components of a

feature vector (e.g., color histogram) are usually normalized by

the size of the image and as a result, the Euclidean and the cosine

angle based distances produce different results. The contribution

of this paper is to show when one distance measure performs

differently, and when they perform similarly for feature vectors

normalized by size. We present a theoretical approach to

compare these two distance measures and corroborate the

theory with experimental results performed on feature vectors

for color images.

2. THE COMPARISON OF TWO DISTANCE MEASURES

2.1. Related work

One way of comparing the distance measures is to see their

retrieval performance in terms of precision and recall based on

a particular image database [3]. Different aspects on how to

choose a distance measure have also been studied. One

concern in choosing a particular distance measure is the impact

of computational overhead on system performance. When

feature vectors are large, some distance measures may consume

more computing resources than the others. One possible

approximation of the Euclidean distance measure is proposed in

[4]. On the other hand, it is also important to choose a

similarity measure that is consistent with human ideas of

similarity. The authors of [5] have proposed a similarity

measure based on noise distribution of the image set.

2.2. The retrieval experiment

We start our comparison of Euclidean distance and cosine angle

distance based on the retrieval results from our image database,

which contains 650 photographic color images, derived from

the web and IMSI master clips. Our experiment is based on

both QBIC feature vectors [6] and color histograms proposed in

[7]. For color histograms, we use a new histogram generation

technique based on HSV color space where each pixel in an

image contributes either its hue or its intensity based on its

saturation.
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Our results show that two distance measures give us different

ordering in the retrieval results. Euclidean distance has better

precision and recall for some query images and angle is better for

some other query images.

In the next subsection, we describe the mathematical model we

have used for analysis. The analysis shows the relationship

between the distance measures and the variance of the

components of the feature vectors (we use the name "variance of

feature vector" or "variance" in the following sections). The

detailed experimental results are presented in section 3.

2.3. The mathematical analysis

The analysis described in this subsection is based on geometrical

properties of feature vectors derived from image hyperspace.

To make feature vectors comparable to each other, each vector is

normalized by its corresponding image size. Assuming there

are n components in a feature vector, the formula
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kk VVv (1≤k≤n) gives a normalized feature vector v

for the original vector V. Each normalized vector in the image

database can be regarded as a point on the hyperplane

x1+x2+...+xn = 1 in a vector space which has n dimensions.

There are two special points in the hyperspace. The centroid C

is defined as the point: (1/n, ...,1/n) on the hyperplane, where n is

the number of dimensions and the origin O is the point: (0,...,0).

As shown in Figure 2.1, given a query

image point Q (q1, q2, ..., qn), the

Euclidean distance between Q and any

other point P (p1, p2, …, pn) is the edge

|PQ| and the cosine angle distance is

cos(∠POQ). We name ∠POQ as angle

A and cos A as the cosine angle distance

between P and Q. The variance of vector P is given by the

formula σ
2 = |PC|2 / n, where the number of dimensions n is fixed.

The following theorems show the mathematical relation between

variance and the cos angle distance cos A. The proof of

Theorem 1 is given in Appendix.

Theorem 1: Given a query vector Q on the hyperplane

(x1+x2+...+xn=1), for any point P that has a fixed Euclidean

distance from Q, the cosine angle distance cos A will be the

maximum when the variance σ
2 of P reaches its highest

possible value (|CQ| + |PQ|)2 / n. If |PQ| ≥ |CQ|, cos A

monotonically decreases as σ
2 decreases. If |PQ|<|CQ|, cos A

decreases when ( ) n|PQ|-|CQ(|n|PQ|-|CQ| 222 )2
≤≤ σ and

increases when ( ) n|PQ||CQ|n)|PQ|-|CQ(| 222 2
+≤≤σ .

Based on Theorem 1, we can see that if Euclidean distance of

two vectors v1 and v2 are the same, the one with a greater

variance value of its components will be most likely ranked

higher by angle distance measure.

In real applications, it is seldom the case that the Euclidean

distances of two feature vectors are exactly the same.

Theorem 2 below handles this problem and shows what

happens when two feature vectors have the same variance

values but different Euclidean distances. The proof of

Theorem 2 is given in the Appendix.

Theorem 2: Given a query point Q on the hyperplane

(x1+x2+...+xn=1), for any point P1 that has a fixed variance

value σ
2, the cosine angle distance cos A will decrease when

Euclidean distance |PQ| increases.

Theorem 2 shows that if the variances of all feature vectors are

fixed, the Euclidean distance and cosine angle distance will

always give us the same retrieval results. Based on Theorem 1

and 2, we see that when Euclidean distance and cosine angle

distance give different retrieval results, the variances of the

vectors must be different. The feature vector that has a

higher variance value will most likely be ranked higher by

Angle distance. Experimental results given in the next section

corroborates our analytical results.

3. THE EXPERIMENTAL RESULTS

The following results are based on the experiments described in

section 2.2. Table 3.1 and 3.2 show that, on the average, the

retrieval quality of Euclidean distance is almost the same as that

of the cosine angle distance. However, the feature vectors that

ranked higher by Angle distance have a higher average variance
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value then those ranked higher by Euclidean distance. Table

3.3 and 3.4 show the average variance values of feature vectors

ranked 1-5, 1-10 and 1-25 in the retrieval results by Euclidean

distance and by cosine angle distance. We see that the average

value of variance is higher for those ranked by cosine angle

distance than those by Euclidean distance, which corroborates

our analytical results.

Table 3.1 Average precision and recall of QBIC feature vector:

Precision RecallDistance
Measure 5 10 25 5 10 25

Euclidean 0.580 0.430 0.240 0.379 0.547 0.721
Cosine 0.560 0.420 0.236 0.366 0.530 0.715

Table 3.2: Average precision and recall of HSV histogram vector:

Precision RecallDistance
Measure 5 10 25 5 10 25

Euclidean 0.820 0.630 0.336 0.520 0.781 0.983
Cosine 0.820 0.640 0.324 0.520 0.785 0.952

Table 3.3 Average variances of QBIC feature vectors:

QBICDistance
Measure 5 10 25

Euclidean 0.00251 0.00249 0.00233
Cosine angle 0.00299 0.00286 0.00294

Table 3.4 Average variances of HSV histogram vectors:

HSVDistance
Measure 5 10 25

Euclidean 0.00197 0.00188 0.00164
Cosine angle 0.00228 0.00229 0.00198

As we mentioned in section 2.2, the actual ranking results of

Euclidean and cosine angle distance for a given query image

are often different. We have proved by Theorem 1 and 2 that

the different retrieval results by Euclidean distance and cosine

angle distance are related to the variances of the components of

the feature vectors. Figure 3.1 and 3.2 illustrates one typical

query result where the first image is the query image. In this

example, the cosine angle distance shows a better retrieval

results than the Euclidean distance.

We pick two images from ranked list and make the following

observation. The 7th image in Figure 3.1 (named as P2 in

Figure 3.3) contains a tiger, and the 7th image in Figure 3.2

(named as P1 in Figure 3.3) contains ships. In Figure 3.3, the

thinner curve is based on all points with the same Euclidean

distance of value |PQ|=0.20587. The thicker curve is based on

|PQ|=0.16086. We also have |CQ|=0.26393 (Please refer to

Figure 2.1). From figure 3.3, we can see that P2 has a greater

variance value than P1, while angle distance is favoring P2 but

Euclidean distance is favoring P1, which corroborates our

analytical results. The two curves have a shape conforming to

Theorem 1. The two curves do not have any intersections,

which conforms to Theorem 2.

4. CONCLUSIONS

We have compared Euclidean distance with cosine angle

distance for feature vectors normalized by size, and have shown

when one gives different results from the other. We

corroborate our theoretical results with experimental data using

content-based image retrieval. Though our experiment shows

that Euclidean and cosine angle distance perform similarly, the

property of angle distance presented in this paper may be

Figure 3.1 Query result by cosine angle distance using HSV
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exploited to achieve better retrieval quality in image databases.

We have also done experiments on the same image database of

650 images with Manhattan (L1) distance measure. Our initial

results show that, though the ranked ordering of images for a

query using Manhattan distance is different from those by

Euclidean and cosine angle, the average precision and recall are

very similar to those of the Euclidean distance and cosine angle

distance. We have seen in our experiment that the precision and

recall of Manhattan distance is always better than those of the

Euclidean distance and cosine angle distance in the first 1-5

results, but always worse in the first 1-25 results.

5. APPENDIX

Property 1: For every point P (p1, p2, …, pn) on the hyperplane

(x1+x2+...+xn=1) other than centroid C, hyperangle ∠OCP = 90°.

Proof. Vector PC is (p1 - 1/n, …, pn - 1/n), and vector OC is (0 -

1/n, ... , 0 - 1/n). We have: cos ∠OCP = (PC•OC)/(|PC|×|OC|)

= ((p1 + p2 + … + pn - 1) × (-1/n)) / (|PC| × |OC|)

We know p1+p2+...+pn=1. So cos∠OCP=0 and ∠OCP=90°. ฀

Theorem 1 Proof. As shown in Figure 2.1, we know that

∠OCP and ∠OCQ are 90° from Property 1. In right ∆COP, We

have:

Based on ∆OPQ, we have the following:

Combing Formula 1, 2 and 3 together, we have:

Since |OC|, |OQ| and |PQ| are fixed, consider |PC| as the

independence variable of the function. We can get the

derivative function formula 5, in which a > 0:

In right ∆COP, We have:

Combing Formula 5 and 6, we have:

Based on the derivative function in Formula 7 and the equation

σ
2 = |PC| / n, we can see that if |PQ| ≥ |CQ|, cos A monotonously

decreases as σ
2 decreases. If |PQ|<|CQ|, cos A decreases when

( ) n|PQ|-|CQ|n|PQ|-|CQ| 222 )(2
≤≤σ and increases when

( ) n|PQ||CQ|n|PQ|-|CQ 222 2
)(| +≤≤σ .

Since the only two local maximum values of cos A appears at

where σ
2 equals (|CQ| - |PQ|)2 / n or (|CQ| + |PQ|)2 / n. It is

clear from Figure 2.1 that cos A at (|CQ| + |PQ|)2 / n will be

greater than cos A at (|CQ| - |PQ|) 2/ n. Thus, the cosine angle

distance cos A will be the maximum when σ
2 is (|CQ|+|PQ|)2/n.

฀

Theorem 2 Proof. Since variance of the components of P σ
2

is fixed. Using equation σ
2 = |PC| / n , we know |PC| is also

fixed. So |PC|, |OC| and |OQ| are all fixed in formula 4. We

can treat |PQ| as the independence variable and get the

following derivative function (a>0):

f'(x) will always be less than zero. It means that when

Euclidean distance |PQ| increases, the cosine angle distance cos

A will decrease. ฀
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