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Abstract
We conducted a comparative analytic study on the context-
dependent Gaussian mixture hidden Markov model (CD-GMM-
HMM) and deep neural network hidden Markov model (CD-
DNN-HMM) with respect to the phone discrimination and the
robustness performance. We found that the DNN can signif-
icantly improve the phone recognition performance for every
phoneme with 15.6% to 39.8% relative phone error rate re-
duction (PERR). It is particularly good at discriminating cer-
tain consonants, which are found to be “hard” in the GMM.
On the robustness side, the DNN outperforms the GMM at
all SNR levels, across different devices, and under all speak-
ing rate with nearly uniform improvement. The performance
gap with respect to different SNR levels, distinct channels, and
varied speaking rate remains large. For example, in CD-DNN-
HMM, we observed 1∼2% performance degradation per 1dB
SNR drop; 20∼25% performance gap between the best and
least well performed devices; 15∼30% relative word error rate
increase when the speaking rate speeds up or slows down by
30% from the “sweet” spot. Therefore, we conclude the ro-
bustness remains to be a major challenge in the deep learning
acoustic model. Speech enhancement, channel normalization,
and speaking rate compensation are important research areas in
order to further improve the DNN model accuracy.
Index Terms: GMM-HMM, CD-DNN-HMM, noise robust-
ness, channel compensation, speaking rate normalization

1. Introduction
The success of the deep neural network in the large vocabu-
lary speech recognition is one of the greatest breakthroughs in
speech recognition technologies over the last decade. Following
the seminar work of applying the deep learning and context-
dependent deep neural network hidden Markov model (CD-
DNN-HMM) to the large vocabulary continuous speech recog-
nition tasks (LVCSR) [1], different research groups published
consistent performance gain over the best discriminatively
trained context-dependent Gaussian mixture hidden Markov
model (CD-GMM-HMM) on the public research benchmark
switchboard (SWB) [2, 3] task. Meanwhile, the industry world
quickly launched this technology in their production systems
and reported comparable results [4, 5]. To this end, [6] sum-
marized the shared views of four research groups on the deep
neural network for acoustic modeling.

As is known, diverse acoustic environment, distinct chan-
nels, various speaking style are the fundamental challenges in
the LVCSR acoustic modeling. With the significant perfor-
mance gain widely reported in the deep neural network acous-
tic modeling, we would like to find out, amongst these acoustic

model challenges, what have been solved gracefully and to what
degree; what are still left as intriguing problems? The ultimate
goal is to identify several important research areas to further
improve the deep learning acoustic model performance.

Previous study [7] shows that the gain of the deep learning
acoustic model is mostly due to the fact that DNN can extract
more invariant and selective features through many layers of
nonlinear feature transformation. In this paper we answer the
question whether this property helps to boost performance dif-
ferently or equally for different phonemes and under different
SNRs, channels, and speaking rates.

Specifically, we adopted an analytic methodology and con-
ducted a deep error pattern analysis on a pair of CD-DNN-
HMM and CD-GMM-HMM with respect to the phone discrimi-
nation and the performance pattern on three selected robustness
factors. Each addresses one acoustic model challenge described
earlier. To the best of our knowledge, this kind of analytic study
for the deep learning acoustic model is not available.

Our study shows that the deep neural network acoustic
model can significantly improve the phone discrimination with
27.9% PER reduction. It performs particularly well in discrim-
inating certain consonants, which are found to be “hard” in the
GMM. On the robustness side, we found that the DNN outper-
forms the GMM at all SNR levels, across all devices, and under
all speaking rate. This is consistent with the study in [7].

Nevertheless, the DNN seems to generate uniform per-
formance improvement under different conditions. Our study
shows 1∼2% performance degradation per 1dB SNR drop;
20∼25% word error rate gap between the best and the least well
performed devices; 15∼30% accuracy drop when the speaking
rate speeds up or slows down by 30% from the “sweet” spot.
This suggests that the noise robustness, channel normalization,
and speaking rate compensation remain to be the important ar-
eas in the deep learning acoustic model.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the analytic methodology and the LVCSR task
in this study; Section 3 compares the overall phone discrimi-
nation of the CD-GMM-HMM and CD-DNN-HMM; Section 4
analyzes the performance pattern of the CD-GMM-HMM and
CD-DNN-HMM with respect to the different SNR level, chan-
nel, and speaking rate. Section 5 concludes this study.

2. Analytic Methodology and Task
The mobile voice search (VS) and short message dictation
(SMD) serves vast types of mobile devices used by millions of
users with distinct speaking styles in diverse acoustic environ-
ments. This real world speech application embeds almost all
key LVCSR acoustic model challenges and therefore was cho-
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sen as an ideal task for this study. Moreover, besides our interest
in analyzing and improving such a practical system, the large
volume of the available analytic material with a broad coverage
of the real life acoustics can ensure the statistical significance.
We don’t know of any good alternative choice from the public
domain speech database more suitable for this analytic study.

Specifically, we trained a pair of GMM and DNN mod-
els with a comparable setup using 400 hr VS/SMD data. The
GMM is a discriminative model trained with the feature-space
minimum phone error rate (fMPE) [10] and the boosted MMI
(bMMI) [9] criteria. The front-end is the 39-dimension MFCC
feature. The DNN was trained using the cross entropy (CE) cri-
teria and the front-end is the 87-dimension log filter bank (LFB)
feature with a context window of 11 frames. The two models
shared the same training data, decision tree, and the same MLE
seed model used for the lattice generation in the GMM and the
senone state alignment in the DNN.

The analytic material consists of 100 hr VS/SMD test data
randomly sampled from the deployment with roughly the same
distribution as the training data. A list of interested meta tags,
extracted from the search log or generated offline, were used to
partition the analytic material into disjoint “condition” specific
analytic sets. The “condition specific analytic data sets were
then used to evaluate and compare the distinct error patters for
the pair of GMM and DNN models. In particular, for the con-
tinuous valued meta tags, e.g. the SNR and the speaking rate,
we implemented some simple smoothing for a more consistent
and smoothed error pattern.

The overall performance comparison of the CD-GMM-
HMM and CD-DNN-HMM is summarized in Table 1. We ob-
tain 20.3% and 25.1% WERRs in the DNN compared to the
baseline GMM for the VS and SMD task respectively.

Next, we will first analyze the distinct phone error pattern
in the CD-GMM-HMM and CD-DNN-HMM; then compare the
robustness performance pattern of the two models with respect
to the different SNR, channel, and speaking rate.

Table 1: Overall performance comparison of the 400 hr CD-
GMM-HMM and CD-DNN-HMM VS/SMD models.

Task GMM(%) DNN(%) WERR (%)

VS 30.4 24.3 20.3

SMD 19.9 15.0 25.1

3. Phone Error Pattern Analysis
Figure 1 illustrates the phone error rate (PER) of the CD-GMM-
HMM and CD-DNN-HMM rendered by the decreasing order of
the phone error rate reduction (PERR). It can be seen that the
phone error rate for every phoneme was reduced in the DNN
model and the PERRs range from 15.6% to 39.8%. On av-
erage, the CD-DNN-HMM yields 27.9% PERR compared to
the CD-GMM-HMM. This indicates that the DNN can gener-
ate significantly better classification boundary than the GMM
discriminatively trained with the fMPE and bMMI criteria.

We further observed that the DNN model is more effective
in modeling consonants comparing to the GMM. Certain con-
sonants, which are “hard” to discriminate in the GMM, obtain
notably larger performance boost in the DNN model. Overall,
the DNN model exhibits a much smoother PER contour. In par-
ticular, “[zh]” and “[dn]” have significantly higher PERs com-
pared to all other phonemes in the GMM. Their PERs drop from
21.9% and 20.9% to 14.9% and 14.5% respectively in the DNN

0

10

20

30

40

50

-2

2

6

10

14

18

22

26

30

m sh uw
k oy n hh
l

zh iy g v b ae aa dh y
aw

f r ah ng ow jh ao ax p ey ih er uh w t
ch d ay eh s th z

PE
R

R
 (%

) 

PE
R

 (%
) 

Phoneme 

PER (GMM-HMM)
PER (CD-DNN-HMM)
PERR (DNN w.r.t. GMM)

Figure 1: Phone error rate (PER) of the CD-GMM-HMM and
CD-DNN-HMM rendered by ordering the phonemes by the de-
creasing order of phone error rate reduction (PERR).

model. These two phonemes remain on the top PER phoneme
list in the DNN model though with much smaller performance
gap with other phonemes.

We conducted the phone error analysis for the VS and the
SMD task separately and obtained the similar results. This fur-
ther confirmed the observation we made is task independent.

4. Robustness Performance Analysis
In this section, we will discuss and compare the robustness per-
formance pattern of the GMM and DNN models with respect to
the different SNR, channel, and speaking rate using the method-
ology described in Section 2.

4.1. Noise Robustness

The environmetal noise can significantly degrade the speech
recognition performance. Technologies that allow the speech
recognition perform well in the diverse acoustic conditions is
criticall for the success of the mobile speech recognition.

To study the noise robustness of the deep learning acous-
tic model, we compared the error pattern of the GMM and
DNN models under different SNR levels with the results sum-
marized in Figure 2 and Figure 3 for the VS and SMD respec-
tively. The CD-DNN-HMM significantly outperforms the CD-
GMM-HMM at all SNR levels. The consistent performance
gain across all SNR levels suggests that the DNN is in general a
more powerful model which can improve the ASR performance
not only on the clean speech but also on the noisy speech with
a wide range of noise levels. Further comparing the perfor-
mance of the CD-DNN-HMM across the different SNRs, we
found that the CD-DNN-HMM yields almost the uniform per-
formance gain over the CD-GMM-HMM. This distinct pattern
is shared between the VS and SMD tasks.

To measure the noise robustness of the DNN, we calculated
the relative performance degradation per 1dB SNR drop. For
the VS, as the SNR drops from 40dB to 0dB, the WERs increase
from 18% to 34% and the SNR per dB drop introduces about
2% relative performance degradation. For the SMD, within the
same SNR range, the WERs increase from 12% to 18% and the
SNR per dB drop results in 1% relative performance degrada-
tion. The quantitative difference of the sensitivity to the noise
level between these tasks is due to the fact that the SMD has
much lower LM perplexity.
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Figure 2: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the VS task.

0
1
2
3
4
5
6
7
8
9
10

10

14

18

22

26

30

-5 0 5 10 15 20 25 30 35 40

H
is

to
gr

am
 (%

) 

W
ER

 (%
) 

SNR (dB) 

Data Dist (SMD).
GMM-HMM (SMD)
CD-DNN-HMM (SMD)

Figure 3: Performance comparison of the CD-GMM-HMM and
CD-DNN-HMM at different SNR levels for the SMD task.

The speech recognition performance of the DNN drops sig-
nificantly as the noise level increases within the normal range
for the mobile speech application. This suggests the noise
robustness remains as an important research area. Speech
enhancement, noise robust acoustic features, or other multi-
condition learning technologies need to be explored to bridge
the performance gap and further improve the overall perfor-
mance of the deep learning based acoustic model.

4.2. Channel Mismatch

The channel mismatch is another major source of the speech
recognition performance degradation. The channel robustness
issue is a traditional speech recognition robustness topic which
has been researched for many years. It is also particularly im-
portant for the mobile speech application since typically the mo-
bile application serves a large number of different devices from
many different phone manufactures. The channel robustness is
an indispensable feature for a successful mobile speech recog-
nition system.

In this session, we discuss whether the channel mismatch
issue still exists as a distinct speech recognition robustness
problem or it has been largely resolved with the invariant and se-
lective feature learning in the deep learning technology. Specif-
ically, we compared the performance of the CD-GMM-HMM
and CD-DNN-HMM on four different mobile devices from dif-
ferent manufactures with the comparison results summarized in

0

5

10

15

20

25

30

11

15

19

23

27

31

35

39

A B C D
Device Type 

H
is

to
gr

am
 (%

) 

W
ER

 (%
) 

Data Dist. (SMD)
Data Dist. (VS)
GMM SMD)
DNN (SMD)
GMM (VS)

Figure 4: Performance comparison of CD-GMM-HMM and
CD-DNN-HMM models on four different devices.

Figure 4.

In the CD-DNN-HMM, we observed consistent word er-
ror rate reduction for all four selected devices both on the VS
and SMD tasks comparing to the CD-GMM-HMM. The DNN
yields nearly uniform performance gain on all four devices and
the pattern is shared between the VS and SMD tasks. This once
again verifies that the DNN is a generally more discriminative
model compared to the GMM. The uniform performance im-
provement across all four devices suggests a nice property in
the deep learning that it helps improving the best performed de-
vice as much as it helps the least well performed device.

We further compared the performance gap across different
devices on the CD-DNN-HMM. On the VS task, the WERs of
the selected four devices range from 19% to 23% or 20% rel-
ative WER difference between the best and the least well per-
formed device. Similar trend was observed in the SMD task.
The performance variance across devices appears to be as large
as in the GMM.

To this end, we think the channel robustness still exists as a
distinct robustness issue and it remains to be further researched
in the deep learning acoustic model. Besides the traditional
channel normalization methodologies, developing channel nor-
malization technologies within the deep learning framework is
promising given the deep learning capability and the deep neu-
ral network capacity.

4.3. Varied Speaking Rate

Speaking rate variation is known to affect the speech in-
telligibility and degrade the speech recognition performance
especially under the mismatched training and testing condi-
tion [11, 12, 13]. In the mobile speech recognition applica-
tions, the speaking rate varies largely depending on the different
speakers, speaking mode, and speaking styles. This requires the
acoustic model to gracefully handle speech with varied speak-
ing rate. We would like to find out how the DNN model per-
forms on varying speaking rate compared to the GMM.

Figure 5 and Figure 6 illustrate the performance compar-
ison across different speaking rate for the VS and SMD task.
Here the speaking rate was measured by the number of phones
per second. We have also adopted some of its variations such
as the number of vowels per second or the normalized speaking
rate by taking into account the average duration for different
phonemes in this study. Similar performance pattern with re-
spect to the speaking rate was observed. Therefore, we simply
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Figure 5: Performance comparison of the CD-GMM-HMM and
the CD-DNN-HMM at different speaking rate for the VS task.
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Figure 6: Performance comparison of the CD-GMM-HMM and
the CD-DNN-HMM at different speaking rate for the SMD task.

adopted the number of phones per second as a measure for the
speaking rate in this paper.

We found that the CD-DNN-HMM consistently outper-
forms the CD-GMM-HMM with almost uniform performance
gain across all speaking rate. This again proves that the DNN
model is a better discriminative model. In comparing the per-
formance of the CD-DNN-HMM across different speaking rate,
we observe the “U”-shaped pattern for both VS and SMD. On
the VS, the speaking rate “sweet spot” is around 10 to 12 phones
per second. When the speaking rate deviates 30% from the
“sweet spot” (either speeds up or slows down), 30% relative
word error rate increase is observed.

In the shared acoustic model scenario for the voice search
and short message dictation, the speaking rate varies both within
and between the two tasks. They have different “sweet spots”
and also exhibit slightly different error pattern with respect to
the speaking rate change. On the SMD, we observe 15% relative
word error rate increase when the speaking rate deviates 30%
from the “sweet spot”.

Extremely fast or slow speech may result in speech recog-
nition performance degradation due to the following reasons:
First, it may change the acoustic score dynamic range. Sec-
ond, the fixed frame rate, frame length, and context window size
may be inadequate to capture the dynamics in transient speech
events for fast or slow speech and therefore result in sub-optimal
modeling. Third, the extremely fast or slow speech may result
in slight formant shift due to the human vocal instrumentation
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Figure 7: Performance comparison of the CD-GMM-HMM and
the CD-DNN-HMM at different speaking rate for the SMD task.

limitation. Last, other phonological changes such as the phone
deletion and the fragmented word may accompany with the ex-
tremely fast speech.

We conducted an initial experiment to investigate the effect
of adjusting the LM interpolation weight for the extremely fast
or slow speech on the SMD task. As shown in Figure 7, de-
creasing the LM interpolation weight can yield moderate WER
reduction for the fast speech and result in small performance
degradation for the slow speech. Overall, the speaking rate
“sweet” spot shifts slightly to the faster speech region. This ver-
ified our hypothesis on the effect of the acoustic score dynamic
range change on the ASR performance of the extremely fast or
slow speech. Nevertheless, the small performance change sug-
gests that the speaking rate compensation problem is a modeling
issue requiring the model level solution.

The large performance gap across different speaking rate
in the CD-DNN-HMM suggests it is possible to further im-
prove the DNN model performance via the effective speaking
rate compensation methodologies.

5. Conclusion
In summary, we conducted an analytic error analysis on a pair
of GMM and DNN models using significant amount of ana-
lytic material on the mobile VS/SMD task. Our study suggests
that the DNN acoustic model is a generally more discriminative
model. The DNN can significantly improve the phone discrim-
ination with the phone error rate reduction ranging from 15.6%
to 39.8%. It is particularly good at discriminating certain con-
sonants, which are found to be “hard” in the GMM.

On the robustness side, the DNN outperforms the GMM
at all SNR levels, across all devices, and under all speaking
rate with nearly uniform improvement under different condi-
tions. Nevertheless, the performance gap with respect to dif-
ferent SNR levels, distinct channels, and varied speech rate re-
mains large. For example, in CD-DNN-HMM, we observed
1∼2% performance degradation per 1dB SNR drop; 20∼25%
relative WER gap between the best and least well performed
devices; 15∼30% WER increase when the speaking rate speeds
up or slows down by 30% from the “sweet” spot.

Therefore, we conclude that robustness remains as a major
challenge in the deep learning acoustic model. Speech enhance-
ment, channel normalization, and speaking rate compensation
are important areas to further improve the DNN model accu-
racy.
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