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ABSTRACT: 

Urban areas despite being heterogeneous in nature are characterized as mixed pixels in medium to coarse resolution imagery which 

renders their mapping as highly inaccurate. A detailed classification of urban areas therefore needs both high spatial and spectral 

resolution marking the essentiality of different satellite data. Hyperspectral sensors with more than 200 contiguous bands over a 

narrow bandwidth of 1-10 nm can distinguish identical land use classes. However, such sensors possess low spatial resolution. As 

the exchange of rich spectral and spatial information is difficult at hardware level resolution enhancement techniques like super 

resolution (SR) hold the key. SR preserves the spectral characteristics and enables feature visualization at a higher spatial scale. Two 

SR algorithms: Anchored Neighbourhood Regression (ANR) and Sparse Regression and Natural Prior (SRP) have been executed on 

an airborne hyperspectral scene of Advanced Visible/Near Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) for the 

mixed environment centred on Kankaria Lake in the city of Ahmedabad thereby bringing down the spatial resolution from 8.1 m to 

4.05 m. The generated super resolved outputs have been then used to map ten urban material and land cover classes identified in the 

study area using supervised Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) classification methods. Visual 

comparison and accuracy assessment on the basis of confusion matrix and Pearson’s Kappa coefficient revealed that SRP super-

resolved output classified using radial basis function (RBF) kernel based SVM is the best outcome thereby highlighting the 

superiority of SR over simple scaling up and resampling approaches. 

* Corresponding author

1. INTRODUCTION

1.1 Background 

Urban areas are defined by attributes that are made up of a non-

uniform composition of artificial and naturally available 

materials. For instance, the similar land use (LU) classes 

representing urban areas comprise man-made structures that can 

be spectrally distinguished at smaller scales. Such a human 

conditioned environment is thus distinct in terms of features 

found in the unharmed natural surroundings. In spite of this 

heterogeneity, coarse or medium spatial resolution imagery 

cannot be used to perform a correct mapping of urban areas 

owing to presence of ‘mixed pixel’, i.e., pixel containing more 
than one feature type. Hence, high spatial and spectral 

resolutions are the requirements of an intricate urban 

categorization. 

Images acquired by hyperspectral sensors are capable of 

improved target detection due to presence of a large number of 

contiguous bands separated by a narrow wavelength interval of 

the order of 1-10 nm (Eismann et al., 2004). This spectrally rich 

content when combined with detailed spatial information leads 

to incurring of high costs. Only a little amount of the total 

radiant energy reaches the sensor owing to such a narrow 

slicing of the spectrum. Consequently the pixel size on the chip 

and the pixel footprint on the surface have to be augmented for 

obtaining an agreeable signal-to-noise ratio (SNR; Gaidhani, 

2011). Thus low spatial resolution of hyperspectral data as 

compared to multispectral or panchromatic data becomes a 

major drawback. On the other hand, a major amount of spectral 

information is lost during the acquisition of multispectral 

images as the entire scene radiance is integrated over broad 

spectral bands in order to achieve a high spatial resolution. Due 

to physical limits at hardware level, the trade-off between 

elaborate spectral and spatial information is difficult to 

overcome. A solution to this problem is provided by resolution 

enhancement techniques. These consist of processes of 

interpolation, fusion, restoration and SR (Nasrollahi and 

Moeslund, 2014). 

In the process of interpolation, the input low resolution (LR) 

image undergoes a transformation onto a high resolution (HR) 

grid and a function is used to figure out the missing values 

(Fernandez-Beltran, Latorre-Carmona and Pla, 2017). A better 

quality output is obtained through restoration although the size 

remains the same as that of the input LR image (Park, Park and 

Kang, 2003). The objective of the fusion process is the 

generation of an output with a high spatial resolution which 

always needs two sensor datasets for its implementation (Charis 
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Lanaras, Baltsavias and Schindler, 2015). Fused outputs also 

suffer from serious blurs in case of hyperspectral data (Kwan et 

al., 2018). These shortcomings are overcome by SR processes, 

which refer to that class of resolution enhancement algorithms 

which try to recreate the original scene in HR from LR input 

image(s) of the same scene. According to the input information, 

SR can be multi-frame or single frame. The output of multi-

frame methods depends on the imaging model adopted and a 

number of papers discuss the flow of multi-frame SR algorithms 

(Bioucas-Dias et al., 2013; Yue et al., 2016; Zhang et al., 2014). 

However, less number of surveys exist for single-frame SR. 

According to Fernandez-Beltran, Latorre-Carmona and Pla 

(2017) single-frame SR techniques can be of three types: 

reconstruction, image learning and hybrid. 

 

In image learning techniques, a relationship between HR and 

LR domains is established using external training data or from 

the input image itself. The relationship learnt determines the 

quality of the output. The methods of ANR and SRP are based 

on the principles of image learning. The former uses the idea of 

neighbourhood embedding for SR incorporating the concept of 

sparse representation for dictionary construction (Timofte, De 

Smet and Van Gool, 2013) while the latter uses kernel based 

regression for establishing the relation between LR and HR 

spaces (Kim and Kwon, 2010). A post-processing step using 

Natural Image Prior (NIP; Tappen et al., 2003) is also employed 

in SRP for removing the blurring and ringing artifacts 

introduced around major edges in the final super-resolved 

output. 

 

The SR algorithms whether operating on frequency or spatial 

domains have been tested only on natural images so far and at 

most only aerial images have been super-resolved (Suganya, 

Mohanapriya and Vanitha, 2013; Zhang et al., 2014; Kwan, 

Choi, Chan, Zhou and Budavari, 2017). Quality metrics have 

also been used to assess the effectiveness of SR algorithms. 

Vaiopoulos (2011) utilized spectral and spatial indices for 

evaluating the quality of fused outputs generated using 

Hyperion, Advanced Land Imager (ALI) and Landsat Enhanced 

Thematic Mapper + (ETM+) sensors. These were Bias, 

Correlation Coefficient (CC), Difference in Variance (DIV), 

Erreur Relative Globale Adimensionnelle de Synthese 

(ERGAS), Entropy (E), Universal Image Quality Index (Q), 

Relative Average Spectral Error (RASE) and Root Mean Square 

Error (RMSE).  

 

The advancement in sensor technology has led to the evolution 

of information extraction methodologies for handling the high 

volume and rich quality of data acquired by hyperspectral 

sensors. A number of full-pixel and sub-pixel classifiers have 

been developed. They are generally based on statistical analysis 

(Mather, 1999), neural networks (Foody, 2000), and decision 

tree methods (Hansen et al., 1996). Spectral Angle Mapper 

(SAM) introduced by Kruse et al. (1993) is a popular algorithm 

for classifying hyperspectral data and performing spectral 

similarity analysis. SAM permits rapid classification by 

comparing the image spectra to a known spectra or an end 

member being insensitive of illumination and does not take the 

heterogeneity of the Earth into account assuming the end 

member to be a pure representation of the material under 

consideration (Moughal, 2013). Efficient discrimination on the 

basis of training pixels can be obtained with Support Vector 

Machines (SVMs) which select hyper plane having maximum 

margin separation between classes. The hyper plane is 

represented by a kernel defined generally by a linear, 

polynomial, radial or sigmoidal function (Huang, Davis, and 

Townshend 2002) whereas the margin is the summation of the 

shortest distances from the separating hyper plane to the data 

points of both the categories. Moughal (2013) states that the 

multiclass problem in hyperspectral imagery can be handled 

using SVMs. SVM was compared with SAM and ML in this 

study. By applying Minimum Noise Fraction (MNF) Transform, 

SVMs show higher accuracy than other classifiers.  

 

As regards in urban areas, very few studies have been 

performed using hyperspectral data. Hepner et al. (1998) 

acquired spectra of different urban land cover types using 

AVIRIS and interpreted their separability for urban land cover 

mapping. The significance of different spectral regions for 

mapping of urban areas was discussed by Ben-Dor et al. (2001). 

Spectral mixture models have also been used to map urban 

materials at sub-pixel scales (Rashed et al., 2001; Wu and 

Murray, 2003). Recently, Kotthaus et al., (2014) derived an 

urban spectral library using the portable Fourier Transform 

Infrared (FTIR) spectrometer for 74 samples of various 

impervious urban materials found in the city of London. Plots 

of the short-wave reflectance (300-2500 nm) and long-wave (8-

14 um) emissivity spectra can be found in the London Urban 

Micromet data Archive (LUMA; 

http://micromet.reading.ac.uk/spectral-library). 

 

1.2 Study Area 

The study area, on the pre-processed scene of AVIRIS-NG with 

the colour combination of Red: 86, Green: 44 and Blue: 24, is 

shown in Figure 1.  

 

 
Figure 1. Study Area 

It occupies an area of about 4.85 square kilometres (sq. km) in 

the eastern part of Ahmedabad, the largest city of Gujarat state 

in India. Extending from 22.99895292 N, 72.58969011 E to 

23.01874265 N, 72.61159437 E; the area of exercise is 

bounded by Kasturba Gandhi Marg in the north and the walled 

city adjoining it, industrial area of Rajpur - Gomtipur in the 

east, Gita Mandir Road in the west and area of Maninagar in the 

south. The jurisdictional authority is the civic agency of 

Ahmedabad Municipal Corporation (AMC). The mixed 

environment centred on Kankaria Lake contains maximum 

possible distinct features like roads, railway lines, water body, 

and different types of vegetation and building rooftop materials.   

 

1.3 Materials Used 

Airborne hyperspectral image acquired by AVIRIS – NG of Jet 

Propulsion Laboratory (JPL), National Aeronautics and Space 

Administration (NASA) under the ambit of Indian Space 

Research Organization (ISRO) – NASA Airborne Hyperspectral 

Imaging (HySI) Programme has been used for this study. The 

dataset has a spatial resolution of 8.1 m and possesses 425 

bands spaced at 5 nm over the wavelength range of 376.440002 

nm – 2500.120117 nm. The date and time of scene acquisition 
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are February 11, 2016 at 08:01:29 am stretching over a 

latitudinal extent of 22°59’16.57” N - 23°3’21.04” N and 
longitudinal extent of 72°25’19.94” E - 72°45’6.68” E. 
 

2. METHODOLOGY 

The methodology adopted has the following major stages: data 

pre-processing, resolution enhancement using SR, comparative 

analysis, classification and accuracy assessment. These steps are 

described in the forthcoming sub-sections. 

  

2.1 Data Pre-processing 

Sensor error correction was performed in the form of removal of 

bands that contained noise or no information at all. This process 

left only 353 bands in the Level 2 AVIRIS-NG reflectance file.. 

Following this a square patch of 272 lines and 272 samples was 

extracted to define the study area. The patch was then broken 

down into individual bands to be used as input into SR 

algorithm, so as to assess the computational efficiency of the SR 

process.    

 

2.2 Resolution Enhancement Using SR 

Two single-frame SR algorithms based on the fundamentals of 

image learning have been implemented on the band wise input 

LR data. They are ANR given by Timofte, De Smet and Van 

Gool in 2013 and SRP given by Kwang In Kim and Younghee 

Kwon in 2010. Details of these techniques can be found in 

(Timofte, De Smet and Van Gool, 2013) and (Kim and Kwon, 

2010). These methods have been chosen on the basis of robust 

visual quality of output, faster computational time and ability to 

recover accurate spatial and spectral characteristics of the input 

LR image as reported in literature.  

 

While running ANR, first and second order gradients have been 

used for patch representation and same set of images have been 

used for dictionary training as by (Zeyde et al., 2012). Further 

the size of the dictionary defined is 2048 atoms and 256 atoms 

have been allocated as the maximum limit for neighbourhood 

formation around each atom. A scaling factor of 2 has been 

considered for both ANR and SRP.  

 

In SRP, a 7X7 input patch was used for the training and testing 

phases of kernel based regression while the output patch size for 

the same was 5X5. Weight and kernel parameters taken were 

0.05 and 0.5 x  respectively. About 300 basis points were 

taken for initialization of the solution of optimization of kernel 

based regression. The upper and lower threshold limits for 

classifying an edge pixel into ‘major’ or ‘minor’ during post-
processing stage were set as 2.2 and 0.95 respectively. 

 

Each SR process was run for 353 times to generate 353 HR 

bands which were stacked together and assigned the coordinate 

system of the input LR image. This gave the final super-

resolved output.  

 

2.3 Classification 

The scaled-up image and the generated super-resolved outputs 

were classified using supervised SAM and SVM approaches. 

For the purpose of classification, training samples pertaining to 

the ten target classes were taken. The classes taken include five 

building rooftop materials and one pavement material: china 

mosaic, tin, concrete, Galvanized Iron (GI) sheet, tarpaulin and 

asphalt and four natural surfaces: water, soil, vegetation and 

grass. These training samples represent the spectral pattern of 

the classes and help the classifier in assigning the image pixels 

to a particular class.  

  

In the case of SVM, four types of kernels used for defining the 

hyper plane have been tested using the default parameters. They 

are: radial basis function (RBF), linear, sigmoid (sig) and 

quadratic polynomial (poly). 

  

2.4 Accuracy Assessment 

Accuracy assessment is a very important step in the validation 

of the classification results. An error matrix is used for 

identifying the overall error for each category and the 

misclassification occurring for each category. User’s accuracy 

(UA), producer’s accuracy (PA) and overall accuracy (OA) are 
calculated through this matrix. 

  

3. RESULTS AND DISCUSSION 

The results obtained as outcome of the methodology adopted in 

this research work are presented in the sub-sections to follow. 

  

3.1 Super-Resolved Outputs 

The super-resolved outputs generated have a spatial resolution 

of 4.05 m. Comparative analysis has been performed on the 

basis of visual inspection, basic statistics and computational 

time. One of the locations of patches taken for visual inspection 

is shown in Figure 2 below. 

 

 
Figure 2. Location of Patches for Visual Inspection 

(Resample_NN; R: 86, B: 44, G: 24) 

 

The enlarged version of the patches in the scaled up version 

(Resample_NN) and the super-resolved outputs (SRP Output 

and ANR Output) is shown in Figure 3. Visual inspection 

reveals that water has a smooth and fine texture with little to no 

tonal variation in all the super-resolved outputs of Nagina 

Wadi. It can also be seen that the edges of vegetation patch are 

delineated with clear distinction between grasses and thick tree 

cover inside the patch in both super-resolved outputs. Road and 

its width are clearly delineated in the super-resolved outputs. 

Other features such as dense built-up, open area and vegetation 

are also delineated although sharpness of edges is lost. 

 

Figure 3. Enlarged Version of Patches in NN Resampled Image 

and Super-Resolved Outputs 
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3.2 Urban Material and Land Cover Maps 

Supervised SAM and supervised SVM have been employed for 

preparing urban material and land cover maps using the super-

resolved outputs and the NN resampled image. The efficacy of 

the prepared maps has been assessed by validating 100 random 

points distributed over the classified results against 100 points 

collected as ground truth during field visit to the study area. 

Visual inspection has also been performed for the purpose of 

intra-class, inter-classifier and inter-dataset comparison. As 

mentioned in Section 2.4, four types of kernels were employed 

for SVM using default parameters. The best SVM output was 

decided on the basis of OA and Kappa Coefficient results for 

each of the three datasets as well as the highest PA and UA 

values for each class under consideration. The best SVM output 

has then been used for inter-classifier and inter-dataset 

comparison. OA and Kappa Coefficient Results for the four 

kernels across the three datasets are reported in Table 1 below. 

 

 
Table 1. OA and Kappa Statistics for Different Types of SVM 

Kernels 

 

RBF based SVM gives the best results irrespective of dataset 

reporting over 80% OA and Kappa coefficient of above 0.79 in 

each case. Also, for most of the features whether natural or 

man-made RBF based SVM classified outputs report highest 

PA and UA thereby affirming that it is the best kernel to be used 

for performing SVM using the default parameters in the present 

context and hence the urban material and land cover map 

obtained using RBF kernel based SVM has been taken for 

comparative analysis.  

 

Location of patch taken for visual inspection of classified result 

is shown in Figure 4 and magnified version of the representative 

patches along with their Google Earth image is shown in Figure 

5 and Figure 6 for SAM and SVM respectively. Visual 

examination of the urban material and land cover maps reveal 

that urban materials have been classified appropriately in the 

super-resolved outputs. 

 

 

 
 

Figure 4. Location of Patches for Visual Examination 

(Resample_NN; R: 86, B: 44, G: 24) 

 

 

 
 

Figure 5. Visual Examination of SAM Classified Outputs 

 

 

 
 

Figure 6. Visual Examination of SVM (RBF) Classified 

Outputs 

 

However, a substantial amount of misclassification has taken 

place in the map generated from NN resampled output even 

though this resampling approach preserves spectral information 

of the input dataset. For instance, appearance of china mosaic 

pixels in concrete structures, bare soil, tin and GI sheet sheds in 

some patches, and vice-versa; classification of water as asphalt 

at few places. Edges and boundaries of different man-made 

features can also be distinguished clearly in the SVM outputs 

indicating that the enhanced spatial information in the super-

resolved outputs has been taken into account. Irrespective of 

classifier, it can be observed that there has been mixing of 

asphalt and other rooftop classes, wherever the rooftop classes 

are accompanied by shadow. These portions in the image have 

been designated as asphalt instead of the respective rooftop 

material.  

 

OA and Kappa Coefficient values for the classification 

techniques used in the three datasets are shown in Table 2 and 

Table 3 below.  

 

 
Table 2. OA Values for SAM and SVM  

 

 
Table 3. Kappa Statistics for SAM and SVM 

 

Lower overall accuracies and Kappa coefficients have been 

reported for SAM across all the three datasets ranging between 

68%-71% and 0.63-0.67 respectively. On the other hand, SVM 

performed using RBF kernel has given the best results in terms 

of overall accuracy and Kappa coefficient respectively across all 

the super-resolved and resampled outputs: 92.73% and 0.9119 

for SRP, 80.64% and 0.7737 for ANR and 82.67% and 0.7937 

for NN resampled output.  
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Class wise PA and UA for the datasets Resample_NN, SRP 

Output and ANR Output across the employed classification 

techniques are shown in Table 4 and Table 5 respectively. 

 

 

Table 4. PA for Individual Class of Three Datasets 

 

The highlighted values indicate the best possible accuracies. 

Very high level of accuracy has been observed for the natural 

features of water body, soil and vegetation across all classifiers. 

The major rooftop building materials have also been classified 

efficiently with SVM showing the highest producer and user 

accuracies for china mosaic, tin and concrete. A similar pattern 

is reported for asphalt too. GI sheet reports moderate values 

while tarpaulin shows the lowest values. This could be 

attributed to the occurrence of these materials as mixed pixels in 

the dataset and consequent misclassification into other classes 

owing to use of hard classifiers. As the accuracy values fall 

within the acceptable limits, it can be reiterated that the spatial 

and spectral information has been preserved in the super-

resolved outputs with enhancements observed at many places in 

the scene. 

 

  
 

Table 5. UA for Individual Class of Three Datasets 

 

SVM gives better results as it does not estimate the statistical 

distribution of feature classes to undertake classification 

wherein the classification model is established by performing 

margin maximization using only few training pixels. Also it has 

better generalization capability compared to other classifiers 

producing best results even from data having large 

dimensionality and high amount of noise.  

 

4. CONCLUSION 

It can be concluded from this study that different built-up 

features like roads, railway tracks, buildings which could not be 

detected in the input LR image can be observed clearly upon 

super-resolution. It can also be said that SRP is the better SR 

method of the two techniques demonstrated in this study. The 

exercise of information extraction using super-resolved outputs 

has been a success with the urban material and land cover map 

prepared using RBF kernel SVM over SRP dataset yielding the 

best accuracy and visual examination outcomes.  
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