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Abstract: Accurate digital soil mapping (DSM) of soil organic carbon (SOC) is still a challenging
subject because of its spatial variability and dependency. This study is aimed at comparing six typical
methods in three types of DSM techniques for SOC mapping in an area surrounding Changchun in
Northeast China. The methods include ordinary kriging (OK) and geographically weighted regression
(GWR) from geostatistics, support vector machines for regression (SVR) and artificial neural networks
(ANN) from machine learning, and geographically weighted regression kriging (GWRK) and artificial
neural networks kriging (ANNK) from hybrid approaches. The hybrid approaches, in particular,
integrated the GWR from geostatistics and ANN from machine learning with the estimation of
residuals by ordinary kriging, respectively. Environmental variables, including soil properties,
climatic, topographic, and remote sensing data, were used for modeling. The mapping results of SOC
content from different models were validated by independent testing data based on values of the
mean error, root mean squared error and coefficient of determination. The prediction maps depicted
spatial variation and patterns of SOC content of the study area. The results showed the accuracy
ranking of the compared methods in decreasing order was ANNK, SVR, ANN, GWRK, OK, and
GWR. Two-step hybrid approaches performed better than the corresponding individual models, and
non-linear models performed better than the linear models. When considering the uncertainty and
efficiency, ML and two-step approach are more suitable than geostatistics in regional landscapes with
the high heterogeneity. The study concludes that ANNK is a promising approach for mapping SOC
content at a local scale.

Keywords: soil organic carbon mapping; methods comparison; hybrid approaches; machine learning;
geographically weighted regression

1. Introduction

Soil organic carbon (SOC) is the organic carbon component of soil, consisting of living soil biota
and dead biotic material derived from biomass. SOC tends to be concentrated in the topsoil with the
primary source from vegetation [1]. Globally, the soil biotic C pool, second only to the oceanic, is of
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importance for carbon sequestration [2]. Small changes in the SOC could result in significant impacts
on the atmospheric carbon concentration [3]. This makes SOC an important ecological indicator of
the greenhouse effect, as well as a major global change driver, due to its high sensitivity to human
disturbance [4,5]. Soils thus should be managed to sequester more organic carbon and discharge
fewer greenhouse gases by maintaining sustainable land use [6,7]. As a complex mixture, SOC is also
involved in soil quality and ecosystem services like food production. It plays a significant role in
supplying nutrients and the formation of improving soil structure [8]. Accurate SOC content mapping
is critically important for monitoring the baseline of the carbon pool, as well as its role in climate
change and food security [9,10].

Geographic information systems (GIS) and remote sensing (RS) have been practiced acquiring
spatial distribution and pattern of SOC content at different scales. Digital soil mapping (DSM) is to
develop a geographically referenced database by integration of field observations with environmental
variables through quantitative relationships [11]. Nonetheless, SOC content shows strong spatial
heterogeneity and dependence because of influences of natural factors and human disturbances
vary by locations and scales [12,13]. Climate and relief affect surface runoff and transport of soil
along the surface, modifying the spatial distribution of SOC [14,15]. Land use, fertilizer application
and agricultural production also play important roles in influencing the SOC dynamics [16,17].
Conventionally, DSM is conducted using environmental variables, including soil properties, climatic,
relief, and spectral indices of remote sensing data. Due to the above-mentioned complexity and
uncertainty, mapping SOC is still a challenging subject [18].

Generally, the main types of DSM techniques include traditional statistical, geostatistical, machine
learning (ML) and hybrid approaches. Traditional statistical methods are used to determine the
correlation between environmental variables and SOC content [19]. Commonly used non-spatial
models include multiple linear regression [20], partial least square regression [21], generalized
linear models [22] and linear mixed models [23]. Although easily applicable, their prerequisites of
independent and identical distribution with large sample demands for SOC content observations are
among challenges. Those methods are also known as lack of spatial information, making them less
stable and unsuitable for delineating local changes [24].

In geostatistical techniques, such as ordinary kriging (OK) and geographically weighted regression
(GWR), spatial autocorrelation or mutual correlation is considered [25,26]. OK, as a kriging-based on the
assumption of unknown mean, is one of the commonly used methods for spatial interpolation [27–29].
However, this method overlooks the influence of environmental variables [30], and is not able to
achieve the desired accuracy, due to the stationarity assumption [31]. GWR is based on the local
smooth idea and relationships among different environmental variables within a local space. It is
capable of embedding the spatial location of samples into a regression through locally weighted least
square method [25,32]. Scull (2010) found that GWR performed better than multiple linear regression
for prediction of SOC with precipitation or temperature as an environmental variable [33]. Using
simulated data sets, Harris et al. (2010) compared spatial prediction performances of GWR and
OK methods [34]. The comparison concluded that GWR provided extra information on the spatial
processes, but the spatial dependence of residuals still existed. Kriging methods are typically used to
interpolate geographical characteristics with significant spatial autocorrelation, such as climatic factors,
natural soil properties, and geological elements [12]. Whereas GWR is proposed to predict highly
random factors with a significant degree of spatial heterogeneity, such as socio-economic indices.

ML methods can accommodate non-linearity and multicollinearity, and they can overcome
overfitting with limited soil observations and auxiliary environmental information [35,36]. They are
typified by support vector machines and artificial neural networks (ANN), which are widely applied
in DSM [37–39]. Support vector machines can construct an optimal hyperplane by projecting the data
onto a new hyperspace by the means of kernel functions. The hyerplane separates classes and creates
the widest margin in the classification. It also can fit data (support vector machines for regression,
SVR) with a modeling function that minimizes empirical risk and complexity when representing
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non-linear patterns [40]. ANN simulate the human learning processes. The linkages between the input
and output data in ANN are established and reinforced by non-linear and interconnected nodes [41].
Li et al. (2017) used SVR and ANN for the prediction of L. chinensis carbon, nitrogen and phosphorus
contents [42]. Both SVR and ANN demonstrated high prediction accuracy. Xu et al. (2018) reported
that SVR outperformed ANN for mapping soil organic matter with a visible and near infrared spectral
dataset [43]. The ML methods do not need explicit assumptions about data distributions, and they
allows for modelling of complex relationships [44]. However, their major shortcoming is that SOC
content at a particular grid is estimated only from environmental variables of that node, without
considering its spatial autocorrelation at the node with surrounding data [45].

Recently, hybrid approaches have drawn attentions. Two hybrid methods are geographically
weighted regression kriging (GWRK) and artificial neural networks kriging (ANNK). GWRK and
ANNK can incorporate the spatial autocorrelation of measured variables to achieve better predictions
and lower errors [46,47]. Both GWRK and ANNK can account for the spatial parametric non-stationarity
and the relationship between SOC and other environmental variables. Additionally, residuals can
be interpolated through kriging and they are added to the estimated trend as a spatially stochastic
variable. Guo et al. (2017) reported that GWRK outperformed partial least squares regression kriging
for predicting soil organic matter with visible and near-infrared spectra [48]. Mirzaee et al. (2016)
evaluated the ability for geostatistical methods and ANNK to predict soil organic matter [47]. Despite a
variety of DSM methods have been used in mapping SOC [49], there is a lack of systematic comparison
among geostatistical, machine learning and hybrid approaches for mapping SOC.

With the above, the aim of this study is to perform such a methodological comparison based on
soil samples and environmental variables derived from remote sensing data. In particular, this study
compared methods of two geostatistical (OK and GWR), two machine learning (SVR and ANN), and
two hybrid approaches (GWRK and ANNK) for their performance in SOC mapping. The comparison
of intra and extra classes of three DSM techniques and their suitable situations for the application were
also discussed.

2. Materials and Methods

2.1. Materials

2.1.1. Study Area

This study was conducted in the hinterland of the Northeast Plain of northeastern China
(43◦ 15′ N–44◦ 05′ N, 125◦ 03′ E–126◦ 01′ E, Figure 1). The total area was about 3592 km2. The
study area, including Changchun the capital city of Jilin Province, has a total urban population of
approximately 5.20 million in 2016. As a main grain-production area in China, the fertile lands are
prevalent and are vital for the country’s food security. This area has a temperate continental monsoon
climate. The mean annual temperature is 4.8 ◦C, with mean temperatures of −15.1 ◦C in January and a
mean temperature of 23.1 ◦C in July, respectively. The annual precipitation ranges from 522 to 615
mm, and more than 60% of which occurs from June to August. The dominant soil types are black soil,
dark-brown soil and chernozem.
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Figure 1. Location of study area in China and soil sampling sites.

2.1.2. Soil Observations

The field campaign was conducted from September to October 2016. The distribution of sampling
points was generated with water bodies and impervious surfaces being masked out. The 30 × 30 m
plot was applied at each sampling site. The location, and land use and land cover classification of the
sampling sites were recorded. Among the 395 sampling sites, 156 were located in human-managed
farmland, 232 in forest and 7 in grassland (Figure 1). The sampling sites were randomly divided into
training (n = 263) for modeling and validation sets (n = 132) (Figure 1) to evaluate performances of
models in comparison [50–52]. At each sampling site, SOC content and bulk density (BD, g·cm−3)
were collected in topsoil throughout a depth range of 0–20 cm in a radial sampling scheme using an
auger [53]. A core ring sampler (5 cm in diameter, 5 cm in height) was used to collect samples at the
center of each plot for BD determination [54]. The soil samples for measuring SOC content (g·kg−1)
were air-dried, grounded, and passed through a 2 mm mesh with the Walkley-Black wet oxidation
method [55].

2.1.3. Environmental Variables

In DSM, the variability of SOC content is essentially explained by its relationships with soil-forming
factors, including soil properties, climate, organisms, relief, parent material, time and space. Based on
data accessibility, 27 environmental variables were retrieved from soil properties, climate and remote
sensing datasets (Table 1).
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Table 1. Environmental variables for soil organic carbon (SOC) mapping.

Sources Variables Description

Field Observation BD Bulk Density

Weather stations
W Mean relative humidity
T Average temperature
P Average precipitation

Landsat 8 OLI

b2 Blue, 0.450–0.515 µm
b3 Green, 0.525–0.600 µm
b4 Red, 0.630–0.680 µm
b5 NIR, 0.845–0.885 µm
b6 SWIR1, 1.560–1.660 µm
b7 SWIR2, 2.100–2.300 µm

EVI 2.5 × (b5 − b4)/(b5 + 6 × b4 − 7.5 × b2 + 1)
NDVI (b5 − b4)/(b5 + b4)

MSAVI {2 × b5 + 1 – sqrt[(2 × b5 + 1) ˆ 2 − 8 × (b5 − b4)]}/2

ASTER GDEM

H Altitude
β Slope
α Aspect

sinα Sine of aspect, the extent of the location toward the east
cosα Cosine of aspect, the extent of the location toward the north

C Curvature
Cv Vertical curvature
Ch Horizontal curvature

SOS Slope of the slope, the curvature of the surface
SOA Slope of aspect, the curvature of the contour line
RLD Relief of land surface, Hmax − Hmin

M Surface roughness, 1/cosβ

TWI Topographic wetness index, Ln[Ac/tanβ], Ac is the catchment
area directed to the vertical flow

SPI Stream power index, Ln[Ac × tanβ × 100]

BD represented a parameter of soil properties. Climate data of monthly average values of
September and October 2016, i.e., mean relative humidity (W, %), average temperature (T, ◦C), and
precipitation (P, mm) were recorded at 60 weather stations of Jilin Province (http://data.cma.cn/). The
inverse distance weighted method, a useful and common approach to acquiring spatially continuous
soil and climate factors [56–58], with the power value of two in ArcGIS was applied to data of BD, W, T
and P.

A Landsat 8 Operational Land Imager (OLI) image (http://glovis.usgs.gov/) of the study area
was acquired on 22 September 2016 at 30 m spatial resolution. This image was processed for the
conversion of the digital numbers to top-of-atmosphere reflectance and atmospheric calibration, using
the FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes) module embedded
in ENVI (version 5.1, Exelis Visual Information Solutions, Broomfield, Colorado, USA). Enhanced
Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI), and Modified Soil Adjusted
Vegetation Index (MSAVI) [59] were computed and were used as inputs into the models, along with
OLI bands 2-7. Relief data, altitude (H, m), slope (β), aspect (α, ◦), curvature (C), vertical curvature (Cv),
horizontal curvature (Ch), slope of slope (SOS), slope of aspect (SOA), relief of land surface (RLD), sinα,
cosα, surface roughness (M), topographic wetness index (TWI) and stream power index (SPI) [60–62]
were computed based on Advanced Spaceborne Thermal Emission and Reflection Radiometer Global
Digital Elevation Model (ASTER GDEM V1) (http://glovis.usgs.gov/) at 30 m spatial resolution.

The above environmental predictors were transformed to the Albers equal-area conic WGS84
coordinate system. The BD and climatic grids were resampled to 30 m resolution using the nearest
neighbor method, to match with the raster grids of other variables. Eventually, the attribute values of
all grids were extracted for all the sampling points, and they were used as inputs for spatial modeling.

http://data.cma.cn/
http://glovis.usgs.gov/
http://glovis.usgs.gov/
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2.2. Modeling and Prediction

2.2.1. Statistical Analysis

The descriptive statistical values of BD and SOC were estimated for the soil samples. The pairwise
Pearson’s product-moment correlation analysis was conducted to determine the collinearity between
explanatory variables. Predictor variables that were highly correlated to each other (r ≥ 0.8), and had
high variance inflation factors (VIFs ≥ 10) in regression analysis were excluded [63,64]. The analysis
steps were performed using SPSS (version 21.0, IBM, Armonk, NY, USA). All of the explanatory
variables were transformed to Z-score to eliminate the effects of the index dimension and the quantity
of data [65]. The procedures were illustrated in Figure 2.
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2.2.2. Geostatistical Models

OK is a widely used geostatistical technique that generates an optimal unbiased estimated surface
by means of a semivariogram based on regionalized variables [66]. The semi-variance is defined using
Equation (1):

γ(h) =
1

2N(h)

∑
(i, j)|di j=h

(Z j −Zi)
2
, (1)

where γ(h) is the semi-variance of data values for points of h distance apart, N(h) is the number of point
pairs with h distance apart, Zi is the data value at point i, (i,j)|dij = h represent a pair of points (i.e., i,j)
which are separated by h distance.

The parameters of OK were listed in Table 2. The semivariogram can be modeled in GS+ (version
9.0, Leland Stanford Junior University, Stanford, CA, USA) by three typical functions: Spherical,
Exponential and Gaussian. All of these functions are defined by three parameters: Nugget, range,
and sill. Nugget represents the spatial variance of measurement errors at the infinite small distance.
Range delineates the effective distance of the spatial autocorrelation. Sill is the maximum value of the
semivariogram when the spatial distance between two locations reaches the value of the range [17].
The partial sill is defined as sill-nugget, and a stronger spatial autocorrelation is denoted by higher
values of partial sill/sill. Meanwhile, the spatial variation is characterized by the basal effect defined
as nugget/sill. In other words, a larger value of nugget/sill shows that the spatial variation among
samples is more strongly caused by stochastic factors [62].

Table 2. Algorithms used in the study.

Algorithms Software Necessary Parameters

Ordinary kriging (OK) GS+ Model type, nugget, sill, range

Geographically weighted
regression (GWR) GWR Kernel type, bandwidth selection criteria (AICc)

Artificial neural network (ANN)
MATLAB

Learning algorithm, hidden layers, learning rate,
training time

Support vector machine for
regression (SVR)

C (the regularization parameter), kernel
(Gaussian radial basis kernel) and its σ (the

bandwidth parameter)

Geographically weighted
regression kriging (GWRK) GWR, GS+

Kernel type, bandwidth selection criteria (AICc),
model type, nugget, sill, range

Artificial neural network kriging
(ANNK) MATLAB, GS+

Learning algorithm, hidden layers, learning rate,
training time, model type, nugget, sill, range

Based on the semivariogram modeling, an error variance model is defined as the objective function
for which a set of weights (wi) are selected to minimize the error [66]. After that, an interpolation via
OK in ArcGIS follows. The interpolation is expressed by Equation (2):

Ẑ0 =
n∑

i=1

wi · zi ,
n∑

i=1
wi = 1 , (2)

where Ẑ0 is the estimated SOC content at point i, zi is the measured SOC content data, wi is the weight
associated with the measured SOC, which is estimated by the stationary OK system, and n is the
number of measured values within a neighborhood.

GWR is another commonly applied geostatistical approach for DSM, and it is based on the local
smoothing idea. It takes the spatial locations of samples into consideration, and uses the locally
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weighted least square method to model the observations of soil parameters [32]. It can be written as
Equation (3):

∧
yi = β0(ui, vi) +

p∑
k=1

βk(ui, vi)x∗ik + εi, (3)

where (ui,vi) are the coordinates of point i, β0(ui,vi) is the intercept, βk(ui,vi) is the coefficient of different
explanatory variables, x*ik is the value of explanatory variable k at point i, p is the total number of
explanatory variables, εi is the error term that is generally assumed to be explanatory and normally
distributed with zero mean and constant variance, and the values of the above parameters vary with
the location. The parameters can be estimated using a weighting function as in Equation (4):

∧

β(ui, vi) = (XTW(ui, vi)X)−1XTW(ui, vi)Y, (4)

where X is the matrix formed by x*ik, Y is the vector formed by values of SOC content, W(ui,vi) is a
weight matrix to ensure that those observations near the point i have more influence on the results than
those that are farther away. The parameters of the GWR were listed in Table 2. GWR was conducted
using GWR (version 4.0, Ritsumeikan University, Kyoto, Japan) by which the weight function (a
geographic kernel type) and the minimum value of the corrected Akaike Information Criterion (AICc,
small sample bias corrected AIC) are determined to find the optimal bandwidth [67].

2.2.3. Machine Learning Methods

SVR, a non-linear machine learning method, derives a model hyperplane to describe the empirical
data as correctly as possible and to minimize the distances from the hyperplane to the training data [68].
The parameters of SVR were listed in Table 2. In this study, SVR was conducted in MATLAB software
(version 2017a, MathWorks, Natick, MA, USA). The SMO (sequential minimal optimization) algorithm
was used to solve the quadratic programming optimization problem step-by-step. It updated the
SVR function, as shown in Equation (5), to reflect the new values until the Lagrange multipliers
converged [69].

f (x) =
P∑

k=1

(αk − α
∗

k)K(xk, x j) + b, (5)

where x is a vector of the input predictors (environmental variables), f (x) is an optimal function
developed by SVR, b is a constant threshold, K(xk, xj) is the Gaussian radial basis kernel function
with the best bandwidth parameter σ, and αk and α∗k are the weights (Lagrange multipliers) with the
constraints given in Equation (6): 

p∑
k=1

(αk + α∗k) = 0

0 ≤ αk,α∗k ≤ C
, (6)

where C is the regularization parameter for balancing between the training error and model complexity.
ANN attempt to mimic how the human brain processes and stores information. Among numerous

proposed ANN algorithms, the multi-layer perceptron neural network (MLPNN) with back-propagation
algorithm was used in this study. The MLPNN was constructed in MATLAB. The architecture of the
MLPNN consists of an input layer containing the predictor variables, one or more hidden layers, and
an output layer containing the response variable, along with interconnection weights characterizing
the connection strength between these layers (Figure 3). By developing the network with training
samples, the interconnection weights of the network are adjusted to minimize the prediction error.
Meta-parameters to be specified are the number of hidden nodes, the learning algorithm, learning rate,
as well as the number of training iterations in those processes [70,71], as Table 2 list.
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2.2.4. Two-Step Hybrid Approaches

GWRK and ANNK are the extension of GWR and ANN, respectively. They fully consider spatial
parametric non-stationarity and the effects of environmental variables derived from the benefits of
GWR and ANN. They also add spatial dependence of the residuals interpolated though OK to the
estimated trend, as part of the spatial autocorrelation. Their implementation includes two steps
(Figure 3). First, the GWR and ANN models are built based on Equation (3) and 2.2.3 to model the
relationship between SOC content and environmental variables. Second, the residuals resulting from
GWR and ANN are estimated using the OK approach (Equations (1) and (2)).

The estimates obtained by the two-step hybrid approaches GWRK and ANNK are the sum of the

estimates
∧
yGWR/ANN(ui, vi) and OK estimates of the residuals

∧
εOK(ui, vi), as shown in Equation (7):

∧
yGWRK/ANNK(ui, vi) =

∧
yGWR/ANN(ui, vi) +

∧
εOK(ui, vi), (7)

2.2.5. Model Testing and Comparison

The validation set (n = 132) was used to test and compare the performances of OK, GWR, SVR,
ANN, GWRK and ANNK models based on the root mean squared error (RMSE, Equation (8)), mean
error (Equation (9)) and coefficient of determination (R2, Equation (10)) [66,72].

RMSE =

√∑n

1

(yi − ŷi)
2

n
, (8)

ME =
n∑
1

(yi − ŷi)

n
), (9)

R2 = 1−

∑n
1(ŷi − y) 2∑n
1(yi − y) 2 , y = 1

n
∑n

1 yi , (10)

where ŷi is the estimated value of each model, yi is the measured value, and n is 132 in this study.
The mean error and R2 should be close to zero and one, respectively, while RMSE should be as small
as possible.
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3. Results

3.1. Statistics Analysis

The descriptive statistics values of SOC and BD were presented in Table 3. SOC content and
BD ranged from 2.54 to 68.94 g·kg−1 and from 0.81 to 1.89 g·cm−3, respectively. The coefficient of
variation (CV) indicated a strong variability of SOC content (CV > 0.35) and a moderate variability
of BD (0.15 < CV < 0.35), which can be attributed to random factors like environmental factors and
measurement errors [53].

Among 27 explanatory variables, Cv (rCv,C = −0.90, VIFs = 20.5), Ch (rCh,C = 0.87, VIFs = 28.8),
M (rM,RLD = 0.93, VIFs = 10.3), b4 (rb4,3 = 0.98, VIFs = 40.8), b6 (rb6,7 = 0.88, VIFs = 15.9) and b7
(rb7,4 = 0.83, VIFs = 20.6) were excluded from model building because their r and VIFs exceeded the
above-mentioned threshold (r ≥ 0.8 and VIFs ≥ 10). It reduced the number of explanatory variables
from 27 to 21.

Table 3. Descriptive statistics values of SOC and bulk density (BD) at the sampling sites.

Statistics Mean SD 1 CV 2 Skewness Kurtosis Minimum Maximum

SOC (g·kg−1) 18.41 9.61 0.52 1.62 3.61 2.54 68.94
BD (g·cm−3) 1.35 0.19 0.14 −0.21 −0.18 0.81 1.89

1 SD is standard deviation; 2 CV represents coefficient of variation.

3.2. Models Training of GWR, SVR and ANN

The weight function for GWR was an adaptive spatial kernel type to avoid border effects [32,73].
The optimal bandwidth was 0.54, with the minimum value of AICc as 1886.96, and the adjusted R2 was
0.31. For a given environmental variable, its coefficient from GWR varied across the study area. The
absolute mean values of coefficients for BD (3.49), b5 (1.99), α (1.50), b2 (1.35), and SOA (1.01) showed
the stronger capacity of explaining the relationship with SOC than other variables, while b3 (0.16) and
H (0.20) had a relative lack of explanatory ability. The CV values showed that coefficients of T and b3
had a strong variability, and coefficients of W, C, and TWI had moderate variabilities.

In the SVR model, the best parameters C and σ obtained using the training data were 1000 and
0.0001, respectively, with the minimum RMSE being 8.61. As for the MLPNN model, the accuracy
for various numbers of nodes in the hidden layer is shown in Figure 4. The results revealed that the
optimized MLPNN architecture with an RMSE value of 7.30 was in 21-3-1 structure, i.e., indicating
21 input nodes in the input layer, three in the hidden layer with the unipolar sigmoid as the transfer
function, and one in the output layer. Using the Levenberg-Marquardt learning algorithm, the best
learning rate and training time (iterations) obtained were determined to be 0.01 and 13, respectively.
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3.3. OK, GWRK and ANNK Training and Six Models Validation

The results from Kolmogorov-Smirnov test (K-S) (p < 0.05) showed that the probability distributions
for SOC of the training samples (skewness = 1.57, kurtosis = 3.56), and the residuals from GWR
(skewness = 0.84, kurtosis = 2.63) and ANN (skewness = 0.90, kurtosis = 1.28) possessed normal
distribution. The training set and residuals were directly used to calculate experimental semivariograms
for OK interpolation. Table 4 showed the basic information on the training samples, GWR residuals
(RGWR), and ANN residuals (RANN) in the OK. The equivalent strong performances of semivariogram
models for training samples, RGWR and RANN were evident, based on the low residual sum of squares
(RSS) and high R2, and the Exponential model for RANN performed the best among the three. A greater
spatial field fluctuation of training samples than RANN and RGWR was explained by its highest range.
The values of the nugget indicated that the stationarity assumption was more valid for RGWR, than for
RANN and training samples. The highest nugget value of training samples suggested that OK was more
sensitive to the sampling design for SOC content at a smaller distance. While environment variables
were considered as GWR and ANN, the randomness or stochastic showed the reduction according to
lower values of the nugget. The smallest nugget/sill for RANN displayed its stronger basal effect than
RGWR and training samples. It also revealed that RANN obtained the higher spatial autocorrelation
and more suitability for OK than the other two. Due to the strong spatial autocorrelation and good
modeling performance of RGWR and RANN, GWRK and ANNK, which additionally predicted RGWR

and RANN by OK, were more reasonable than GWR and ANN.

Table 4. Semivariogram parameters for SOC observations and the residuals of geographically weighted
regression (GWR) and artificial neural network (ANN).

Parameters (g·kg−1) Model Range (km) Nugget Nugget/Sill R2 RSS

Training samples Exponential 0.09 32.2 0.30 0.92 8.60
RGWR Spherical 0.04 18.6 0.26 0.85 4.03
RANN Exponential 0.05 23.4 0.23 0.97 0.99

Table 5 presented the accuracy of different models for estimating the SOC of the validation set.
The OK model resulted in a mean error of −0.71 g·kg−1 had the highest tendency for overestimation.
The ANNK model with a mean error of −0.38 g·kg−1 showed the lowest tendency for overestimation.
The GWR model with a mean error of 1.63 g·kg−1 was the only one for underestimation. ANNK
gave rise to the lowest RMSE and closest-to-zero mean error values, as well as the highest R2 value.
Hence, it was the best predictive method for estimating the SOC. Besides, the accuracy ranking of six
methods from high to low was ANNK, SVR, ANN, GWRK, OK and GWR, which was consistent with
the ranking of the consistency between the predicted and measured ranges.

Table 5. Performance evaluation of six models.

Evaluation Index ANNK ANN GWRK GWR SVR OK

Mean error (g·kg−1) −0.38 −0.59 −0.61 1.63 −0.53 −0.71
RMSE(g·kg−1) 8.89 9.47 9.54 9.92 9.13 9.81

R2 0.60 0.48 0.47 0.30 0.51 0.32

3.4. Spatial Prediction and Mapping of SOC Content

The spatial distribution of SOC produced by OK, GWR, SVR, ANN, GWRK and ANNK are
illustrated in Figure 5. All the six maps showed that a high SOC region was on the northwest section
of the study area with content values ranging from 29.29 to 70.93 g·kg−1, where urban parks and green
space occupied. While low SOC regions were located near the outskirt of Shuangyang District with
values ranging from 4.18 to 9.55 g·kg−1. Relatively high SOC contents were present in the northern side
of Xinlicheng Reservoir, and the areas between Jingyuetan and the northwestern side of Shitoukoumen
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Reservoir. The map resulting from GWRK was characterized by more explicit spatial variation than
those from GWR and OK. Comparing the range of the estimated SOC content and that of measured
values (2.54–68.94 g·kg−1) resulted in the following performance ranking for the six algorithms from
strong to weak: ANNK, SVR, ANN, GWRK, OK and GWR.
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regression (SVR) (e) and ordinary kriging (OK) (f).

4. Discussion

4.1. Comparison between Intra-Classes of Three DSM Techniques

The study suggested that, for geostatistical techniques, OK performed better than GWR. A weaker
performance of GWR compared to OK in this research can be attributed to the spatial autocorrelation
and local multicollinearity of environmental variables [74], as VIFs can only detect the global collinearity.
Specifically, the study area has fairly flat terrain, so that environmental variables, such as BD and relief
grids used in this study were measured at a rather coarser resolution than the requirement for explicitly
reflecting the variability of SOC content. Besides, GWR is an extension of the linear regression, so
that the number of variables included could have disproportionately negatively impacted the results
when the number of variables is excessive. Liu et al. (2015) implemented GWR and OK for predicting
SOC stocks with terrain factors, distance factors, land cover type, and spectral indices, and they
obtained more accurate estimates, as RMSEGWR was 43.4% of the mean value of SOC and RMSEOK

was 34.4%, than those reported in this study [50]. Taking a town as the study area, they considered
man-made disturbances in addition to natural factors with fairly good resolution, leading to the better
performance of GWR on SOC mapping. However, Zhang et al. (2011) applied OK and GWR onto the
environmental factors of rainfall, land cover and soil type to map soil organic carbon, and the accuracy
was lower than that which was obtained by this study [73]. Theoretically speaking, OK considers
the spatial autocorrelation of the soil samplings, whereas GWR considers the spatial heterogeneity
of environmental variables. In other words, it was found by this study that the validation data were
closer to the measuring data in the soil sampling locations, due to a better performance of OK than
GWR. Whereas, the spatial heterogeneity of environmental variables and its relationship with soil
sampling were more significant and matched at the study scale of Zhang et al. (2011) based on better
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performance of GWR than OK. Overall, due to the different mechanism of GWR and OK, it is suggested
that both models should be calibrated, and then the best result is applied for the spatial prediction of
target soil attributes.

The results for the two ML models showed that SVR performed slightly better than ANN, which
was in agreement with the conclusions by Wijewardane et al. (2016), Ottoy et al. (2017) and Xu et al.
(2018) [43,71,75]. It was reported by prior studies that SVR can eliminate the local minimum issue
of the error function of ANN [76,77]. Nevertheless, these evaluations were different from those that
were obtained by Taghizadeh-Mehrjardi et al. (2016, 2017), who showed better performances of ANN
than SVR for soil attributes prediction [78,79]. Were et al. (2015) input nine variables of soil properties
into SVR and ANN, one climate variable, land cover data, four relief factors, as well as two spectral
indices to map SOC stocks, and obtained higher values of R2, but lower values of RMSE than did
in this study [64]. This may be because of different extents of the study areas, sampling sizes, the
number and quality of environmental variables used. ANN is capable of learning complex patterns
in the noisy environment, but it requires representative training samples and appropriate values of
network parameters [80,81]. SVR is able to generalize the model well with limited training samples,
but it suffers from parameter assignment issues [82]. Since each model has its pros and cons, studies all
strongly suggested the application of both ML models, ANN and SVR, due to their close performances.

As for the hybrid approaches, ANNK outperformed GWRK for the prediction of SOC content
in this study. The better performance of ANNK compared to GWRK is related to the non-linear
relationship between environmental variables and SOC content. It was overcome by the ability of ANN
to solve non-linear problems [83]. However, GWRK is much simpler to operate, and more mature
for DSM applications than ANNK. Because these two approaches have not been compared in any
previous research, this finding can provide a reference for mapping SOC in future.

Except that the two ML techniques had close performance, the two-step hybrid approaches
performed differently, as well as the geostatistical techniques. It also indicated that choosing a suitable
model at the first step is crucial for estimating the SOC via hybrid approaches.

4.2. Comparison among Geostatistical, ML and Hybrid Techniques

Comparison among three DSM techniques (Figure 5 and Table 5), showed that the geostatistical
models had the lowest accuracy. The poor performance of OK was found by Mirzaee et al. (2016) when
compared with ANNK [47], by Emamgholizadeh et al. (2017) who showed a performance order of
ANN, GWR and OK [84], and by Ye et al. (2017) when compared with GWRK [85]. ANNK showed the
highest accuracy, but GWRK performed worse than the two ML models. It showed that the spatial cross
correlation between SOC content and environmental variables in this study was depicted definitely by
non-linear regression like SVR and ANN, rather than GWR as a local linear regression. ML in this study,
i.e., ANN and SVR have built in methods for dimension reduction, so that the number of variables
and local multicollinearity of predictors influences less on ML than GWR. However, additionally
considering the spatial autocorrelation of SOC residuals, ANNK apparently outperformed SVR, in
spite of a close performance of ANN and SVR. Obviously, two-step hybrid approaches performed
better than the corresponding one-step models, which was also revealed by comparisons made in
Kumar (2015), Zeng et al. (2016) and Guo et al. (2017) about GWRK and GWR [48,86,87], and in
Dai et al. (2014) and Song et al. (2017) about ANNK and ANN [72,88]. Dai et al. (2014) used ANNK
and ANN for mapping soil organic matter content with auxiliary variables, including climate data,
relief data and spectral indices of the remote sensing data, and obtained a higher accuracy than that of
this study [88]. Due to the high variability of environmental variables and the fairly simple relationship
between variables and the SOM content in the Tibetan Plateau, ANNK and ANN showed stronger
performances than reported by this study. The relative improvement of the prediction accuracy of
ANNK compared to ANN was also more obvious.

The uncertainty is a key issue for SOC mapping, based on these three DSM techniques. The
processing of soil samples collection and inputs are the same for six models. While, the distribution
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and number of soil samples and predictor inputs have a greater influence on geostatistics than ML
methods. It also results in the higher uncertainty of GWRK than ANNK. As for different modeling
methods, two-step hybrid approaches would increase uncertainty than corresponding one-step models.
However, two-step hybrid approaches greatly improved accuracy than geostatistics and ML according
to reported studies and our findings as abovementioned. For a regional area like this study, the six
methods cost a similar amount of time when considering a trade-off between accuracy and speed.
Thus, the two-step hybrid approach resulted in better predictions and lower errors than corresponding
one-step models, which were recommended for a regional SOC mapping.

5. Conclusions

To map the spatial distribution of a vital ecological indicator of soil quality, SOC content, six
DSM methods were developed with soil properties, climatic data, relief factors and spectral indices
being environmental variables. These methods were geostatistical (OK and GWR), ML (SVR and
ANN) and two-step hybrid approaches (GWRK and ANNK). The performance ranking of six methods
from high to low was ANNK, SVR, ANN, GWRK, OK and GWR based on the prediction accuracy
measured by RMSE, ME, R2 and the consistency with measured values. Additionally, the two-step
hybrid approaches, ANNK and GWRK, gave rise to low RMSE, close-to-zero mean error and high
R2 for the validation set as compared with GWR and ANN. Because of the non-linear relationship
between environmental variables and SOC content, two ML methods performed better than linear
models. The strong performances of the two-step hybrid approaches were attributed to their capability
of explicitly addressing the spatial dependency and non-stationarity of SOC content. It led to apparent
outperformances of ANNK compared to SVR, in spite of the close performance of ANN and SVR.

When considering uncertainty and efficiency, the suitable situations of these six methods on SOC
mapping were also discussed. For a regional study area with high heterogeneity, such as urban and
mountainous landscapes, ML and two-step approach are more suitable than geostatistics. Selection of
a suitable model at the first step is crucial for two-step hybrid approaches. Limited by the number of
samples, SVR performs better than ANN. Influenced by predictor inputs, GWR performs worse and
has a larger uncertainty than OK. Therefore, ANNK combining ANN with OK is considered to be the
most promising approach to estimating regional SOC.
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