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Abstract. Over the last decade, advanced statistical inference

and machine learning have been used to fill the gaps in sparse

surface ocean CO2 measurements (Rödenbeck et al., 2015).

The estimates from these methods have been used to con-

strain seasonal, interannual and decadal variability in sea–air

CO2 fluxes and the drivers of these changes (Landschützer

et al., 2015, 2016; Gregor et al., 2018). However, it is also

becoming clear that these methods are converging towards

a common bias and root mean square error (RMSE) bound-

ary: “the wall”, which suggests that pCO2 estimates are now

limited by both data gaps and scale-sensitive observations.

Here, we analyse this problem by introducing a new gap-

filling method, an ensemble average of six machine-learning

models (CSIR-ML6 version 2019a, Council for Scientific

and Industrial Research – Machine Learning ensemble with

Six members), where each model is constructed with a two-

step clustering-regression approach. The ensemble average is

then statistically compared to well-established methods. The

ensemble average, CSIR-ML6, has an RMSE of 17.16 µatm

and bias of 0.89 µatm when compared to a test dataset kept

separate from training procedures. However, when validat-

ing our estimates with independent datasets, we find that

our method improves only incrementally on other gap-filling

methods. We investigate the differences between the methods

to understand the extent of the limitations of gap-filling esti-

mates of pCO2. We show that disagreement between meth-

ods in the South Atlantic, southeastern Pacific and parts of

the Southern Ocean is too large to interpret the interannual

variability with confidence. We conclude that improvements

in surface ocean pCO2 estimates will likely be incremental

with the optimisation of gap-filling methods by (1) the in-

clusion of additional clustering and regression variables (e.g.

eddy kinetic energy), (2) increasing the sampling resolution

and (3) successfully incorporating pCO2 estimates from al-

ternate platforms (e.g. floats, gliders) into existing machine-

learning approaches.

1 Introduction

The ocean plays a crucial role in mitigating against climate

change by taking up about a third of anthropogenic carbon

dioxide (CO2) emissions (Sabine et al., 2004; Khatiwala et

al., 2013; McKinley et al., 2016). While the mean state in

the global contemporary marine CO2 uptake is a widely used

benchmark (Le Quéré et al., 2018), underlying assumptions

and limited confidence regarding the variability and long-

term evolution of this sink persist. Sparse observations of

surface ocean CO2 during winter and in large inaccessible

regions have been the biggest barrier in constraining the

seasonal and interannual variability of global contemporary

sea–air exchange (Monteiro et al., 2010; Rödenbeck et al.,

2015; Bakker et al., 2016; Ritter et al., 2017). The increas-

ing ship-based sampling effort and the ongoing development

of autonomous observational platforms (e.g. biogeochemical

Argo floats and Wavegliders) have improved confidence of

interannual estimates of ocean CO2 uptake in more recent
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years (Monteiro et al., 2015; Bakker et al., 2016; Gray et al.,

2018).

The community has turned to models and data-based ap-

proaches to improve estimates of CO2 uptake by the oceans

for periods and regions with poor or no observational cover-

age (Wanninkhof et al., 2013b; Rödenbeck et al., 2015; Verdy

and Mazloff, 2017). Ocean biogeochemical models are able

to capture the general global trend in increasing oceanic CO2

uptake shown by observations but suffer from significant re-

gional and interannual (∼ 1 Pg C yr−1) differences in their es-

timates because these models cannot yet accurately parame-

terise the marine carbonate system at computationally feasi-

ble resolutions (Wanninkhof et al., 2013b). In recent years,

data-based approaches, e.g. statistical interpolations and re-

gression methods, have become a popular alternative to bio-

geochemical models (Lefèvre et al., 2005; Telszewski et al.,

2009; Landschützer et al., 2014; Rödenbeck et al., 2014;

Jones et al., 2015; Iida et al., 2015). The regression methods

try to maximise the utility of existing ship-based observa-

tions by extrapolating CO2 using proxy variables (observable

from space or interpolated). Extrapolating with proxy vari-

ables is possible due to the non-linear relationship between

the partial pressure of CO2 (pCO2) in the surface ocean

and proxies that may drive changes in surface ocean pCO2.

Improved access to quality-controlled ship-based measure-

ments of surface ocean CO2 through the Surface Ocean CO2

Atlas (SOCAT) database, and satellite and reanalysis prod-

ucts as proxy variables have aided the development of the

data-based methods (Rödenbeck et al., 2015; Bakker et al.,

2016).

1.1 The current state of machine learning in ocean

CO2 estimates

With the increase in the number of statistical estimates of

surface ocean CO2, the Surface Ocean CO2 Mapping (SO-

COM) community collated 14 of these methods in an in-

tercomparison of “gap-filling” methods (Rödenbeck et al.,

2015). The intercomparison gives an overview of the SO-

COM landscape, with regression and statistical interpolation

approaches making up eight and four of the 14 methods, re-

spectively (Rödenbeck et al., 2015). Two model-based ap-

proaches were also compared.

While SOCOM intercomparison did not seek to iden-

tify an optimal mapping method, it assessed members ac-

cording to how well they represented interannual variabil-

ity (IAV) relative to climatological surface ocean pCO2

increasing at the rate of atmospheric CO2 concentrations

(Riav). Two methods, the Jena-MLS (mixed-layer scheme)

and MPI-SOMFFN (self-organising map feed-forward neu-

ral network), achieved lower Riav scores compared to other

members of the comparison. MPI-SOMFFN is a global im-

plementation of a two-step clustering-regression approach

and has been widely adopted in the literature (Landschützer

et al., 2015, 2016, 2018; Ritter et al., 2017). The elegance of

the clustering-regression approach, particularly the cluster-

ing step, is that it reduces the problem into smaller parts with

more coherent variability and reduces the computational size

of the problem per cluster – a beneficial attribute when using

regression methods that do not scale well to big datasets.

The SOCOM intercomparison found that the gap-filling

methods were in agreement in regions with a large number of

seasonally resolving persistent measurements, but the differ-

ent methods did not agree in regions where data were sparse

(e.g. the Southern Ocean). Similarly, Ritter et al. (2017)

found little agreement in the Southern Ocean on seasonal

timescales, yet on decadal timescales, there was agreement

on the direction of trends between gap-filling methods.

1.2 Measuring the uncertainty of estimates?

The assessment of gap-filling methods is largely limited

by the distribution of the observational coverage, which is

particularly true for the Southern Hemisphere where data

are sparse (Rödenbeck et al., 2015; Bakker et al., 2016).

The standard use of root mean squared error (RMSE) and

bias as measures of uncertainty gives larger weighting to

observation-heavy regions or periods compared with data-

sparse regions and periods, potentially leading to underes-

timates of uncertainty (Lebehot et al., 2019). Note that the

term “error” refers here to the error introduced by the gap-

filling method relative to the observations. The Riav score

improves on the standard implementation of RMSE and bias

by weighting the uncertainties annually, thus giving a less

temporally biased estimate of uncertainty.

Previous studies have compared their methods’ estimates

to independent datasets, where measurements of pCO2 are

not included in the SOCAT datasets (Landschützer et al.,

2013, 2014; Jones et al., 2015; Denvil-Sommer et al., 2019).

These data serve as good validation data, particularly with

the inclusion of derivations of pCO2 from autonomous plat-

forms in the Southern Ocean, a historically undersampled

area especially during winter (Boutin and Merlivat, 2013;

Gray et al., 2018).

One of the concluding statements in the SOCOM inter-

comparison is that pseudo or synthetic data (deterministic

model output) experiments should be used to test and com-

pare methods. Gregor et al. (2017) did just this, but their

study was limited to the Southern Ocean, and the synthetic

data did not fully capture the variability represented by ob-

servations, in part due to coarse synthetic data resolution (5 d

mean and 1/2◦ spatially). The authors found that the ensem-

ble average performed slightly better than ensemble mem-

bers, in agreement with ensemble averaging approaches pre-

viously used in ocean CO2 studies (Khatiwala et al., 2013).

On the other hand, Lebehot et al. (2019) investigated the per-

formance of an interpolation method in the North Atlantic

using an ensemble of model outputs. Their approach offered

a unique way of assessing a gap-filling method at places and

times where no observations were made.
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1.3 Aims

The main aim of this study is to present and evaluate a new

machine-learning approach to estimate surface ocean pCO2.

We propose the use of an ensemble average, where we hy-

pothesise that the “whole is greater than the sum of its parts”

as the strengths of the ensemble members are often comple-

mentary in such a way to overcome the weaknesses (Khati-

wala et al., 2013; Gregor et al., 2017). Further, we aim to

evaluate the method for a selection of existing gap-filling

methods. From this comparison, we aim not only to gain a

sense of our method’s performance but also the state of gap-

filling based estimates; i.e. where would we be able to im-

prove in future work?

2 Methods

There are two main components to this study: surface pCO2

mapping with multiple methods and robust error estima-

tion from SOCAT v5 gridded product and independent data

sources. This study takes a similar two-step approach used in

the Japanese Meteorological Agency – multi-linear regres-

sion (JMA-MLR) and MPI-SOMFFN approaches, where

data are grouped or clustered first, and then a regression al-

gorithm is applied separately to each group or cluster. We

use the ocean CO2 biomes by Fay and McKinley (2014) as

an option for grouping. Alongside this grouping, we use an

optimal K-means clustering configuration. Next, four non-

linear regression methods are applied to each of the group-

ings. The regression methods are support vector regression

(SVR), feed-forward neural network (FFN), extremely ran-

domised trees (ERT) and gradient-boosting machine (GBM).

The latter two approaches are new to the application. These

methods are then compared to independent data sources. This

is outlined in more detail in the experimental overview be-

low.

2.1 Experimental overview

The experimental design, outlined below, is summarised in

Fig. 1:

1. In the first step (denoted as “K-means clustering” in

Fig. 1), we generate climatological biomes using the

oceanic CO2 biomes by Fay and McKinley (2014), and

a selection of features variables (five combinations) and

number of clusters (a range of 11 to 25 clusters, step-

ping by two) resulting in a total of 41 clustering config-

urations.

2. Four regression algorithms are applied to each cluster-

ing configuration, resulting in 164 models (described

by the “regression” section in Fig. 1). The test data

(isolated from the model training procedure) are used

to identify the best-performing clustering configuration

with annually weighted bias, RMSE and Riav. The four

regression models for CO2 biomes and the four models

from the best-performing clustering configuration (as

indicated by the bold lines in Fig. 1) are used in the

steps that follow. The selected eight models are aver-

aged to create an ensemble average that is included with

the eight members for further evaluation.

3. The third step (as represented by the “K-fold testing”

section in Fig. 1 and Sect. 2.5) provides a robust un-

certainty evaluation based on the training data (SOCAT

v5). An iterative test-train approach is applied to esti-

mate the bias, RMSE and Riav for the complete SOCAT

v5 dataset (rather than just one test split).

4. The fourth step compares the ensemble average esti-

mates of surface ocean pCO2 with independent test data

(that are not in SOCATv5, as represented by the “inde-

pendent” section in Fig. 1), which allows testing the pre-

dictive ability of the ensemble method (Sect. 2.6). Four

methods from the SOCOM gap-filling intercomparison

study are included for reference.

5. Lastly, all gap-filling methods are compared to identify

regions where there is a divergence in the trend and sea-

sonal cycle.

2.2 Data: clustering, training and prediction

Standard machine-learning implementation requires a train-

ing and a predictive dataset. The training dataset consists of

a target variable that is being predicted (in this case, pCO2)

and one or more feature variables that have samples that cor-

respond with target samples, e.g. sea surface temperature

(SST), Chl a and mixed-layer depth (MLD) co-located in

space and time, where feature variables may directly or in-

directly influence the target variable. Features variables are

used to predict once a machine-learning model has been

trained and must thus be available for the full prediction do-

main.

Here, we use surface ocean pCO2 calculated from the SO-

CAT v5 monthly gridded f CO2 (fugacity of CO2) product

(hereinafter SOCAT v5, as shown in Fig. 2) as the target vari-

able (Sabine et al., 2013; Bakker et al., 2016). SOCAT v5 is

a quality-controlled dataset that contains observations of sur-

face ocean f CO2, which is converted to pCO2 with

pCO2 = f CO2 · exp

(

P surf
atm ·

B + 2 · δ

R · T

)−1

, (1)

where P surf
atm is the atmospheric pressure at the surface of the

ocean, T is the SST in ◦K, B and δ are virial coefficients, and

R is the gas constant (Dickson et al., 2007). We used ERA-

Interim P surf
atm (Dee et al., 2011) and National Oceanic and

Atmospheric Administration (NOAA) daily optimally inter-

polated SST version 2 (dOISSTv2) that uses only Advanced

Very High Resolution Radiometer (AVHRR; Reynolds et al.,

2007; Banzon et al., 2016) data.

www.geosci-model-dev.net/12/5113/2019/ Geosci. Model Dev., 12, 5113–5136, 2019
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Figure 1. A flow diagram that shows the experimental procedure used in this study. Abbreviations for feature variables in the orange hexagons

can be found in Table 1. All other abbreviations are given in the diagram. Details of each step are given in the text (Sect. 2.1).
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Figure 2. Map showing the distribution of the SOCAT v5 monthly

gridded product (1982–2016) as a monthly climatology to show

how well the seasonal cycle is represented (regardless of the year).

The red shading shows grid points where the majority of data occur

from May to October, and the blue shading shows grid points where

the majority of data occur from November to April.

An important consideration in the use of the SOCAT

database is that in situ measurements (i.e. ship measure-

ments) are not collected at the surface. The in situ temper-

atures that coincide with pCO2 in the SOCAT database are

thus different from surface temperature products used to es-

timate pCO2 and calculate fluxes (Goddijn-Murphy et al.,

2015; Bakker et al., 2016). The discrepancy in in situ and

remotely sensed temperature results in a theoretical differ-

ence between pCO2 measured at the ship intake depth and

the surface due to warming or cooling (Takahashi et al.,

1993). Goddijn-Murphy et al. (2015) suggest that a correc-

tion for the theoretical difference in pCO2 should be made

using the empirical relationship between pCO2 and temper-

ature (Takahashi et al., 1993). While this merits further co-

ordinated consideration by the marine CO2 observation com-

munity, we do not apply such a temperature correction in this

study, as we aim to be consistent with the earlier pCO2 esti-

mates from the SOCOM intercomparison (Rödenbeck et al.,

2015). However, we do present the potential impact of this

discrepancy in Sect. S2.4.

Feature variables in both the training and predictive

datasets are globally gridded products, including satellite ob-

servations, in situ measurements and reanalysis products (Ta-

ble 1; see Sect. S1 for details). All feature variables are grid-

ded to a monthly frequency onto a global 1◦ × 1◦ resolu-

tion grid. Thereafter, data processing steps are applied as

shown in Table 1 and described in detail in the Supplement

(Sect. S1), with the final output being a complete dataset

ranging from 1982 to 2016. Note that the clustering and re-

gression steps use different subsets of the feature variables,

as indicated in Table 1.

In this paragraph, we briefly describe the data processing

steps shown in Table 1; detailed product descriptions and

in-depth processing steps are in Sect. S1. We derive an ad-

ditional SST feature, SST′, by subtracting the annual mean

of SST from each respective year, leaving the annual mean

anomalies (Reynolds et al., 2007; Banzon et al., 2016). We

use the log10 transformation of the Globcolour Chl a global

product (Maritorena et al., 2010). Cloud gaps and the period

before the start of the product (1982–1997) are filled with the

climatology (1998–2016), and high-latitude winter regions

(where there is no climatology for Chl a) are filled with low-

concentration random noise to be consistent with regions of

low-concentration Chl a (Gregor et al., 2017). We derive an

additional Chl a feature, Chl a′, using the same procedure

as described for the SST annual mean anomalies. We use a

log10 transformation of MLD from Argo float density pro-

files (Holte et al., 2017) to create a monthly climatology, thus

imposing the assumption that there is no interannual variabil-

ity. Wind speed is calculated from 6-hourly data using the

equation in Table 1 before taking the monthly average. At-

mospheric pCO2 is calculated with pCO2 = xCOatm
2 ×P atm,

where xCOatm
2 is the mole fraction of atmospheric CO2 (from

ObsPack v3 by Masarie et al., 2014) and P atm is the reanal-

ysed mean sea-level pressure (from ERA-interim 2; Dee et

al., 2011) – further details for the procedure are in Sect. S1.

The climatology of eddy kinetic energy (EKEclim) is calcu-

lated from u and v surface current components (integrated

for depth < 15 m) from the Globcurrent product (Rio et al.,

2014), where u′ is calculated as u − u and similarly with v

(Table 1).

2.3 Clustering and biomes

The seasonal and interannual variability of global surface

ocean pCO2 is complex due to interactions of various driver

variables acting on the surface ocean at different space scales

and timescales (Lenton et al., 2012; Landschützer et al.,

2015; Gregor et al., 2018). Machine-learning algorithms ap-

plied globally struggle to represent the pCO2 accurately

unless spatial coordinates are included as feature variables

(Gregor et al., 2017). This is due to the fact that pCO2 may

respond inconsistently to observable feature variables in dif-

ferent regions as it is not possible to observe all feature vari-

ables that drive pCO2. A common practice to avoid the in-

clusion of coordinates is to separate the ocean into regions

where processes that drive pCO2 are coherent and then ap-

ply individual regressions to each region – five of the eight

regression methods in Rödenbeck et al. (2015) apply this ap-

proach. We adopt two such approaches to develop regions of

internal coherence with respect to CO2 variability, namely re-

gions defined by biogeochemical properties and clusters de-

fined by a clustering algorithm.

Our first “clustering” approach uses the oceanic CO2

biomes by Fay and McKinley (2014) that divide the ocean

into 17 biomes. Fay and McKinley (2014) define their

www.geosci-model-dev.net/12/5113/2019/ Geosci. Model Dev., 12, 5113–5136, 2019
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Table 1. Summary of the products, variables and data processing steps used for feature variables. The “usage” column indicates the features

that are used for the clustering step (identified by C) and for the regression step (identified by R). Abbreviations are used in Fig. 1 and

throughout the text. Basic data processing is described in the text with details in the Supplement (Sect. S1).

Group: product Variable Abbreviation Usage Processing Reference

NOAA: dOISSTv2 Sea surface temperature SST C, R – Reynolds et al. (2007);

(AVHRR only) SST seasonal anomaly SST′ C, R SST – annual average Banzon et al. (2016)

Sea ice fraction ICE R –

Met Office: EN4 Salinity SSS R – Good et al. (2013)

CDIAC: ObsPack v3 Atmospheric pCO2 pCO2
atm R xCOatm

2
× sea-level pressure Masarie et al. (2014)

UCSD: Argo mixed layers Mixed-layer depth MLD C, R log10(climatology) Holte et al. (2017)

ESA: Globcolour Chl a Chl a C, R log10

(

climatology filled
cloud gaps
1982–1997

)

Maritorena et

Chl a seasonal anomaly Chl a′ R Chl a – annual average al. (2010)

ECMWF: ERA-Interim 2 u wind u R – Dee et al. (2011)

v wind v R –

Wind speed U10 R
√

u2 + v2

ESA: Globcurrent Eddy kinetic energy EKEclim C log10

(

1/2 ·
(

u′2 + v′2
))

Rio et al. (2014)

– Day of the year J R sin
(

j
365

)

, cos
(

j
365

)

–

LDEO: pCO2 climatology Surface ocean pCO2 pCOclim
2

C Data smoothing Takahashi et al. (2009)

Figure 3. Regions or biomes as defined by Fay and McKinley (2014). Unclassified regions from the original data have been assigned

manually in this study and are shown by the separate colours. This modified configuration of the CO2 biomes is referred to as BIO23 in this

study. The sea mask used in Landschützer et al. (2014) has been applied. For the biome abbreviations (below the colour bar), see Fay and

McKinley (2014). The abbreviations above the colour bar are used in this study, where selected biomes are grouped together. Thick white

lines show the boundaries of the grouped regions. Prefixes are as follows: NH is Northern Hemisphere and SH is Southern Hemisphere.

Suffixes are as follows: HL is high latitudes, ST is subtropics, and EQU is equatorial.

Geosci. Model Dev., 12, 5113–5136, 2019 www.geosci-model-dev.net/12/5113/2019/
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biomes by establishing thresholds for SST, Chl a, sea-ice

extent and maximum MLD. Unclassified regions from the

original biomes are manually assigned based on their geo-

graphical extent, resulting in six additional regions (Fig. 3).

We maintain these as separate regions from the original Fay

and McKinley (2014) biomes. Their study originally did not

classify these regions in the core biomes because the physi-

cal and biogeochemical properties were not accounted for by

the set thresholds from their study. This would suggest that

drivers of CO2 in these regions could be quite different from

the adjacent open-ocean biomes. Note that we may refer to

the modified Fay and McKinley (2014) ocean CO2 biomes as

“CO2 biomes” or as “BIO23” from here on (Fig. 3). For later

analyses, we group certain biomes together, as shown by the

brackets above the colour bar in Fig. 3.

We also use K-means clustering, which groups data based

on Euclidean distances. More specifically, we implement

mini-batch K means from Python’s Scikit-learn package

(Sculley, 2010; Pedregosa et al., 2011), which is described

in the Supplement (Sect. S2.2; Fig. S2). We apply clustering

with various feature combinations and the number of clusters

(shown by orange hexagons in Fig. 1). We tested a range of

11 to 25 clusters (stepping by two). The performance of each

clustering configuration is not tested with a clustering met-

ric; instead, we test the performance based on the test scores

of the regressions in the next step as a more complete indi-

cator of performance. We find optimal results with respect to

RMSE and biases with 21 and 23 clusters. We selected 21

clusters (Fig. S2). Each method of defining regional coher-

ence with respect to pCO2 variability has its methodological

weaknesses so in this study, we adopted the approach of in-

corporating both K means and CO2 biomes into the ensem-

ble average (Fig. 1). Although this likely weakens the geo-

physical meaning of the ensemble domains, we show that it

strengthens the overall performance of the ensemble average.

2.4 Regression

Here, we describe the underlying machine-learning princi-

ples of regression. The co-located data (i.e. SOCAT v5) are

split into training and test subsets with a roughly 80 : 20 split.

The test subset is isolated from the training process to at-

tain a reliable estimate of uncertainty. We make the split be-

tween training and test subsets based on a random subset

of years in the time series (1982–2016): 1984, 1990, 1995,

2000, 2005, 2010 and 2014. We avoid using a shuffled train-

test split (completely random), as this leads to artificially low

uncertainties in machine-learning algorithms that are prone

to overfitting (see the experiment in Sect. S2.1), where the

models can reproduce the shuffled test data better, as these

data are adjacent to samples of the same ship track.

We further reduce the possibility of overfitting by tuning

the hyperparameters for each model to be more generalised,

i.e. able to fit the data that the model has not been exposed to.

The search for the optimal hyperparameters is achieved with

grid-search cross validation, where a portion of the training

subset is iteratively kept separate from the training process

for a certain set of hyperparameters (Hastie et al., 2009). The

hyperparameters that result in the best score from the grid

search are used for the fit with the full training subset (see

Sect. S2.3 for more details). We use a variation of K-fold

cross validation called “group K fold” in Scikit-learn (Pe-

dregosa et al., 2011). Rather than having arbitrary splits for

each fold, a given grouping variable is used to split the data

– in this case, years. Using years as the grouping variable re-

duces bias towards the second half of the time series where

data are less sparse.

The train-test split and cross validation are applied iden-

tically to each of the four machine-learning algorithms for

each clustering configuration. We use the following machine-

learning algorithms: ERT – Geurts et al. (2006); GBM –

Friedman (2001); SVR – Drucker et al. (1997); and FFNs.

The details of these methods and how they were tuned are

explained in the Supplement (Sect. S2.3). The first two meth-

ods, ERT and GBM, are new to this application. SVR has

been implemented as a single global domain by Zeng et

al. (2017), and FFN is used by several different methods,

some of which are in the SOCOM intercomparison (Land-

schützer et al., 2014; Zeng et al., 2014; Sasse et al., 2013).

Regression performance is tested using RMSE primarily

but also bias (Eqs. 3 and 4 below) and Riav (Eq. 5), with only

the models from the best averaged clustering configuration

used for the rest of the study.

2.5 Robust biases and root mean square errors

Standard practice in machine learning is to set aside a test

subset of the data, as described in Sect. 2.4. We use this

standard approach in the second step of our experiment (re-

gression comparison) as an estimate of the performance for

each of the machine-learning models (164 in total). How-

ever, this grouped train-test split gives a bias and RMSE es-

timate limited to the random test years of test subset (see

Sect. 2.4). To overcome this limitation, we iteratively apply

the train-test split method with multiple selections of years.

The splits in the test fold are based on a subset of years

spaced 5 years apart. We then refactor the five test-fold es-

timates into a complete test estimate (with the same structure

as the original SOCAT v5), thus giving a complete estimate

of bias and RMSE (Fig. 1, step 3). This robust test-estimate

method ensures that correct biases and RMSE scores are re-

ported even if methods are prone to overfitting (see Sect. S2.1

and Fig. S1). We limit this procedure to only the CO2 biome

and best clustered regressions as it has 5 times the computa-

tional cost of a single train-test split.

2.6 Method validation data

For method validation, we use observation data that are not

used in SOCAT (Fig. 4 and Table 2) as they are either (1) in-
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Table 2. Details for the validation datasets. The measured variables are shown (DIC is dissolved inorganic carbon; TA is total alkalinity)

along with the estimated accuracy of pCO2. This includes the propagated uncertainty in the conversion from DIC and TA to pCO2 as defined

by Lueker et al. (2000), where the estimates marked with ∗ are an extrapolation of the estimates, as the DIC and TA uncertainties do not

match or exceed those listed in the publication. Note that the error estimates for GLODAP v2 are larger than those shown in the table, as

measurement uncertainty is defined as ±10 µmol kg−1 in Bockmon and Dickson (2015). Grid points show the number of data at the same

resolution as the feature variables.

Platform Project Measured variable Accuracy (µatm) Reference Grid points

Ship LDEO pCO2 equilibrator ±2.5 µatm Takahashi et al. (2017) 16 161

GLODAP v2 DIC + TA > 12 µatm at 400 µatm∗ Olsen et al. (2016); 5976

Bockmon and Dickson (2015)

Surface floats CARIOCA pCO2 colourimetry ±3.0 µatm Boutin and Merlivat (2013) 613

Profiling floats SOCCOM pH + TA (LIAR) ∼ 11 µatm at 400 µatm Carter et al. (2016) 1037

Mooring BATS DIC + TA ∼ 4 µatm at 400 µatm Bates (2007) 246

HOT DIC + TA < 7.6 µatm at 400 µatm∗ Dore et al. (2009) 214

Figure 4. The distribution of the validation data. Details of these

datasets are given in Table 2. The Hawaii ocean time series (HOT)

and the Bermuda Atlantic time series (BATS) are marked as dia-

monds to distinguish them as time series stations.

cluded in the Lamont–Doherty Earth Observatory (LDEO)

database but not in SOCAT; (2) not measured with an in-

frared analyser; or (3) derived from two other variables in the

marine carbonate system, where these include dissolved inor-

ganic carbon (DIC), pH and total alkalinity (TA) – where the

Southern Ocean Carbon and Climate Observation and Mod-

eling (SOCCOM) floats use empirically calculated TA.

The uncertainty of pCO2 that is calculated from DIC and

TA is dependent on the accuracy of these two measurements,

as well as the derivation of pCO2 with dissociation constants,

for which we use the CBSys package in Python (Hain et

al., 2015). CBSys implements the constants from Lueker et

al. (2000) that reports an uncertainty of 1.9 % standard de-

viation of the calculated pCO2 where DIC and TA uncer-

tainties are 2.0 and 4.0 µmol kg−1, respectively. The mea-

surements in GLODAP v2 are slightly larger than this at 4

and 6 µmol kg−1, which would result in an error larger than

1.9 % – this is 12 µatm for a 400 µatm estimate at a hy-

pothetical 3 % error. However, this error may be larger, as

reported in Table 2, where Bockmon and Dickson (2015)

showed that the uncertainty for DIC and TA is likely closer

to ±10 µmol kg−1. While this potentially large error range

may seem concerning, we argue that the inclusion of these

data in data-sparse regions is more valuable than their omis-

sion. Additionally, GLODAP v2 data have been adjusted on a

per-profile basis to minimise the biases through the compar-

ison of deep slow-changing ocean properties (Olsen et al.,

2016). Williams et al. (2017) estimated the error for pCO2

calculated empirically to be 2.7 %, where TA was calculated

empirically with the locally interpolated alkalinity regression

(LIAR) algorithm (Carter et al., 2016). Note that the datasets

in Table 2 likely suffer from biases unaccounted for due to

temperature mismatches as discussed in Sect. 2.2 (Goddijn-

Murphy et al., 2015). It is important to note that each of

the validation datasets are compared independently of each

other, thus avoiding the complications of accounting for the

biases between datasets. All pCO2 data are then gridded to

the same time and space resolution as the feature variables

(monthly × 1◦) using xarray and pandas packages in Python

(McKinney, 2010; Hoyer and Hamman, 2017).

2.7 Sea–air CO2 flux calculation

Bulk sea–air CO2 flux (FCO2) is calculated with

FCO2 = kw · K0 ·
(

pCOsea
2 − pCOatm

2

)

, (2)

where K0 is the solubility of CO2 in seawater (Weiss, 1974)

and kw is the gas-transfer velocity calculated from wind

speed using formulation by Nightingale et al. (2000), as this

parameterisation was the closest match to in situ observations

of CO2 fluxes (Goddijn-Murphy et al., 2016). The ERA-

interim v2 wind product is used to calculate kw. pCOsea
2 is

from the gap-filling methods, and pCOatm
2 is atmospheric

pCO2. All ancillary variables required in these calculations

are the same as those listed in Table 1, except for pCOatm
2 ,

which is the CarboScope atmospheric pCO2 product from

Geosci. Model Dev., 12, 5113–5136, 2019 www.geosci-model-dev.net/12/5113/2019/



L. Gregor et al.: CSIR-ML6 version 2019a 5121

Rödenbeck et al. (2014). One of the problems with the bulk

estimates of sea–air CO2 fluxes is that models of gas ex-

change in the surface layer of the water column are simpli-

fied, but there are approaches, such as the rapid equilibrium

model, that account for more complex temperature gradients

in the upper layer of the surface ocean (Wanninkhof et al.,

2009; Woolf et al., 2016). However, for the sake of consis-

tency with past studies, we use the bulk approximation of

sea–air fluxes (Eq. 2), where kw is scaled to 16 cm h−1 as in

the SOCOM intercomparison (Rödenbeck et al., 2015).

2.8 Relative interannual variability and interquartile

range metrics

2.8.1 Regression metrics

We use bias and RMSE as first-order metrics of model per-

formance.

Bias is the mean difference between the target variable and

the estimates thereof:

Bias =
∑n

i=1

ŷi − y

n
, (3)

where n is the number of training samples, y is the array of

target data, and ŷ is the corresponding array of estimates.

Similarly, RMSE is a measure of the difference between the

target variable and the estimates thereof:

RMSE =

√

√

√

√

n
∑

i=1

(

yi − ŷi

)2

n
. (4)

In our study, these metrics are calculated for each year and

then the mean of the annual bias or RMSE scores is taken

as a more robust measure of performance in the context of

temporally imbalanced data. This is typically done for the

global domain unless otherwise stated.

The relative interannual variability metric (Riav) was used

in the SOCOM intercomparison by Rödenbeck et al. (2015)

to measure how well a method represents the interannual

variability of the SOCAT data. The metric furthers the idea

of RMSE calculated by year (and region if stated; otherwise

global) by normalising annually weighted RMSE to a bench-

mark with interannual variability driven only by atmospheric

pCO2:

Riav =
σ1982–2015(M

iav(t))

σ1982–2015

(

M
iav(t)
bench

) (5a)

M iav(t) =

√

∑n
i=1

(

yi − ŷi

)

n − 1
(5b)

M
iav(t)
bench =

√

6n
i=0

(

yi − ŷb
i

)

n − 1
. (5c)

Here, σ is the standard deviation of M iav and M iav
bench, re-

spectively, which are both represented as yearly time series.

Equation (5b) and (5c) show the formulation for M iav(t) and

M
iav(t)
bench , which represent these metrics for a single year (t).

The symbol i represents individual data points in a particular

year t , y is the observation-based data for that year, ŷ is the

predicted data, and n is the number of points in the year and

region. The benchmarked M iav
bench is calculated to normalise

M iav. ŷb represents the data where IAV has been removed by

summing the climatology of the mapped surface ocean pCO2

and the annual trend of atmospheric pCO2.

2.8.2 Ensemble metrics

We use the interquartile range (IQR) between different gap-

filling methods as a robust metric of disagreement, in con-

trast to the standard deviation, which is sensitive to outliers.

IQR is calculated as the third quartile (75th percentile) minus

the first quartile (25th percentile). The disagreement between

methods is calculated with annually averaged data, with the

resulting difference averaged over the time series to arrive at

the interannual disagreement (IQRIA). This is calculated per

pixel if the representation of the data is spatial (maps) and

per time step of a time series.

3 Results

3.1 Regression results

The results from the regression comparisons (step 2 in Fig. 1)

are depicted in Fig. 5a–c, which plot the matrix of the (a) av-

erage bias, (b) RMSE and (c) Riav for each combination of

the experimental number of clusters and clustering features.

Results show that the configuration that includes EKEclim

(column E in Fig. 5a–c) as a clustering feature has the low-

est average RMSE and absolute bias for nearly all clustering

configurations, regardless of the number of clusters (rows in

Fig. 5a, b). The increased dynamics associated with high-

EKE regions might change the way pCO2 behaves com-

pared to low-EKE regions (Boutin and Merlivat, 2013; Mon-

teiro et al., 2015; du Plessis et al., 2017, 2019). The optimal

number of clusters within this configuration is either 21 or

23, based on the smallest bias and RMSE scores (as indi-

cated by the black box in Fig. 5), while we do not weight

Riav strongly in this assessment as a Riav score of less than

0.3 is in the top-performing category in the SOCOM inter-

comparison (Rödenbeck et al., 2015). While the individual

regression methods’ bias and RMSE scores (Figs. S5 and

S6, respectively) do not match the distributions exactly, the

two selected clustering configurations (black boxes in Fig. 5)

score consistently low for both metrics (with the exception

of ERT – discussed in greater detail further on). We are mo-

tivated to select only one clustering configuration for the

sake of simplicity. Furthermore, we select the configuration

with 21 clusters (rather than 23), as fewer clusters further re-

duce the possible complexity at little cost. The selected clus-

tering configuration with 21 clusters has the following fea-
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Figure 5. Heat maps showing the average cluster (a) bias, (b) RMSE and (c) relative interannual variability (Riav) for different cluster

configurations, where smaller scores are better for all metrics. The rows show the number of clusters, and the columns show clustering feature-

variable configurations. Each cluster contains the average of the scores for four regression methods: support vector regression, extremely

randomised trees, gradient-boosting machine and feed-forward neural network. The black box indicates clustering configurations that perform

well across all metrics; note that a value of Riav < 0.3 falls within the best category of performance in Rödenbeck et al. (2015).

tures: SST, log10(MLDclim), pCOclim
2 , log10(Chl aclim) and

log10(EKEclim), and is hereinafter abbreviated as K21E (see

Fig. S2 for the distribution of the climatology for these clus-

ters).

Comparatively, the Fay and McKinley (2014) CO2 biomes

have an average RMSE score of 18.98 µatm (Table 3) but

have a lower mean Riav (0.26) and smaller bias (0.03 µatm)

than the K21E configuration. Given that the CO2 biomes per-

form well and provide an alternate clustering approach, we

include the regression estimates. The eight machine-learning

models from K21E and BIO23 (four each) were used to

create an ensemble average by averaging pCO2 estimates

(CSIR-ML8, Council for Scientific and Industrial Research

– Machine Learning ensemble with Eight members).

All regression methods have lower RMSE scores for K21E

than for BIO23, but Riav and bias do not indicate that ei-

ther of the two clustering approaches is preferable (Table 3).

Comparing the RMSE scores of the individual regression

methods, we see that the model scores are ranked the same

in each cluster from first to last: SVR, ERT, GBM and FFN.

However, it is important to note that this ranking does not

apply to bias or Riav, where ERT has low RMSE but the

largest bias and Riav in each clustering approach. CSIR-ML8

only slightly betters its members, with RMSE and bias scores

of 17.25 and 0.04 µatm, respectively. However, the ensemble

average Riav (0.25) is only just less than the average of the

ensemble members’ average (0.26).

Table 3. Regression scores for the CO2 biomes (BIO23), the clus-

tering configuration from column E in Fig. 5 (K21E) and the en-

semble average (CSIR-ML8). Abbreviations are as follows: RMSE

is the root mean square error; Riav is the relative interannual vari-

ability (Eq. 5). Regression methods are as follows: SVR is sup-

port vector regression; ERT is extremely randomised trees; GBM

is the gradient-boosting machine; FFN is the feed-forward neural

network. Bold values are significantly lower than the mean for that

column (p < 0.05 for the two-tailed Z test; absolute values are used

for the bias column).

Bias RMSE

Clustering Regression (µatm) (µatm) Riav

CSIR-ML8 0.04 17.25 0.25

K21E SVR −0.45 17.95 0.24

ERT 0.84 17.96 0.36

GBM −0.32 18.21 0.24

FFN −0.30 18.82 0.27

BIO23 SVR −0.19 18.47 0.15

ERT 0.85 18.76 0.38

GBM 0.02 19.05 0.28

FFN −0.58 19.65 0.21
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Figure 6. Annually averaged (a) bias and (b) RMSE for the eight individual regression methods in Table 3: BIO23 (dashed lines) and K21E

(solid lines). The dotted black lines show the ensemble averages for all eight models (CSIR-ML8), and the solid black line shows metrics for

the ensemble average of the SVR, GBM and FFN (CSIR-ML6) from BIO23 and K21E. The grey-filled area in panel (b) shows the number

of observations per year, and black triangles show the years that are isolated as the test subset. The vertical dashed grey line demarks 1990,

prior to which there is a large positive bias.

Figure 7. Panel (a) shows the biases from the robust test estimates; panel (b) shows the RMSEs for CSIR-ML6. Convolution has been

applied to panels (a) and (b) to make it easier to see the regional nature of the biases and RMSE. Figure S8 shows the bias for every ensemble

member. Black lines show the regions as defined in Fig. 3.

3.2 Robust RMSE, bias and R
iav

Here, we study the change in the bias and RMSE for all se-

lected methods (i.e. K21E, BIO23 and CSIR-ML8; Table 3)

across 1982–2016 (Fig. 6). Most notable is that bias scores

for all models have the same interannual tendencies, with

a positive bias at the beginning of the time series (1982 to

1993) that is strongest before 1990, strongly influencing the

mean bias (Table 4). Secondly, the biases for K21E (solid

lines) are, on average, smaller than for BIO23 (dashed lines),

as shown for the annually averaged results in Table 4 (0.73

and 2.24 µatm, respectively). These biases are larger than

those reported in Table 3 (with averages of absolute biases

of 0.48 and 0.41 µatm for K21E and BIO23, respectively),
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Table 4. The robust estimates of bias, RMSE and Riav from 1982 to

2016 for BIO23, K21E and the ensemble averages, CSIR-ML6 and

CSIR-ML8, where the first excludes the ERT method. Bold values

are significantly lower than the mean for that column (p < 0.05 for

the two-tailed Z test; absolute values are used for the bias column).

See Table S1 for further comparisons between different ensemble

average configurations.

Bias RMSE

Clustering Regression (µatm) (µatm) Riav

CSIR ML6 0.98 17.16 0.20

ML8 1.48 17.25 0.22

K21E SVR 0.58 18.04 0.21

ERT 2.08 18.20 0.27

GBM 0.21 18.05 0.21

FFN 0.04 18.93 0.22

BIO23 SVR 1.76 18.17 0.21

ERT 3.88 19.16 0.32

GBM 1.72 18.59 0.21

FFN 1.60 20.24 0.21

but this is likely since selected test years (black triangles in

Fig. 6b) fall on years of low bias. While FFN has the largest

RMSE (18.93 and 20.24 µatm for K21E and BIO23), it has

a smaller bias compared to other regression methods (0.04

and 1.60 µatm, respectively), motivating including FFN re-

gressions in the ensemble average (Table 4). Conversely, the

ERT approach has a significant positive bias likely due to the

method’s resilience to outliers, where sparse measurements

could be treated as outliers (2.08 and 3.88 µatm for K21E

and BIO23, respectively, with p > 0.95 for both values; Ta-

ble 4; Gregor et al., 2017). A second ensemble average with-

out ERT regressions, thus with six members (CSIR-MLR6

version 2019a; hereafter called CSIR-ML6), has lower biases

compared to CSIR-ML8 (0.98 and 1.48 µatm, respectively;

Table 4).

Similar to the biases, RMSEs for all models (Fig. 6b) have

similar interannual tendencies and variability, with a sharp

peak in the year 2000 (> 20 µatm, where the mean RMSE is

18.61 µatm). The increased RMSE scores are likely due to

the spatial distribution of sampling density (see Fig. S7); e.g.

an increase in sampling in the high latitudes during spring

and summer, a region and period of high variability and bio-

geochemical complexity, would increase the weight of these

data in the final RMSE calculation, thus resulting in larger

RMSE scores. The increase in the number of samples from

2002 to 2016 results in a sharp decrease in RMSE (< 19 µatm

for the majority of this period). Both ensemble averages per-

form slightly better than all other methods for the majority of

the time series with RMSE scores of 17.16 and 17.25 µatm

for CSIR-ML6 and CSIR-ML8, respectively (see Table S1

comparisons of ensemble averages with different members).

The Riav scores for the robust errors (Table 4) are lower

than train-test results with a single split reported in Table 3,

likely due to an increase of standard deviation for the IAV

benchmark (Eq. 5). The lowest score is held by CSIR-ML6

(0.20) and is lower (better) than the average for its members

(0.21). These Riav estimates compare well to the Jena-MLS

and SOM-FFN, which both scored < 0.3 (Rödenbeck et al.,

2015).

The spatial distribution of the bias and RMSE is now stud-

ied for CSIR-ML6 (Fig. 7a and b, respectively), particularly

focusing on the regional patterns emerging from the data.

CSIR-ML6 clearly represents the subtropical regions (NH-

ST and SH-ST) with relatively low biases and RMSE scores

(|bias| < 5 µatm and RMSE < 10 µatm). The equatorial re-

gions (EQU), especially the eastern Pacific, contrasts this

with large uncertainties in both bias and RMSE (> |10 µatm|

and 30 µatm, respectively). The high-latitude oceans (NH-

HL and SH-HL) have considerable uncertainties due to the

large interannual variability of surface ocean pCO2 caused

by the formation and retreat of sea ice (around Antarctica;

Ishii et al., 1998; Bakker et al., 2008) and phytoplankton

spring blooms (Atlantic sector of the Southern Ocean, North

Pacific and Arctic Atlantic; Thomalla et al., 2011; Lenton

et al., 2013; Gregor et al., 2018). There are two bands of

overestimates on the southern and northern boundaries of the

North Atlantic Gyre, where the latter coincides with the Gulf

Stream. Regression approaches may be prone to a positive

bias in the North Atlantic, as this was also shown by Land-

schützer et al. (2013, 2014).

In summary, the robust test estimates show that there is a

positive bias in pCO2 predictions before 1990 for all mod-

els, but it is largest for ERT, and excluding these models

from the ensemble results in better pCO2 predictions. The

spatial evaluation of the performance metrics for CSIR-ML6

shows that regions with specific oceanic features (e.g. west-

ern boundary currents) mostly have positive biases. However,

it is important to note that these uncertainty assessments are

limited as the characteristics and biases of the dataset are in-

trinsic to the models. Validation with independent data is thus

a more reliable estimate of the performance of these methods.

3.3 Validation with independent datasets

Here, we validate the accuracy of pCO2 estimates from

CSIR-ML6 with independent data (that are not in SOCAT

v5, as described in Table 2). To further study the behaviour

of our ensemble average estimates relative to previous stud-

ies, we compare the results from four independent methods

of the SOCOM intercomparison project against the indepen-

dent data calculated over individual data points (Rödenbeck

et al., 2015). Those four independent methods are the Jena

mixed-layer scheme (Jena-MLS version oc_v1.6; Röden-

beck et al., 2014); JMA-MLR, updated on 2 December 2018

(Iida et al. 2015); MPI-SOMFFN v2016 (Landschützer et al.,

2017); and University of East Anglia – Statistical Interpo-
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Figure 8. Taylor diagrams comparing the pCO2 estimates of five gap-filling methods (represented by the different markers) with validation

datasets (Table 2) for the period 1990–2015. Each validation dataset has its own Taylor diagram, as labelled on the bottom axes. The black

marker on the bottom axis in each subplot represents the validation dataset and the black arc shows the standard deviation thereof. The closer

the gap-filling estimates are to this point, the better the model’s performance, in terms of variance, centred RMSE and correlation (for bias

information, see Table 5). The solid grey arcs show the centred RMSE for the datasets (with bias removed). A description of the gap-filling

methods from independent studies is provided in the text (Sect. 3.3).

lation (UEA-SI version 1.0; Jones et al., 2015). pCO2 esti-

mates by the Jena-MLS were resampled to monthly temporal

resolution and interpolated to a 1◦ grid using Python’s xar-

ray package. Note that these datasets will also suffer from

the same temperature biases discussed in Sect. S2.4.

The performance of each gap-filling method is repre-

sented with a Taylor diagram for each independent validation

dataset (Fig. 8; Taylor, 2001). The most important character-

istic learnt from these plots is that the gap-filling methods are

tightly bunched for nearly all validation datasets, indicating

a similar RMSE, correlation and standard deviation relative

to the reference datasets. Poor estimates in Fig. 8a–d may

indicate that the training data for gap-filling methods is the

limiting factor. Secondly, the gap-filling methods almost al-

ways underestimate the standard deviation of the validation

datasets, being below the black arched line for all but the sta-

tion HOT (Fig. 8e).

All methods fail to represent the standard deviation of

the two global validation datasets, LDEO and GLODAP

v2 (Fig. 8a, b), with centred RMSE scores greater than

35 µatm. However, calculating RMSE annually results in

scores of ∼ 27 µatm for LDEO and ∼ 35 µatm for GLODAP

v2, much lower than shown in Fig. 8a–b, due to high RMSE

scores (> 40 µatm) for a small subset of years (Sect. S3.4

and Fig. S7). Estimates of the Southern Ocean datasets

(Fig. 8c, d), SOCCOM and CARIOCA, have lower RMSE

scores (∼ 16 and ∼ 23 µatm, respectively) relative to LDEO

and GLODAP v2. However, for standard deviation scores

of similar magnitude and low correlation coefficients, the

datasets are not well constrained (Table 5). The SOCCOM

dataset also has the largest average absolute bias for esti-

mates, with gap-filling methods underestimated by at least

11 µatm (Table 5). This large bias may be because SOCCOM

floats have a proportionately large number of winter samples

– suggesting that our knowledge of Southern Ocean winter

fluxes is largely underestimated (Williams et al., 2017). In

contrast, all methods estimate the two time series stations,

HOT and BATS (Fig. 8e, f and Table 5), relatively well with

correlation scores > 0.8 and low average bias ∼ 4.5 µatm.

Despite all scores being closely grouped (Fig. 8), Table 5

shows that the CSIR-ML6 method scores significantly lower

RMSE scores (using a two-tailed Z test with p < 0.05) for

all but one of the datasets (SOCCOM). However, bunching of

the RMSE scores (Fig. 8) is beneficial with regard to achiev-
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Table 5. The RMSE and bias for each gap-filling method compared to the validation datasets. For more information on the validation datasets,

see Table 2. The first row of data (count) shows the number of gridded samples in the dataset during the period 1990–2015 (that are not in

the SOCAT v5 gridded product). Values shown in bold are significantly different from the mean for the column (p < 0.05 for the two-tailed

Z test; absolute values are used for the biases). The UEA-SI method does not have error estimates for SOCCOM floats as these two time

series do not overlap.

Metric Method LDEO GLODAP-v2 SOCCOM CARIOCA BATS HOT

Count Count 16 161 5976 1037 613 246 214

RMSE CSIR-ML6 26.55 32.84 23.15 14.26 12.53 8.62

MPI-SOMFFN 27.43 35.96 25.21 15.08 13.39 10.40

JMA-MLR 29.11 34.53 22.32 16.05 14.29 11.64

Jena-MLS 27.61 35.52 26.83 18.24 16.14 12.28

UEA-SI 27.35 35.07 15.73 13.35 18.52

Bias CSIR-ML6 −1.18 8.48 −13.12 4.28 0.32 0.46

MPI-SOMFFN −0.19 9.16 −13.79 4.00 −1.41 −0.12

JMA-MLR −1.86 6.62 −11.25 2.85 −3.98 2.22

Jena-MLS −0.14 8.48 −14.68 7.18 4.09 6.15

UEA-SI −0.71 9.20 0.79 −2.02 16.27

ing low p values. No single method dominates the biases,

with JMA-MLR and MPI-SOMFFN each scoring the lowest

bias on two occasions. To summarise, all gap-filling methods

underperform when validated against independent observa-

tional products. Tight bunching of gap-filling method scores

per validation dataset shows that training data may limit all

methods in the same manner.

3.4 The effect of uncertainties on the sea–air CO2 flux

interannual variability

In this section, we assess the regional implications of

the differences in gap-filling methods’ estimates (within

CSIR-ML6 and the four independent methods described in

Sect. 3.3) of the sea–air CO2 flux (FCO2) over the period

1990 to 2016. FCO2 was calculated using the same gas-

transfer velocity and solubility for each gap-filling method

(Sect. 2.7). Differences in FCO2 are thus driven by varia-

tions in pCO2 from each gap-filling method.

The average FCO2 for 1990–2016 by CSIR-ML6 (Fig. 9a)

contextualises the regional distribution of fluxes: strong out-

gassing in the equatorial Pacific, strong sink in the midlat-

itudes, a moderate uptake for the most part of the subtrop-

ics and weak source in the majority of the Southern Ocean

(in agreement with, e.g. Takahashi et al., 2009). The global

annual time series for FCO2 as simulated by CSIR-ML6

(Fig. 10a) indicates a strengthening for 2000 to 2016 (as for

the other methods). To give spatial context to this strengthen-

ing, we display the differences in FCO2 between 2016 and

2000 (Fig. 9b), since those are the two years where the dif-

ference in global FCO2 is greatest for CSIR-ML6 (Fig. 10a).

Note that Fig. 9b serves as a snapshot for the change in

FCO2 between those two years, whose interpretation can-

not be linked to an overall anthropogenically forced change

as the comparison between the two years could reflect inter-

annual, decadal or multi-decadal variability. The differences

in FCO2 between 2016 and 2000 are negative in the high

latitudes and moderately positive in the subtropics, indicat-

ing a respective increase and decrease in the CO2 ocean up-

take between the two years. The eastern equatorial Pacific is

the only region that shows a considerable increase in FCO2

(> 10 g C m−2 yr−1) between the two specific years.

The annual change in FCO2 is also studied for the

different regions. The Southern Hemisphere high-latitude

(SH-HL) region is the strongest contributor to the trend

(Fig. S10b), where there is a steady increase in the uptake

of CO2 since the 2000s for all methods (Landschützer et al.,

2015; Gregor et al., 2018). On average, the Northern Hemi-

sphere high latitudes (NH-HL) are a weaker sink relative to

the SH-HL, because the SH-HL is more than double the area

of the NH-HL (Fig. S10c). The equatorial (EQU) region is

the only persistent source of CO2 to the atmosphere (also

seen in Fig. 9a). The subtropical regions (Fig. 10c, e) con-

tribute to global flux on similar orders of magnitude; how-

ever, there is a large divergence between gap-filling methods

in the SH-HL.

We use the average interquartile range between the 1-year

rolling mean estimates (IQRIA) as a measure of agreement

or divergence between gap-filling methods, where large val-

ues indicate a divergence (Sect. 2.8.2). We also show the

IQRIA scaled to the range of the regional interannual vari-

ability (max–min) as a percentage (relative IQRIA), which

shows if the trend for a particular region is agreed on by all

methods (the smaller the percentage, the better the agree-

ment across methods). The disagreement between methods

in the SH-ST is substantial (Fig. 10e), with diverging FCO2

throughout the period with an IQRIA of 0.11 Pg C yr−1 and

a large relative IQRIA of 28 %. Similarly, the IQRIA for the
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Figure 9. (a) Average sea–air CO2 fluxes (FCO2) of CSIR-ML6 for 1990 to 2016, where FCO2 is calculated as shown in Eq. (2). Negative

FCO2 (blue) indicates regions of atmospheric CO2 uptake. (b) The differences between FCO2 in 2016 and 2000, which are the minimum

and maximum of global ocean uptake flux (FCO2) estimates, respectively (for CSIR-ML6 in Fig. 10a). Black lines show the regions as

defined in Fig. 3.

SH-HL region (Fig. 10f) is 0.08 Pg C yr−1, but the relative

IQRIA is lower at 14 %, indicating that all methods agree

on the observed strong trend. Compared to the Southern

Hemisphere, the Northern Hemisphere regions are both rel-

atively well constrained, with IQRIA estimates of 0.04 and

0.05 Pg C yr−1 for the NH-ST and NH-HL regions, respec-

tively (Fig. 10c, d). However, a larger relative IQRIA of 20 %

suggests that the interannual FCO2 estimates in the NH-ST

region are potentially not resolving the trend, or more likely

that there is a weak trend with a small difference between

the minimum and maximum interannual estimates of FCO2.

The EQU region (Fig. 10b) has an IQRIA and relative score

at 0.03 Pg C yr−1 and 14 %.

The CSIR-ML8 method is not included in the IQRIA cal-

culations but is included in Fig. 10 to show the impact of

the ERT models’ positive bias in pCO2 on FCO2 (Fig. 6a).

The biases are positive at the beginning and negative end of

the time series, with the average absolute difference between

the CSIR methods being 0.08 Pg C yr−1. The positive biases

have the strongest impact on the SH-ST that occupies 36 %

total area (Fig. S10c), with only 11 % of the total observa-

tions in SOCAT, suggesting that this method is sensitive to

imbalanced datasets.

3.5 Regional disagreement between methods

In order to better understand the regional distribution of the

uncertainties in FCO2, we assess the level of agreement be-

tween independent gap-filling methods in their interannual

surface ocean pCO2 estimates (Fig. 11). We use pCO2 for

this representation as no spatial integration occurs – only

time averaging.

The interannual estimates of IQRIA (Fig. 11a) show the

disagreement between methods is relatively small in the

majority of the ocean (< 6 µatm), with the exceptions be-

ing the Southern Ocean, South Atlantic, southeastern Pacific

and eastern equatorial Pacific with differences of > 10 µatm,

where these regions coincide with regions of low sam-

pling density (Fig. 2). The IQRIA scaled to the maximum–

minimum range of interannual pCO2 suggests that the NH-

ST trend is relatively well constrained (< 10 %), which is in

conflict with the IQRIA for FCO2 in Fig. 10c (where the

relative IQRIA is 20 %). The disagreement may stem from

the magnifying impact that wind speed has on FCO2; i.e.

small differences in pCO2 may become large when fluxes

are calculated. The same principle may apply to the EQU in

Fig. 11b, where relative IQRIA is large (> 10 %) for pCO2,

but low wind speeds result in a low relative IQRIA for FCO2

(7 % in Fig. 10b). The largest relative IQRIA scores occur in

the SH-ST (> 10 % in Fig. 11c) where data are sparse, specif-

ically the South Atlantic and southeastern Pacific (Fig. 2a).

The relative IQRIA scores suggest that the gap-filling meth-

ods agree on pCO2 in the SH-HL east of the Greenwich

meridian (> 0◦ E).

In summary, we show that there is an agreement between

gap-filling methods in the Northern Hemisphere for interan-

nual pCO2, but the methods show considerable disagreement

in the Southern Hemisphere, particularly in the subtropics.

Disagreements in the equatorial and Southern Hemisphere

high-latitude regions are large (> 10 %) and should be treated

with caution when considering trends in these regions.

4 Discussion

4.1 Not all models are equal

In their study, Khatiwala et al. (2013) stated that “our com-

parison of different methods suggests, that multiple ap-

proaches, each with its own strengths and weaknesses, re-

main necessary to quantify the ocean sink of anthropogenic

CO2”. In our study, we embrace this philosophy by creating
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Figure 10. Sea-air CO2 fluxes averaged for regions as shown in Fig. 2: (a) global domain, (b) equatorial regions, (c) Northern Hemi-

sphere subtropical, (d) Northern Hemisphere high latitude, (e) Southern Hemisphere subtropical. (f) Southern Hemisphere high latitude. The

coloured lines show the four SOCOM products. The thick and dotted grey lines show the results for CSIR-ML6 and CSIR-ML8, respec-

tively. A moving average of 12 months has been applied to smooth the data. Note that the y-axis scales differ for the top (a, b). Note that the

uncertainties of each model (e.g. bias and RMSE from Fig. 6) are not shown here. The text at the right of each figure shows the number of

SOCAT v5 gridded data points for each region (n) and the interannual interquartile range (IQRIA).

an ensemble average of two-step machine-learning models

that estimate global surface ocean pCO2. We show robustly

that the CSIR-ML6 method reproduces the available data

with greater accuracy than previous methods, albeit in an in-

cremental way. Our method is methodologically consistent

with regard to feature variables. Though there is variability in

the clustering and regression, we create the ensemble average

with a good understanding of each model’s biases (Figs. 6

and S8). The argument that ensemble averages reduce trans-

parency is also somewhat diminished by the fact that little

additional information that can be gained from highly non-

linear models, with the exception of basic diagnostics such

as feature-variable importance (see Fig. S11) from decision-

tree-based approaches (Pedregosa et al., 2011; Castelvecchi,

2016). Our results thus show that there is, in fact, a bene-

fit in creating an ensemble average of models (Table 5), and

if carefully implemented, it is an additional tool that can be

used to reduce the uncertainties in gap-filling estimates of

pCO2.

It could be argued that an exhaustive search for the op-

timal configuration (Fig. 5) for CSIR-ML6 may result in

poorly trained individual models. However, we think that

the merit of introducing and assessing regression algorithms

new to the application (for gradient-boosting machines and

extremely randomised trees) outweighs the marginal loss

in potential performance for individual methods. Moreover,

lessons learnt from our study can be used to improve on fu-

ture iterations. It also makes the case for ensemble averages

stronger, as the CSIR-ML6 performs well relative to other

gap-filling methods.

In the search for the optimal clustering configuration

(Fig. 5a, b), we show that including EKE (along with SST)
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Figure 11. (a) The magnitude of the interannual disagreement between independent gap-filling methods (IQRIA) as shown in Fig. 10; hence,

low IQRIA indicates good agreement amongst the different methods. (b) Level of agreement on the interannual variability across methods

(in %), more specifically IQRIA scaled by the difference between the maximum and minimum values for interannual pCO2 (the range).

as a clustering feature variable leads to an improvement in

bias and RMSE for nearly all numbers of clusters, albeit

a small improvement. Increased intraseasonal variability of

pCO2 appears to be associated with regions of high EKE

compared to low EKE regions (Monteiro et al., 2015; du

Plessis et al., 2017, 2019). Moreover, the importance of EKE

as a part of the clustering constraints also shows that more

thought should be given to how we sample pCO2 in high-

EKE regions and at what resolution regression methods are

run at.

Our findings suggest the following about the individual re-

gression methods: the SVR and GBM algorithms produce

good estimates with lower RMSE scores and biases, the FFN

approach has larger RMSE scores yet low biases than the

other methods, and the ERT approach has low RMSE scores

but large biases in the estimates (Fig. 6a, b; Table 4). We

do not include the ERT approach in the ensemble average

(CSIR-ML6) due to the large time-evolving biases, suggest-

ing that ERT (with our tuning) is not suitable for estimating

surface ocean pCO2. The bias in ERT may be due to its sensi-

tivity to imbalanced datasets (Crone and Finlay, 2012), where

the data in SOCAT v5 are sparse before 2000. Returning to

the above quote by Khatiwala et al. (2013), we thus find that

the weaknesses of ERT outweigh its strengths.

4.2 Divergent gap-filling estimates

While we see that the improvements in the performance of

gap-filling methods are relatively stagnant (relative to the

training and validation data), the differences between the

methods’ estimates of pCO2 and FCO2 vary significantly in

some regions, particularly in regions where data are sparse,

such as in the Southern Hemisphere oceans (Fig. 2). We also

find that training the gap-filling methods with limited train-

ing data exposes the intrinsic biases of the algorithms, or in

the words of Ritter et al. (2017): “the difference [between

Figure 12. The seasonal cycle reproducibility of CSIR-ML6 pCO2,

which is a correlation of detrended pCO2 with its own climatology

– the larger the correlation, the stronger the reproducibility of the

seasonal cycle (method from Thomalla et al., 2011).

gap-filling methods] is a result of how the spatial and sea-

sonal heterogeneity and the sparseness of the data is dealt

with”. Conversely, as the number of training data increases,

the biases are reduced, and the methods converge.

The Northern Hemisphere subtropical regions are a good

example of a region where the gap-filling methods converge

(Fig. 11b), as also shown by the low RMSE scores and high

correlation for the two mooring stations, HOT and BATS

(Fig. 8e, f). One of the reasons that the methods predict the

variability well in the subtropics (Fig. 8e, f) is that these re-

gions are less biogeochemically complex and driven primar-

ily by seasonal changes in SST (Bates, 2001; Dore et al.,

2009). This strong SST-driven seasonality in the subtropics

is shown by the high seasonal cycle reproducibility (Fig. 12).

The gap-filling methods’ divergences also serve as a met-

ric to inform where there are not enough data to constrain

the pCO2 or FCO2 estimates; i.e. the divergences inform us

where estimates should be treated with caution. The IQRIA,
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Figure 13. 1pCO2 trends (p < 0.05), where 1pCO2 is calculated

as the estimated surface ocean pCO2 from the CSIR-ML6 method

minus atmospheric pCO2 from the CarboScope project (Rödenbeck

et al., 2014). The shaded areas show the regions where IQRIA is

> 15 %, thus indicating regions where trends should be interpreted

with caution.

when scaled to the range of interannual variability (Fig. 11b),

should be taken into account when analysing interannual

trends of 1pCO2 (Fig. 13). For instance, significant trend

estimates in 1pCO2 for CSIR-ML6 (p < 0.05) are nega-

tive for the majority of the global ocean, even in regions

where method estimates are too disparate to resolve inter-

annual variability (relative IQRIA > 15 %; dotted regions in

Fig. 13). However, the relative IQRIA is not without its lim-

its, as there may be regions where methods are in agreement

but share the same biases, thus reporting false confidence in

the estimates. Regions of false confidence would most likely

occur in data-sparse areas but could only truly be identified

with better data coverage in these regions.

4.3 Inching up and over the wall: incremental

improvements

In our study, we show that all gap-filling methods suffer from

the same uncertainties where there are data to test and val-

idate the estimates (Fig. 8), and result in divergences be-

tween estimates when there are insufficient data to constrain

the methods (Fig. 11b). From these points, it may seem that

we may have in fact “hit the wall” in terms of better resolv-

ing surface ocean pCO2. In this section, we discuss how we

might overcome this proverbial wall: first, by addressing the

existing uncertainty and biases, and then discussing how we

could improve on estimates in data-poor regions.

4.3.1 Reducing existing biases

The robust test estimates show that there are regions where

training data are not sparse, yet estimates still suffer from

large uncertainties (e.g. northern and southern boundaries of

the North Atlantic Gyre in Figs. 7a, b and S8). These errors

are spatially consistent with those reported by Landschützer

et al. (2014). Such regional mismatches between gridded ob-

servations and estimates are likely systematic – meaning that

gap-filling methods are not able to resolve the more com-

plex pCO2 variability at current resolutions (monthly × 1◦ or

coarser) or with the current regression feature variables (Gre-

gor et al., 2017; Denvil-Sommer et al., 2018). It may be pos-

sible to reduce these uncertainties with consideration about

the drivers of CO2 in a specific region. Including appropriate

additional feature variables (if available), such as reanalysis

mixed-layer depth products, may improve the uncertainties

of gap-filling methods (Gregor et al., 2017). Similarly, in-

creasing the temporal and spatial resolution may be able to

improve estimates where aliasing occurs in regions of high

dynamic variability such as the midlatitude oceans (Monteiro

et al., 2015). It is worthwhile to note that increasing the reso-

lution may not be the panacea for poor estimates. For exam-

ple, the Jena-MLS method is able to estimate pCO2 with rel-

ative accuracy (Fig. 8) at a low spatial resolution (≈ 4◦ × 5◦;

Rödenbeck et al., 2014); however, with the trade-off in spa-

tial resolution, the method is able to increase the temporal

resolution to daily estimates.

Another source of bias is the mismatch between the tem-

perature at which pCO2 is measured (i.e. at the depth of a

ship’s intake) and the temperature to which pCO2 is pre-

dicted (∼ 1 m in the case of the dOISSTv2 data; Banzon et

al., 2016; Goddijn-Murphy et al., 2015). Goddijn-Murphy et

al. (2015) show that this mismatch is considerable in some

cases (> 5 µatm for large regions, as shown in Fig. S3b).

However, the correction of the intake temperature to the re-

motely sensed surface temperature also makes the assump-

tion that temperature is the only factor that influences pCO2

in the surface layer of the ocean. The correction will thus not

account for other processes such as primary production, strat-

ification and gas exchange within the surface layer. This is an

issue that should be discussed by the community and tested

experimentally to assess the impact that these processes may

have on pCO2.

4.3.2 Improving estimates in data-poor regions

All gap-filling methods suffer from similar biases and un-

certainties (Fig. 8, Table 5) when compared to independent

validation data, yet the same methods show vastly differ-

ent results in data-sparse regions. These shared uncertainties

and regionally consistent divergences between methods are

in agreement with past studies, which find that insufficient

training data are the limiting factor (Rödenbeck et al., 2015;

Landschützer et al., 2016; Ritter et al., 2017; Denvil-Sommer

et al., 2018).

Strides have been made in closing these data-sparse gaps

with the deployment of autonomous sampling platforms. The

SOCCOM project, in particular, has been influential in clos-

ing the gap in the Southern Ocean with the deployment of

∼ 200 pH-capable biogeochemical Argo floats in the region

since 2015 (Williams et al., 2017; Gray et al., 2018). The

data collected by these floats during winter have shown that
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we have previously underestimated winter outgassing of CO2

in the Southern Ocean (Gray et al., 2018). Incorporating

these new estimates into machine-learning estimates should

be a priority for the community as the Southern Ocean plays

an important role in anthropogenic CO2 uptake (Gruber et

al., 2019). Incorporating these data successfully into existing

models may not be straightforward due to the strong tempo-

ral bias of these data toward the end of the time series. For

instance, the inclusion of atmospheric pCO2 could result in

temporally skewed estimates due to the “memory” effect that

including the annually increasing atmospheric pCO2 could

have on estimates.

The complex machine-learning models often used to es-

timate pCO2 are prone to overfitting the data, particularly

in regions where data are sparse. Using less complex mod-

els, e.g. multi-linear regression, in such regions would re-

duce the risk of overfitting the data. A regionally weighted

ensemble approach may be an eloquent way to address this

problem. In regions with sparse data coverage, simpler mod-

els could be favoured, while more complex models could

be weighted more in regions with more data. However, the

user would have to apply a potentially subjective model-

complexity ranking for each approach. This may work well

in the subtropical gyres where pCO2 has a strong sea-

sonal signal driven primarily by temperature (Fig. 12; Taylor,

2001).

One of the weaknesses of our study is that our approach

is similar to other regression methods (e.g. MPI-SOMFFN

by Landschützer et al., 2014, and JMA-MLR and LSCE-

FFNN by Denvil-Sommer et al., 2019) that predict pCO2

based on the instantaneous physical and biological variables

without regard for past states. There is thus a need to ex-

plore methods that incorporate the past state into future state

estimates. This includes assimilative modelling approaches,

such as B-SOSE (biogeochemical Southern Ocean state es-

timate), which would also provide greater understanding of

the driver for changes in surface pCO2 (Verdy and Mazloff,

2017). These methods may be able to provide better con-

straints on pCO2 in data-poor regions. However, these as-

similative models are not yet in a stage to fit the data closely

(Verdy and Mazloff, 2017).

5 Summary

Our study suggests that we may be reaching the limits of gap-

filling methods’ abilities to reduce uncertainties, as shown by

the limited incremental improvement in errors by the ensem-

ble method we compare with established methods. Signifi-

cant uncertainties still prevail across all gap-filling methods,

most likely limited by the extent of basin-scale observational

gaps in the Southern Hemisphere as well as sampling aliases

in mesoscale intensive ocean regions. We propose ways in

which the surface ocean CO2 community can improve es-

timates within the bounds of the current observations and

make recommendations for future observations.

We introduce a new surface ocean pCO2 gap-filling

method that is a machine-learning ensemble average of

six two-step clustering-regression models (CSIR-ML6 ver-

sion 2019a). An exhaustive search process was used to

find the best K-means clustering configuration which was

used alongside the Fay and McKinley (2014) oceanic CO2

biomes. The regression models applied to each clustering

method are support vector regression, feed-forward neural

networks and gradient-boosting machines. We show that the

ensemble average of the six methods marginally outperforms

each of its members, thus promoting the idea that averag-

ing model estimates, each with different strengths and weak-

nesses, result in an improvement in the overall estimates.

The CSIR-ML6 (version 2019a) approach was compared

to validation data alongside four other methods from the SO-

COM intercomparison study (Rödenbeck et al., 2015). Our

new method marginally outperformed the SOCOM methods

when comparing RMSE scores for the validation data but

fared equally on biases. Despite this improvement, all meth-

ods had errors of roughly the same magnitude, suggesting

that the methods resolve pCO2 equally outside the bounds

of the training data.

Closer assessment of the spatial distribution of errors

shows that there is spatial coherence between regression ap-

proaches for the Northern Hemisphere. Some of these errors

coincide with regions of high dynamic variability or complex

biogeochemistry, suggesting that increasing the spatial and

temporal resolution of gap-filling methods could improve es-

timates. Moreover, introducing additional feature variables

for regression, such as eddy kinetic energy, may improve es-

timates in these regions.

A comparison of the distribution of mismatches in pCO2

between gap-filling methods shows that there are regions

(primarily in the Southern Hemisphere) where the compared

methods, as an ensemble, cannot resolve interannual variabil-

ity of pCO2 and as such, trends analyses in those regions

should be interpreted with caution. These large mismatches

likely occur due to amplification of algorithm specific biases

in data-sparse areas. We suggest that an ensemble with data-

density-driven weighting for model complexity could be a

way to reduce potential overfitting in data-sparse regions. We

also urge the community to focus on incorporating new mea-

surements from autonomous platforms such as the pCO2 de-

rived from pH measured by biogeochemical Argo floats and

new platforms such as pCO2-capable Wavegliders.

In closing, we suggest that it is time to consider another

SOCOM-like intercomparison. Several new methods have

been developed since the last intercomparison and the addi-

tion of these would improve the robustness of ensemble av-

erage flux estimates. Further, the authors of the SOCOM in-

tercomparison suggest that a future intercomparison should

include a comparison of methods using simulated data, a
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method to overcome the limitation of the lack of data to test

the estimates.
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