
Journal of Computer Science 2 (4): 322-325, 2006

ISSN 1549-3636

© 2005 Science Publications

Corresponding Author: Bounour Nora, Laboratory of Computer Science (LRI), Department of Computer Science, University

Badji Mokhtar, B.P. 12 Annaba (23000), Algeria, Fax: (213) 38 87 24 36.

322

A Comparative Classification of Aspect Mining Approaches

1
Bounour Nora,

2
Ghoul Said and

3
Atil Fadila

1,3
Laboratory of computer science (LRI), Department of computer science, University Badji Mokhtar

B.P. 12 Annaba (23000), Algeria
2
Institute of computer science, University of Philadelphia, Jordan

Abstract: In object oriented paradigm, the implementation of a concern is typically scattered over

many locations and tangled with the implementation of other concerns, resulting in a system that is

hard to explore and understand. Identifying such code automatically greatly improves both the

maintainability and the evolveability of the application. Aspect mining aims to identify crosscutting

concerns in existing systems, thereby improving the system’s comprehensibility and enabling migration

of existing (object-oriented) programs to aspect-oriented ones. Aspect are mined either by use of static

information or dynamic information of the code. The purpose of this article is to present a survey of the

current techniques of aspect mining. We seek to understand both the strengths and limitations of this

new area.

Key words: Aspect oriented programming, aspect mining, crosscutting concern, program analysis,

reverse engineering.

INTRODUCTION

 The tyranny of the dominant decomposition

[1]

states that no matter how well a system is decomposed
into modular units like functions and classes, some
functionality will always cut across that modularity.
This kind of functionalities are called crosscutting
concerns because they involve more than one
decomposition unit. Examples of crosscutting concerns
are persistence, synchronization, exception handling,
error management and logging. Crosscutting concerns
are a relevant source of problems to program
comprehension and software maintenance. In fact, it is
very difficult to evolve a crosscutting concern, because
its code is affected by scattering. Each modification of
crosscutting concern requires the localization of all the
code portions pertaining to it. Generally, crosscutting
concerns code is mixed and confused with the rest of
the code in each unit. This problem is known as
tangling. Figure 1 illustrates a crosscutting concern
tangled in a class. This code mixes business logic with
logging.

import java.lang.reflect.*;

public class ShoppingCart { private List items = new Vector();

public void addItem(Item item) {

System.out.println("Log:"+this.getClass().getName());

items.add(item);

}public void removeItem(Item item) {

System.out.println("Log:"+this.getClass().getName());

items.remove(item);

}public void empty() {

System.out.println("Log:"+this.getClass().getName());

items.clear();

}}

Fig. 1: Logging concern tangled in the shoppingcart class

 Code scattering and code tangling are problems

that affect applications in a systematic way. The

identification of scattered and tangled code that

implements concerns is known as aspect mining.

Aspect mining is defined as a specialized reverse

engineering process
[2]

, which aim at investigate legacy

systems (source code) in order to discover which parts

of the system can be a crosscutting concern. This

knowledge can be used for several goals, including
refactoring the system into an aspect-oriented one

[3]
. In

Aspect Oriented Programming (AOP), crosscutting
concerns are captured via special classes called
aspects

[4]
. Aspects are defined by aspect declarations

[5]
,

which may include pointcut declarations, advice

declarations, as well as other declarations such as
method declarations that are permitted in class

declarations. We illustrate in Figure 2 the logging

aspect extracted from the code of shoppingcart class.

public aspect LoggingAspect {

pointcut loggedMethods(ShoppingCart

shoppingcart):this(shoppingcart)

&& (execution(void ShoppingCart.*(..)));

before(ShoppingCart shoppingcart): loggedMethods(shoppingcart) {

System.out.println("Log:"+

 shoppingcart.getClass().getName());

}}

Fig. 2: Logging aspect

Types of crosscutting concerns

Table1: Concern symptoms

Type Symptoms Homogenous Heterogeneous

Scattering X X

Code duplication X

J. Computer Sci., 2 (4): 322-325, 2006

 323

 We can distinguish between two types of

crosscutting concerns
[6]

. Homogeneous concerns

implement the same behavior repeatedly at different

locations in a system (table1), whereas heterogeneous

concerns implement different behavior, related to the

same functionality, at such locations.

 Techniques used for aspect mining vary mainly in

the kind of concern’s symptoms they explore and in the

kind of analysis they perform on a legacy system
[7]

. We

distinguish approaches which use the code duplication

as the principal symptom of the existence of an aspect;

and others which use the scattering.

Approaches based on code duplication: This class of

approaches attempt at finding duplicated code. They are

based on a static analysis of the code to mine.

Aspect mining using clone detection techniques:

Finding crosscutting concerns require specialized types

of clone detection.

Token-based clone detection: They apply lexical

analysis (tokenization) to the source code and

subsequently uses tokens as a basis for clone detection.

Lexical analysis is usually initiated by the user

specifying a seed of information (either a regular

expression or a string). Lexical search simply searches

for duplicates of the seed.

 The first lexical tool developed is Aspect

Browser
[8]

. It is a programming environment that

provides text-based mining. A developer specifies a

regular expression that describes the code belonging to

the aspect of interest and a color. The programming

environment then identifies the code conforming to the

regular expression and highlights it using the associated

color in the source code editor. The Aspect Mining

Tool
[9]

 is an extension of the Aspect Browser that

introduces a combination of text-based and type-based

mining. Type-based mining considers the usage of

types within an application to identify crosscutting

code. The tool allows user defined queries based on

type usage and regular expressions, displaying

matching lines in specific colors. If a line matches more

than one criterion, it will be separated into two or more

differently colored parts.

 The Prism tool
[10]

 in its turn extends the Aspect

Mining Tool and additionally provides a type ranking.

The type ranking feature is based on the assumption

that types that are used widely in the application are a

good sign of crosscutting code. Therefore, the tool

ranks the types in the system according to their use.

The main downfall of lexical searches is that requires

the user to have an in-depth understanding of the base

code because:

∗ Τhey are dependent on the coding practices of the

programmer, such as variable or method naming

conventions, which are hard to guarantee,

especially in a legacy system.

∗ Τhe user must input a seed. The formulation of a

seed that will return meaningful results on a lexical

search is a non-trivial task

Other clone detection approaches: These approaches

do not require some form of input (a seed) by the

developer. They are able to identify aspects without

human intervention.

 Shepherd use a PDG clone detection

technique
[11]

.This approach uses program dependence

graph (PDG) which contain information of semantical

nature, such as control and data flow of the program.

 Bruntink suggest an hybrid technique, which

combine AST based clone detection with clone

detection tool based on tokenized representations of

source code
[12]

. This technique uses parsers to obtain a

syntactical representation of the source code, typically

an abstract syntax tree (AST). The clone detection

algorithm then search for similar sub trees in this AST.

For further amelioration, Bruntink propose metrics-

based clone detection approach
[13]

.

Although, these approaches suffer from some

limitation:

* Only homogenous concerns can be identified.

* The identification analysis can miss desirable

aspects.

* The filtering of potential candidate’s aspect is not

fully automatic. Only simple aspects can be

identified automatically.

Aspect Mining using formal concept Analysis:

Formal concept analysis (FCA) is used to identify

meaningful groupings of elements that have common

properties. The FCA algorithm takes as input a relation,

or Boolean table, T between a set of elements and a set

of properties of those elements. The FCA algorithm

determines maximal groups of elements and properties,

called concepts, such that:

* Each element of the group shares the properties,

* Every property of the group holds for all of its

elements,

* No other element outside the group has those same

properties,

* No other property outside the group holds for all

elements in the group.

 All concepts are ordered into a concept lattice. The

lattice’s bottom concept contains those elements that

have all properties. Similarly, the top concept contains

those properties that hold for all elements. The concept

lattice can be represented by a graph, in which nodes

are the concepts and edges represent the sub-concept

relations.

 When applying FCA for mining source code, first

the elements and properties to compute the concept

lattice must be chosen.

J. Computer Sci., 2 (4): 322-325, 2006

 324

 Tonella and Ceccato
[14]

 apply formal concept

analysis to execution trace. The approach used an

instrumented version of the system to execute a number

of use cases. The output of this execution is a number

of execution traces. These traces are then analysed

using FCA algorithm. The use cases are the objects of

the FCA algorithm, while the methods which get

invoked during the execution of a use case are the

attributes. The resulting concepts are candidates aspect,

if the following two constraints hold:

* The attributes of the concept belong to more than

one class.

* Different methods from a same class are contained

by more than a use case.

 Although, Tourwé et al.
[15,16]

 assume that

interesting concerns in the source code are reflected by

the use of naming conventions in the classes and

methods in the system. So, they apply FCA by using the

classes and methods in the code as objects. Substring

generated from the program entities are used as

attributes. The resulting concepts consist out of

maximal group of program entities which share a

maximal number of substring.

 When computing the lattice, lots of concepts are

produced, many of which are irrelevant or redundant.

Therefore, the discovered concepts must be filtered and

classified. The most difficult task is that of deciding

manually whether a concept identifies a valid aspect.

Approaches based on scattering

Fan-in analysis: Fan-in analysis mined source code to

find symptoms of code scattering. In this case, concerns

present themselves as a number of distributed calls to a

method implementing a crosscutting functionality. So,

the amount of calls (fan-in) is a good measure for the

importance and scattering of the discovered concern.

Typical examples of concerns include logging, tracing,

pre- and post-condition checks and exception handling.

The fan-in analysis consists of three steps
[17]

:

a. Automatic computation of the fan-in metric for all

methods in the investigated system.

b. Filtering of the results from the previous step by

* Eliminating all methods with fan-in values below a

chosen threshold (in the experiment, we used a

threshold of 10);

* Eliminating the accessor methods (methods whose

signature matches a get*/set* pattern and whose

implementation only returns or sets a reference);

* Eliminating utility methods, like toString() and

collection manipulation methods, from the

remaining subset.

 Manuel analysis of the methods in the resulting,

filtered set.

Analysis of recurring patterns of execution traces:

This approach is based on dynamic analyzes of the code

source to identify aspects
[18]

. To this extent, program

traces are generated automatically. Then, the traces are

analyzed in search of recurring execution patterns. The

idea is to detect particular patterns occurring in the

trace, such as a call to a particular method a that is

always followed by a call to a method b, or a call to a

particular method c that always occurs inside a call to a

method d. Such patterns could point to

before/after/around advice of aspects.

Exploratory techniques: Exploratory tools allow a

programmer to navigate more intelligently around code.

FEAT
[19]

 and JQuery
[20]

 are developed for aspect

exploration. Both those tools incorporate semantic

information (control flow) to navigate in the source

code. They focus on providing intelligent exploratory

capabilities, with the user controlling much of the

function, in order to discover aspects.

 This approach puts a heavy burden on the user. It

suffers from the following drawbacks:

User must have a considerable amount of knowledge

about the overall structure and function of the program

being analyzed.

 Require a lot of time to identify an aspect due to

the required interaction with the user.

CONCLUSION

 In this study, we have presented an overview of

aspect mining techniques. As a basis of classifying

aspect mining techniques, we have used the concern’s

symptom. Approaches are based on scattering or on

code duplication. To discover crosscutting concerns

implemented by code duplication a number of tools was

developed, which are mainly based on static analysis

(Table 2). Some tools require some form of input (seed

of information) by the user
[8-10]

. More advanced tools,

which are able to identify aspects without human

intervention, are based on clone detection

techniques
[12,11,21]

. Other tools, use formal concept

analysis
[14-16]

. Scattering was a symptom used by other

approaches, such as for localizing the recurrent pattern

scattered in the code
[18,22]

. Also, to calculate a set of

candidate crosscutting concerns characterized by

distributed calls
[17]

.

 Aspect mining tools remain limited, because the

step of filtering the set of candidates aspects is usually

manual. Hybrid approach would be considered to

optimize the set of candidate aspect. Full automation of

aspect mining process remains a lofty goal.

J. Computer Sci., 2 (4): 322-325, 2006

 325

Table 2: Aspect mining tools

 Code duplication based on Approaches

Tool Analysis type Aspect mining result

Aspect browser[8] AMT[9] Prism[10] Lexical Lexical+Type Lexical+Type Highlighted code

Ophir[11] PDG-clone detection List of candidate aspects Manually inspected

Delfstof[16] FCA-analysis List of candidate aspects Exploratory inspected

Dynamo[14] FCA analysis of execution traces List of candidate aspects Manually inspected

Scattering based approaches

Tool Analysis type Aspect mining result

Dynamit[18] Dynamic analysis of execution traces List of candidate aspects

Exploratory approaches

Tool Analysis type Aspect mining result

Jquery[19] Feat[20] Sextant[13] Semantic analysis Intelligent Exploration

REFERENCES

1. Peri, T., H. Ossher, W. Harrison and Jr. S.M.

Sutton, 1999. N degrees of separation: Multi-

dimensional separation of concerns. In Proc. 21st

Intl. Conf. Software Engg., IEEE Computer Society

Press, pp: 107-119.
2. Neil, L. and A, Rashid, 2002. Mining aspects.

Workshop on early aspects: Aspect-oriented
requirements engineering and Architecture Design.
Enschede, The Netherlands.

3. Arie, v.D., M. Marin and L. Moonen, 2003. Aspect
mining and refactoring. In First Intl. Workshop on
REFactoring: Achievements, Challenges, Effects
(REFACE).

4. Kiczales, G., 1997. Aspect-oriented programming.
Proc. European Conf. on object-oriented
Programming (ECOOP), Finland. Springer-Verlag
LNCS 1241.

5. The AspectJ Team, 2001. The Aspect
Programming Guide.

6. Tzilla, E., M. Aksit, G. Kiczales, K. Lieberherr and
H. Ossher, 2001. Discussing Aspects of AOP.
Communications of the ACM, 44: 33-38.

7. Bounour, N. and S. Ghoul, 2005. A survey of
aspect mining techniques. Congrès International en
informatique appliquée-CIIA05- BBA Algérie, pp:
241-246.

8. William, G.G., Y. Kato and J.J. Yuan, 1999.
Aspect browser: Tool support for Managing
Dispersed Aspects. Technical Report CS99-0640,
Department of computer Science and Engineering,
University of California, San Diego.

9. Jan, H. and G. Kiczales, 2001. Overcoming the
prevalent decomposition in legacy code. In Proc.
ICSE Workshop on Advanced Separation of
Concerns, Toronto, Canada.

10. Zhang, C. and H.-A. Jacobsen, 2003. A Prism for
Research in Software Modularization through
Aspect Mining. Technical report, Middleware
Systems Research Group, University of Toronto.

11. David, S., E. Gibson and L. Pollock, 2004.
Automated mining of desirable aspects. Technical
Report 4, Department of Computer and Information
Sciences, University of Delaware, Newark, DE
19716.

12. Magiel, B., A.v. Deursen, R.v. Engelen and T.

Tourw´e, 2004. An evaluation of clone detection

techniques for identifying crosscutting concerns. In

Proc. Intl. Conf. Software Maintenance (ICSM).

IEEE Computer Society.

13. Michael, E., M. Haupt, M. Mezini, T. Schafer, S.

Djukanovic and M. Vekic, 2005. Graph-based

software navigation with SEXTANT. Submitted for

publication.

14. Paolo, T. and M. Ceccato, 2004. Aspect mining

through the formal concept analysis of execution

traces. In Proceedings of the 11th Working

Conference on Reverse Engineering, IEEE

Computer Society, pp: 112-121.

15. Tom, T. and K. Mens, 2004. Mining aspectual

views using formal concept analysis. In 4th IEEE

Intl. Workshop on Source Code Analysis and

Manipulation, pp: 97-106.

16. Mens, K. and T. Tourwé, 2005. Delving source-

code with formal concept analysis. Elsevier J.

Computer Languages, Systems & Structures. To be

published.

17. Marius, M., A.v. Deursen and L. Moonen, 2004.

Identifying aspects using fan-in analysis. In Proc.

11th Working Conf. Reverse Engineering, IEEE

Computer Society.

18. Silvia, B. and J. Krinke, 2003. Aspect mining using

dynamic analysis. In GI-Software technik-Trends,

Mitteilungen der Gesellschaft f¨ur Informatik. Bad

Honnef, Germany, 23: 21-22.

19. Robillard, M.P. and G.C. Murphy, 2002. Concern

graphs: Finding and describing concerns using

structural program dependencies. In ICSE.

20. De Volder, K., 2002. The jquery tool: A generic

query-based code browser for eclipse. Presentation

at Eclipse. BoF at OOPSLA 2002.

21. Bruntink, M., 2004. Aspect mining using clone

class metrics. In 1st Workshop on Aspect Reverse

Engineering.

22. Jens, K. and S. Breu, 2004. Control-flow-graph-

based aspect mining. In Workshop on Aspect

Reverse Engineering.

