
A Comparative Encyclopedia of DNA Elements in 

the Mouse Genome

Citation
Yue, F., Y. Cheng, A. Breschi, J. Vierstra, W. Wu, T. Ryba, R. Sandstrom, et al. 2014. “A 
Comparative Encyclopedia of DNA Elements in the Mouse Genome.” Nature 515 (7527): 355-364. 
doi:10.1038/nature13992. http://dx.doi.org/10.1038/nature13992.

Published Version
doi:10.1038/nature13992

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:16121018

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:16121018
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Comparative%20Encyclopedia%20of%20DNA%20Elements%20in%20the%20Mouse%20Genome&community=1/4454685&collection=1/4454686&owningCollection1/4454686&harvardAuthors=133b70d3feec98e9fa8345924c2bfe72&department
https://dash.harvard.edu/pages/accessibility


A Comparative Encyclopedia of DNA Elements in the Mouse 

Genome

A full list of authors and affiliations appears at the end of the article.

Summary

As the premier model organism in biomedical research, the laboratory mouse shares the majority 

of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain 

greater insights into both shared and species-specific transcriptional and cellular regulatory 

programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I 

hypersensitivity, transcription factor binding, chromatin modifications, and replication domains 

throughout the mouse genome in diverse cell and tissue types. By comparing with the human 

genome, we not only confirm substantial conservation in the newly annotated potential functional 

sequences, but also find a large degree of divergence of other sequences involved in 

transcriptional regulation, chromatin state and higher order chromatin organization. Our results 

illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and 

provide a general resource for research into mammalian biology and mechanisms of human 

diseases.

Introduction

Despite the widespread use of mouse models in biomedical research1, the genetic and 

genomic differences between mice and humans remain to be fully characterized. At the 

sequence level, the two species have diverged substantially: approximately one half of 
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human genomic DNA can be aligned to mouse genomic DNA, and only a small fraction (3–

8%) is estimated to be under purifying selection across mammals 2. At the cellular level, a 

systematic comparison is still lacking. Recent studies have revealed divergent DNA binding 

patterns for a limited number of transcription factors across multiple related 

mammals 3–6, 7,8, suggesting potentially wide-ranging differences in cellular functions and 

regulatory mechanisms9,10. To fully understand how DNA sequences contribute to the 

unique molecular and cellular traits in mouse, it is crucial to have a comprehensive catalog 

of the genes and non-coding functional sequences in the mouse genome.

Advances in DNA sequencing technologies have led to the development of RNA-seq, 

DNase-seq, ChIP-seq, and other methods that allow rapid and genome-wide analysis of 

transcription, replication, chromatin accessibility, chromatin modifications, and transcription 

factor binding in cells 11. Using these large-scale approaches, the ENCODE consortium has 

produced a catalog of potential functional elements in the human genome 12. Notably, 62% 

of the human genome is transcribed in one or more cell types 13, and 20% of human DNA is 

associated with biochemical signatures typical of functional elements including transcription 

factor binding, chromatin modification, and DNase hypersensitivity. The results support the 

notion that nucleotides outside the mammalian-conserved genomic regions could contribute 

to species-specific traits 6,12,14.

We have applied the same high throughput approaches to over 100 mouse cell types and 

tissues 15, producing a coordinated group of datasets for annotating the mouse genome. 

Integrative analyses of these datasets uncovered widespread transcriptional activities, 

dynamic gene expression and chromatin modification patterns, abundant cis regulatory 

elements, and remarkably stable chromosome domains in the mouse genome. The 

generation of these datasets also allowed an unprecedented level of comparison of genomic 

features of mouse and human. Described in the current manuscript and companion works, 

these comparisons revealed both conserved sequence features and widespread divergence in 

transcription and regulation. Some of the key findings are:

• Although much conservation exists, the expression profiles of many mouse genes 

involved in distinct biological pathways show considerable divergence from their 

human orthologs.

• A large portion of the cis-regulatory landscape has diverged between mouse and 

human, though the magnitude of regulatory DNA divergence varies widely 

between different classes of elements active in different tissue contexts.

• Mouse and human transcription factor networks are substantially more conserved 

than cis-regulatory DNA.

• Species-specific candidate regulatory sequences are significantly enriched for 

particular classes of repetitive DNA elements.

• Chromatin state landscape in a cell lineage is relatively stable in both human and 

mouse.

• Chromatin domains, interrogated through genome-wide analysis of DNA 

replication timing, are developmentally stable and evolutionarily conserved.
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Results

Overview of data production and initial processing

To annotate potential functional sequences in the mouse genome, we used ChIP-seq, RNA-

seq and DNase-seq to profile transcription factor binding, chromatin modification, 

transcriptome and chromatin accessibility in a collection of 123 mouse cell types and 

primary tissues (Fig. 1a, Supplementary Table 1–3). Additionally, to interrogate large-scale 

chromatin organization across different cell types, we also utilized a microarray-based 

technique to generate replication-timing profiles in 18 mouse tissues and cell types 

(Supplementary Table 3) 16. Altogether, we produced over 1000 datasets. The list of the 

datasets and all the supporting material for this manuscript are also available at website 

http://mouseencode.org. Below we briefly outline the experimental approach and initial data 

processing for each class of sequence features.

RNA transcriptome—To comprehensively identify the genic regions that produce 

transcripts in the mouse genome, we performed RNA-seq experiments in 69 different mouse 

tissues and cell types with two biological replicates each (Supplementary Table 3, 

Supplemental Materials) and uncovered 436,410 contigs (Supplementary Table 4). 

Confirming previous reports 1317,18 and similar to the human genome, the mouse genome is 

pervasively transcribed (Fig. 1b), with 46% capable of producing polyadenylated messenger 

RNAs (mRNA). By comparison, 39% of the human genome is devoted to making mRNAs. 

In both species, the vast majority (87–93%) of exonic nucleotides were detected as 

transcribed, confirming the sensitivity of the approach. However, a higher percentage of 

intronic sequences were detected as transcribed in the mouse, and this might be due to a 

greater sequencing depth and broader spectrum of biological samples analyzed in mouse 

(Fig. 1b).

Candidate cis regulatory sequences—To identify potential cis regulatory regions in 

the mouse genome, we utilized three complementary approaches that involved mapping of 

chromatin accessibility, specific transcription factor (TF) occupancy sites and histone 

modification patterns. All of these approaches have previously been shown to uncover cis 

regulatory elements with high accuracy and sensitivity 19,20.

By mapping DNase I hypersensitive sites (DHSs) in 55 mouse cell and tissues types 21, we 

identified a combined total of ~1.5 million distinct DHSs at a false discovery rate (FDR) of 

1% (Supplementary Table 5) (Vierstra et al. in press). Genomic footprinting analysis in a 

subset (25) of these cell types further delineated 8.9 million distinct TF footprints. De novo 

derivation of a cis-regulatory lexicon from mouse TF footprints revealed a recognition 

repertoire nearly identical with that of the human, including both known and novel 

recognition motifs.

We used ChIP-seq to determine the binding sites for a total of 37 TFs in various subsets of 

33 cell/tissue types. Of these 37 TFs, 24 were also extensively mapped in the murine and 

human erythroid cell models (MEL and K562) and B-lymphoid cell lines (CH12 and 

GM12878) (Cite: Cheng et al. in press). In total we defined 2,107,950 discrete ChIP-seq 
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peaks, representing differential cell/tissue occupancy patterns of 280,396 distinct TF binding 

sites (supplemental methods) (Supplementary Table 6).

We also performed ChIP-seq for as many as nine histone H3 modifications (H3K4me1, 

H3K4me2, H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, and 

H3K79me3) in up to 23 mouse tissues and cell types per mark. We applied a supervised 

machine learning technique, Random Forest based Enhancer prediction from Chromatin 

State (RFECS), to three histone modifications (H3K4me1, H3K4me3 and H3K27ac) 22, 

identifying a total of 291,200 candidate enhancers and 82,853 candidate promoters in the 

mouse genome (Supplementary Table 7 and 8). To functionally validate the predictions, we 

randomly selected 76 candidate promoter elements (avg. size 1000bp) and 183 candidate 

enhancer elements (avg. size 1000 bp), cloned these previously unannotated sequences into 

reporter constructs, and performed luciferase reporter assays via transient transfection in 

pertinent mouse cell lines (See supplemental methods, Supplementary Table 9 and 10). 

Overall, 66/76 (87%) candidate promoters and 129/183 (70.5%) candidate enhancers 

showed significant activity in these assays compared to 2/30 randomly selected negative 

controls (Supplementary Fig. 1c).

Collectively, our studies assigned potential regulatory function to 12.6% of the mouse 

genome (Fig. 1c).

Transcription factor networks—We explored the TF networks and combinatorial TF 

binding patterns in the mouse samples in two companion papers, and compared these 

networks to regulatory circuitry models generated for the human genome (Cheng et al. and 

Stergachis et al. in press). From genomic footprints, we constructed TF-to-TF cross-

regulatory network in each of 25 cell/tissue types for a total of ~500 TFs with known 

recognition sequences. Analyses of these networks revealed regulatory relationships 

between transcription factor genes that are strongly preserved in human and mouse, in spite 

of the extensive plasticity of the cis-regulatory landscape (detailed below). Whereas only 

22% of TF footprints are conserved, nearly 50% of cross-regulatory connections between 

mouse TFs are conserved in human through the innovation of novel binding sites. Moreover, 

analysis of network motifs shows that larger-scale architectural features of mouse and 

human TF networks are strikingly similar (Stergachis et al. in press).

Chromatin states—We produced integrative maps of chromatin states in 15 mouse tissue 

and cell types and six human cell lines (Supplementary Table 11) using a hidden Markov 

model (chromHMM) 23,24, which allowed us to segment the genome in each cell type into 

seven distinct combination of chromatin modification marks (or chromatin states). One state 

is characterized by the absence of any chromatin marks, while every other state features 

either predominantly one modification or a combination of two to three modifications 

(Extended Data Table 1, Supplementary materials). The portion of the genome in each 

chromatin state varied with cell type (Fig. 1d, Supplementary Fig. 2). Similar proportions of 

the genome are found in the active states in each cell type, for both mouse and human. 

Interestingly, the fraction of each genome that is in the H3K27me3-dominated, 

transcriptional repressed state is most variable, suggesting a profound role of transcriptional 

repression in shaping the cis regulatory landscape during mammalian development.
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Replication domains (RDs)—Replication-timing, the temporal order in which 

megabase-sized genomic regions replicate during S-phase, is linked to the spatial 

organization of chromatin in the nucleus 25–28, serving as a useful proxy for tracking 

differences in genome architecture between cell types 29,30. Since different types of 

chromatin are assembled at different times during the S phase 31, changes in replication 

timing during differentiation could elicit changes in chromatin structure across large 

domains. We obtained 36 mouse and 31 human replication-timing profiles covering 11 and 

9 distinct stages of development, respectively (Supplementary Table 12). We defined 

“replication boundaries” as the sites where replication profiles change slope from 

synchronously replicating segments (discussed later). A total of 64,535 and 50,194 

boundaries identified across all mouse and human datasets, respectively, were mapped to 

4,322 and 4,675 positions, with each cell type displaying replication-timing transitions at 

50–80% of these positions (Fig. 1e).

Annotation of orthologous protein coding and non-coding genes in the human and mouse 

genomes

To facilitate a systematic comparison of the transcriptome, cis regulatory elements and 

chromatin landscape between the human and mouse genomes, we built a high-quality set of 

human-mouse orthologs of protein coding and non-coding genes 32. The list of protein-

coding orthologs, based on phylogenetic reconstruction, contains a total of 15,736 1:1 and a 

smaller set of 1:many and many:many ortholog pairs (Supplementary Table 13, 14, 15). We 

also inferred orthologous relationships among short ncRNA genes using a similar 

phylogenetic approach. We established 1:1 human-mouse orthologues for 151,257 internal 

exon pairs (Supplementary Table 16) and 204,887 intron pairs (Supplementary Table 17), 

and predicted 2,717 (3,446) novel human (respectively, mouse) exons (Supplementary Table 

18). Additionally, we mapped the 17,547 human long non-coding RNA (lncRNA) 

transcripts annotated in Gencode v10 onto the mouse genome. We found 2,327 (13.26%) 

human lncRNA transcripts (corresponding to 1,679, or 15.48% of the lncRNA genes) 

homologous to 5,067 putative mouse transcripts (corresponding to 3,887 putative genes) 

(Supplementary Fig. 3, Supplementary Table 19). Consistent with previous observations, 

only a small fraction of lncRNAs are constrained at the primary sequence level, with rapid 

evolutionary turnover33. Other comparisons of human and mouse transcriptomes covering 

areas including pre-mRNA splicing, antisense, and intergenic RNA transcription are detailed 

in a companion paper (Pervouchine et al., submitted).

Divergent and conserved gene expression patterns in human and mouse cells

Previous studies have revealed dramatic examples of species-specific gene expression 

patterns that underlie phenotypic changes during evolution 34–38. In these cases changes in 

expression of a single gene between closely related species led to adaptive changes. 

However, it is not clear how extensive the changes in expression patterns are between more 

distantly related species, such as mouse and human, with some studies emphasizing 

similarities in transcriptome patterns of orthologous tissues 39–41 and others emphasizing 

substantial interspecies differences 42. Our initial analyses revealed that gene expression 

patterns tended to cluster more by species rather than by tissue (Fig. 2a). To resolve the sets 

of genes contributing to different components in the clustering, we employed variance 
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decomposition (see Methods) to estimate, for each orthologous human-mouse gene pair, the 

proportion of the variance in expression that is contributed by tissue and by species (Fig. 

2b). This analysis revealed the sets of genes whose expression varies more across tissues 

than between species, and those whose expression varies more between species than across 

tissues. As expected, the clustering of the RNA-seq samples is dominated either by species 

or tissues, depending on the gene set employed (Extended Data Fig. 1a, 1b). Furthermore, 

removal of the ~4800 genes that drive the species-specific clustering (see Shin et al., in 

press, Fig. S1D therein) or normalization methods that reduce the species effects reveals 

tissue specific patterns of expression in the same samples (Extended Data Fig. 1c). 

Categorizing orthologous gene pairs into these groups should enable more informative 

translation of research results between mouse and human. In particular, for gene pairs whose 

variance in expression is largest between tissues (and less between species), mouse should 

be a particularly informative model for human biology. In contrast, interpretation of studies 

involving genes whose variance in expression is larger between species needs to take into 

account the species variation. The relative contributions of species-specific and tissue-

specific factors to each gene’s expression are further explored in two companion papers (Lin 

et al., in press, Pervouchine et al. submitted).

To further identify genes with conserved expression patterns and those that have diverged 

between humans and mice, we developed a novel method, referred to as Neighborhood 

Analysis of Conserved Co-expression (NACC), to compare the transcriptional programs of 

orthologous genes in a way that did not require precisely matched cell lines, tissues, or 

developmental stages, as long as a sufficiently diverse panel of samples is used in each 

species (Supplemental Methods). Observing that the orthologs of most sets of co-expressed 

genes in one species remained significantly correlated across samples in the other species, 

we use the mean of these small correlated sets of orthologous genes as a reference 

expression pattern in the other species. We compute Euclidean distance to the reference 

pattern in the multi-dimensional tissue/gene expression space as a relative measure of 

conservation of expression of each gene. Specifically, for each human gene (the test gene), 

we defined the most similarly expressed set of genes (N=20) across all the human samples 

as that gene’s co-expression neighborhood. We then quantify the average distance between 

the transcript levels of the mouse ortholog of the test gene and the transcript levels of each 

mouse ortholog of the neighborhood genes across the mouse samples. We then invert the 

analysis, and choose a mouse test gene and define a similar gene co-expression 

neighborhood in the mouse samples, and calculate the average distance between the 

expression of orthologs of the test gene and expression of neighborhood genes across the 

human samples. The average change in the human to mouse and mouse to human distances, 

referred herein as a NACC score, is a symmetric measure of the degree of conservation of 

co-expression for each gene. The distribution of this quantity for each gene is shown in Fig. 

2c, showing that genes in one species show a strong tendency to be co-expressed with 

orthologs of similarly expressed genes in the other species compared to random genes (also 

see Supplemental Materials). We quantify the degree to which a specific biological process 

diverges between human and mouse as the average NACC scores of genes in each GO 

category by calculating a z-score using random sampling of equal size sets of genes. Fig. 2d 

shows that genes coding for proteins in the nuclear and intracellular organelle 
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compartments, and involved in RNA processing, nucleic acid metabolic processes, 

chromatin organization and other intracellular metabolic processes tend to exhibit more 

similar gene expression patterns between human and mouse, and genes involved in 

extracellular matrix, cellular adhesion, signaling receptors, immune responses and other cell 

membrane related processes are more diverged (for a complete list of all GO categories and 

conservation analysis, see Supplementary Table 21). As a control, when we applied the 

NACC analysis to two different replicates of RNA-seq datasets from the same species, no 

difference in biological processes can be detected (Supplementary Fig. 5).

Several lines of evidence indicate that NACC is a sensitive and robust method to detect 

conserved as well as diverged gene expression patterns from a panel of imperfectly matched 

tissue samples. First, when we applied NACC to a set of simulated datasets, we found that 

NACC is robust for the diversity and conservation of the mouse-human sample panel (in 

Supplementary Fig. 6). Second, we randomly sampled subsets of the full panel of samples 

and demonstrated that the categories of human-mouse divergence shown in Fig 2d are robust 

to the particular sets of samples we selected (Supplementary Fig. 7). Third, when we 

repeated NACC on a limited collection of more closely matched tissues and primary cell 

types (see supplemental methods), the biological processes detected as conserved and 

species specific in the larger panel of mis-matched human/mouse samples are largely 

recapitulated, although some pathways are detected with somewhat less significance, likely 

due to the smaller number of datasets used (Supplementary Fig. 8). In summary, the NACC 

results support and extend the principal component analysis, showing that while large 

differences between mouse and human transcriptome profiles can be observed (revealed in 

PC1), genes involved in distinct cellular pathways or functional groups exhibit different 

degrees of conservation of expression patterns between human and mouse, with some 

strongly preserved and others changing dramatically.

Prevalent species-specific regulatory sequences along with a core of conserved 

regulatory sequences

To better understand how divergence of cis regulatory sequences is linked to the range of 

conservation patterns detected in comparisons of gene expression programs between species, 

we examined evolutionary patterns in our predicted regulatory sequences. Previous studies 

have identified a wide range of evolutionary patterns and rates for cis regulatory regions in 

mammals8,5, but there are still questions regarding the overall degree of similarity and 

divergence between the cis regulatory landscapes in the mouse and human. The variety of 

assays and breadth of tissue and cell type coverage in the mouse ENCODE data therefore 

provide an opportunity to address this problem more comprehensively.

We first determined sequence homology of the predicted cis elements in the mouse and 

human genomes. We established one-to-one and one-to-many mapping of human and mouse 

bases derived from reciprocal chained blastz alignments 43 and identified conserved cis 

regulatory sequences (Denas et al., submitted). This analysis showed that 79.3% of 

chromatin-based enhancer predictions, 79.6% of chromatin-based promoter predictions, 

67.1% of the DHS, and 66.7% of the TF binding sites in the mouse genome have homologs 

in the human genome with at least 10% overlapping nucleotides, while by random chance 
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one expects 51.2%, 52.3%, 44.3%, and 39.3% respectively (Fig. 3a, supplementary 

materials for details). With a more stringent cutoff that requires 50% alignment of 

nucleotides, we found that 56.4% of the enhancer predictions, 62.4% of promoter 

predictions, 61.5% of DHS, and 53.3% of the TF binding sites have homologs, compared 

with an expected frequency of 34%, 33.8%, 33.6% and 33.7% by random chance 

(Supplementary Fig. 9). The candidate mouse regulatory regions with human homologs are 

listed in Supplementary Table 22–25. Thus, between half and two-thirds of candidate 

regulatory regions demonstrate a significant enrichment in sequence conservation between 

human and mouse. The remaining half to one-third have no identifiable orthologous 

sequence.

The candidate regulatory regions in mouse with no ortholog in human could arise either 

because they were generated by lineage-specific events, such as transposition, or because the 

ortholog in the other species was lost. Species-specific cis regulatory sequences have been 

reported before 3,14, but the fraction of regulatory sequences in this category remains 

debatable and may vary with different roles in regulation. We find that 15% (12,387 out of 

82,853) of candidate mouse promoters and 16.6% (48,245 out of 291,200) of candidate 

enhancers (both predicted by patterns of histone modifications) have no sequence ortholog 

in humans (Supplementary Table 26, 28, for details please refer to supplementary method 

section). However, the question remains as to whether these species-specific elements are 

truly functional elements or simply correspond to false positive predictions due to 

measurement errors or biological noise. Supporting the function of mouse-specific cis 

elements, 18 out of 20 randomly selected candidate mouse-specific promoters tested positive 

using reporter assays in mouse ES cells, where they were initially identified (Fig. 3b, 

Supplementary Table 27). Further, when these 18 mouse-specific promoters were tested 

using reporter assays in the human ES cells, all of them also exhibited significant promoter 

activities (Extended Data Fig. 2a, Supplementary Table 27), indicating that the majority of 

candidate mouse-specific promoters are indeed functional sequences, which are either 

gained in the mouse lineage or lost in the human lineage. Similarly, a majority of the 

candidate mouse-specific enhancers discovered in ES cells are also likely bona fide cis 

elements, as 70.2% (26 out of 37) candidate enhancers randomly selected from this group 

were found to exhibit enhancer activities in reporter assays (Fig. 3b, Supplementary Table 

29). Like the candidate mouse-specific promoters, 61.5% (16 out of 26) of the candidate 

mouse-specific enhancers also show enhancer activities in human ES cells (Extended Data 

Fig. 2a).

We next test whether the rapidly diverged cis regulatory elements would correspond to the 

same cellular pathways shown to be less conserved by the NACC analysis of gene 

expression programs. Indeed, GO analysis revealed that the mouse-specific regulatory 

elements are significantly enriched near genes involved in immune function (Fig. 3c), in 

agreement with the divergent transcription patterns for these genes reported above and an 

earlier report based on a smaller number of primate-specific candidate regulatory regions 44. 

This suggests that regulation of genes involved in immune function tends to be species-

specific 44, just as the protein-coding sequences coding for immunity, pheromones and other 

environmental genes are frequent targets for adaptive selection in each species 2,45. The 
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target genes for mouse specific TF binding sites (Supplementary Table 30) are enriched in 

molecular functions such as histone acetyltransferase activity, high-density lipoprotein 

particle receptor activity, in addition to immune function (IgG binding).

We next investigated the mechanisms generating mouse-specific cis regulatory sequences: 

loss in human, gain in mouse, or both. 89% (42,947 out of 48,245) of mouse-specific 

enhancers and 85% (10535 out of 12387) of mouse-specific promoters overlap with at least 

one class of repeat elements (compared to 78% by random chance). Confirming earlier 

reports 46–48, we found that mouse-specific candidate promoters and enhancers are 

significantly enriched for repetitive DNA sequences, with several classes of repeat DNA 

highly represented (Fig. 3d and Extended Data Fig. 2b). Furthermore, mouse specific TF 

binding sites are highly enriched in mobile elements like SINE and LTR (Sundaram et al., in 

press, Genome Research).

The 50% to 60% of candidate regulatory regions with sequences conserved between mouse 

and human are a mixture of: (i) sequences whose function has been preserved via strong 

constraint since these species diverged, (ii) sequences that have been co-opted (or exapted) 

to perform different functions in the other species, and (iii) sequences whose ortholog in the 

other species no longer has a discernable function, but divergence by evolutionary drift has 

not been sufficient to prevent sequence alignment between mouse and human. Several 

companion papers delve deeply into these issues (Denas et al., Cheng et al., Vierstra et al.). 

In particular, Cheng et al. show that the conservation of TF binding at orthologous positions 

(falling in category i) is associated with pleiotropic roles of enhancers, as evidenced by 

activity in multiple tissues. Denas et al. and Vierstra et al. describe the exaptation of 

conserved regulatory sequences for other functions.

We surveyed the conservation of function in the subset of mouse candidate cis elements that 

have sequence counterparts in the human genome. Of the 51,661 chromatin based promoter 

predictions that have human orthologs, 44% (22,655) of them are still predicted as a 

promoter in human based on the same analysis of histone modifications (Supplementary 

Table 31, see supplementary methods for details). Of the 164,428 chromatin based enhancer 

predictions that have human orthologs, 40% (64,962) of them are predicted as an enhancer 

in human (Supplementary Table 32). The remaining 56%–60% of candidate mouse 

regulatory regions with a human ortholog fall into category ii or iii (above), i.e. the 

orthologous sequence in human either performs a different function or does not maintain a 

detectable function.

One caveat of the above observation is that the tissues or cell samples used in the survey 

were not perfectly matched. To better examine the conservation of biochemical activities 

among these predicted cis regulatory elements with orthologs between mouse and human, 

we analyzed the chromatin modifications at the promoter or enhancer predictions in a broad 

set of 23 mouse tissue and cell types with the neighborhood co-expression association 

analysis (NACC) method described above. Instead of gene expression levels, we selected 

the histone modification H3K27ac as an indicator of promoter or enhancer activity as 

previously reported 49. As shown in Fig. 4a, the promoter predictions (blue) show a 

significantly higher correlation in the level of H3K27ac in human and mouse than the 
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random controls (red). Similarly, most chromatin based enhancer predictions in the mouse 

genome exhibit conserved chromatin modification patterns in the human, albeit to a lesser 

degree than the promoters (Fig. 4b). NACC analysis on DNase-Seq signal resulted in very 

similar distributions of conserved chromatin accessibility patterns at promoters (Fig. 4c) and 

enhancers (Fig. 4d). Thus many sequence-conserved candidate cis regulatory elements 

appeared to have conserved patterns of activities in mice and humans.

Taken together, these analyses show that the mammalian cis-regulatory landscapes in the 

human and mouse genomes are substantially different, driven primarily by gain or loss of 

sequence elements during evolution. These species-specific candidate regulatory elements 

are enriched near genes involved in stress response, immunity and certain metabolic 

processes, and contain elevated levels of repeated DNA elements. On the other hand, a core 

set of candidate regulatory sequences are conserved and display similar activity profiles in 

humans and mice.

Chromatin state landscape reflects tissue and cell identities in both human and mouse

We examined gene-centered chromatin state maps in the mouse and human cell types (see 

Supplementary Methods) (Fig. 5a, Supplementary Fig. 10). In all cell types, the low-

expressed genes were almost uniformly in chromatin states with the repressive H3K27me3 

mark or in the state unmarked by these histone modifications. In contrast, expressed genes 

showed the canonical pattern of H3K4me3 at the TSS surrounded by H3K4me1, followed 

by H3K36me3-dominated states in the remainder of the transcription unit. A similar pattern 

was seen for all the active genes, regardless of the level of expression; the only exception 

was a tendency for the H3K4me3 to spread further into the transcription unit for the most 

highly expressed genes. The same binary relationship between chromatin state maps and 

expression levels of genes was observed in mouse and human cell types (Supplementary 

Fig. 10).

For both mouse and human cells, the majority of the genome was in the unmarked state in 

each cell type, consistent with previous observations in Drosophila 50 and human cell 

lines 12 (Supplementary Fig. 2). About 55% of the mouse genome was in an unmarked state 

in all the 15 cell types examined, while 65% is unmarked in all six human cell types. For 

genes that were in the unmarked state in mouse, their orthologs in human also tended to be 

in the unmarked state, and vice versa, leading to a positive correlation for the amount of 

gene neighborhoods in unmarked states (Supplementary Fig. 11). Strong correlations were 

also observed in profiles of other chromatin marks averaged over cell lines and tissues 

(Pervouchine et al., submitted). The genes in the unmarked zones were depleted of 

transcribed nucleotides relative to the number expected based on fraction of the genome 

included, and the levels of the transcripts mapped there were lower than those seen in the 

active chromatin states (Supplementary Fig. 12).

Previous studies revealed limited changes of the chromatin states in lineage-restricted cells 

as they undergo large-scale changes in gene expression during maturation 51–53. The 

chromatin state maps recapitulated this result, showing very similar patterns of chromatin 

modification in a cell line model for proliferating erythroid progenitor cells (G1E) and in 

maturing erythroblasts (G1E-ER4 cells treated with estradiol) across genes whose 
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expression level changed significantly during maturation (Fig. 5b, Supplementary Fig. 10b). 

This limited change raised the possibility that the chromatin landscape, once established 

during lineage commitment, dictates a permissive (or restrictive) environment for the gene 

regulatory programs in each cell lineage 53, and the chromatin states may differ between cell 

lineages. We tested this by examining the chromatin state maps for genes that were 

differentially expressed between hematopoietic cell lineages (erythroblasts versus 

megakaryocytes), and we found dramatic differences between the two cell types (Fig. 5c and 

Supplementary Fig. 10b). Genes expressed at a higher level in megakaryocytes than in 

erythroblasts were all in active chromatin states in megakaryocytes, but many were in 

inactive chromatin states in erythroblasts (Fig. 5c). In the converse situation, genes 

expressed at a higher level in erythroblasts than in megakaryocytes showed more inactive 

states in the cells in which they were repressed (Supplementary Fig. 10b). These greater 

differences in chromatin states correlating with differential expression of genes between but 

not within cell lineages support the model that chromatin states are established during the 

process of lineage commitment. The clustering of cell types together by lineage based on 

chromatin state maps (Supplementary Fig. 10c) also supports the model that the landscape 

of active and repressed chromatin is established no later than lineage commitment, and that 

this landscape is a defining feature of each cell type. Greater differences in chromatin states 

correlating with differences in gene expression were also observed when comparing average 

chromatin profiles in human and mouse (Pervouchine et al., submitted).

Mouse chromatin states inform interpretation of human disease associated sequence 

variants

In order to investigate whether the mouse chromatin states were informative on sequence 

variants linked to human diseases by genome-wide association studies (GWAS), we 

combined the chromatin state segmentations of the fifteen mouse samples into a refined 

segmentation, which we used to train a self-organizing map (SOM) 54 on four histone 

modification ChIP-seq datasets (H3K4me3, H3K4me1, H3K36me3, and H3K27me3) for 

each mouse sample. We mapped 4,265 SNPs from the human GWAS studies uniquely onto 

the mouse genome and scored these Single Nucleotide Polymorphisms (SNPs) onto the 

trained SOM to determine whether SNP subsets were enriched in specific areas of the map. 

As shown in Fig. 6a, the highest enriched H3K4me1 unit in the kidney contains five GWAS 

hits (p-value<3.95e-14) on different chromosomes related to blood characteristics such as 

platelet counts (Fig. 6a, Extended Data Table 2a). Similarly, the second highest enriched 

unit in liver H3K36me3 contained six GWAS hits (p-value<7.54e-31) related to cholesterol 

and alcohol dependence out of twelve in that unit (Fig. 6b, Extended Data Table 2b). In 

contrast, one of the highest units in brain H3K27me3 has five GWAS hits (p-

value<4.93e-33) on different chromosomes associated with brain disorders/response to 

addictive substances (Fig. 6c, Extended Data Table 2c). This unit is different from the other 

examples in that it is enriched for H3K27me3 signal in multiple tissues, with brain being the 

highest. 801 out of the 1350 units of the map showed statistical enrichment of SNPs of 0.05 

after Holm-Bonferroni correction for multiple hypothesis testing, 55% of which (accounting 

for 1750 GWAS hits) had signal for at least one histone mark that ranked within the top 100 

units on the map (Fig. 6d). The best histone marks for enriched GWAS units were primarily 

H3K4me1 (23%), H3K36me3 (18%), and H3K27me3 (12%), with H3K4me3 accounting for 
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a less than 2% of the remainder. Together these results suggest that the chromatin state maps 

can be used to identify potential sites for functional characterization in mouse for human 

GWAS hits. Indeed, Cheng et al. (in press) show that conserved DNA segments bound by 

orthologous TFs in human and mouse are enriched for trait-associated SNPs mapped by 

GWAS.

Large-scale chromatin domains are developmentally stable and evolutionarily conserved

We mapped the positions of early and late replication timing boundaries in each of 36 mouse 

and 31 human profiles (Fig. 7a). Significantly clustered boundary positions (above the 95th 

percentile of re-sampled positions) were identified and peaks in boundary density were 

aligned between cell types using a common heuristic (Extended Data Fig. 3a,b, 

Supplementary Fig. 13). After alignment, consensus boundaries were further classified by 

orientation and amount of replication timing separation, resulting in a more stringent 

filtering of boundaries (Supplementary Fig. 14, 15). Overall, we found that 88% of boundary 

positions (vs. 20% expected for random alignment; Fisher exact test p<2e-16) aligned 

position and orientation between two or more cell types in both mouse and human (i.e. 12% 

were cell-type specific, Fig 7b, Extended Data Fig. 3). Pair-wise comparisons of boundaries 

were consistent with developmental similarity between cell types (Supplementary Fig. 16). 

The earliest and latest replicating boundaries were most well preserved between cell types, 

while those of mid-S replicating boundaries were highly variable (Extended Data Fig. 3e, f).

Interestingly, the greatest number of boundaries was detected in embryonic stem cells 

(ESCs) in both species, with significant reduction in boundary numbers during 

differentiation (Supplementary Fig. 16) consistent with consolidation of domains and by 

proxy large-scale chromatin organization into larger “Constant Timing Regions” CTRs 

during differentiation 55. Given that over half of the mouse and human genomes exhibit 

significant replication timing changes during development 16,56, these observations support 

the model that developmental plasticity in replication timing is derived from differential 

regulation of replication timing within CTRs whose boundaries are preserved during 

development.

Although conservation of replication timing between mouse and human has been 

reported 26,27, the conservation of replicating timing boundaries has not been examined. We 

converted boundary coordinates ±100kb across boundary positions between species, 

revealing significant overlap (Fig. 7c–d; p<2.2e-16 by Fisher’s exact test relative to a 

randomized boundary list). The level of conservation of the positions of boundaries 

improved from a median of 27% for cell type specific boundaries to 70% for boundaries 

preserved in 9 or more cell types (Fig. 7c), demonstrating that boundaries most highly 

preserved during development were the most conserved across species. This was consistent 

with results for transcription (Fig. 2), as well as the previous observation that suggest that an 

increased plasticity of replication timing during development is associated with increased 

plasticity of replication timing during evolution57. Together, these findings identify 

evolutionarily labile vs. constrained domains of the mammalian genome at the megabase 

scale.
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Given the link between replication and chromatin assembly, we compared replication timing 

and levels of other chromatin properties in 200kb windows across the genome 

(Supplementary Fig. 17). Features associated with active enhancers (H3K4me1, H3K27ac, 

DNase I sensitivity) were more closely correlated to replication timing than features 

associated with active transcription (RNA pol II, H3K4me3, H3K36me3, H3K79me2). By 

contrast, the correlation of replication timing to repressive features, such as H3K9me3, was 

poor and cell-type-specific, consistent with prior results. A more stringent comparison of 

differences in chromatin to differences in replication timing between cell types (Extended 

Data Fig. 3c and 3g, Supplementary Fig. 17) again revealed that marks of enhancers, 

including p300, H3K4me1 and H3K27ac, and DNase I sensitivity were more strongly 

correlated to replication timing than marks of active transcription.

Conclusion

By comparing the transcriptional activities, chromatin accessibilities, transcription factor 

binding, chromatin landscapes and replication timing throughout the mouse genome in a 

wide spectrum of tissues and cell types, we have made significant progress toward a 

comprehensive catalog of potential functional elements in the mouse genome. The catalog 

described in the current study should provide a valuable reference to guide researchers to 

formulate new hypotheses and develop new mouse models, in the same way as the recent 

human ENCODE studies have impacted the research community 12.

We provide multiple lines of evidence that gene expression and their underlying regulatory 

programs have substantially diverged between the human and mouse lineages while a subset 

of core regulatory programs are largely conserved. The divergence of regulatory programs 

between mouse and human is manifested not only in the gain or loss of cis regulatory 

sequences in the mouse genome, but also in the lack of conservation in regulatory activities 

across different tissues and cell types. This finding is in line with previous observations of 

rapidly evolving transcription factor binding in mammals, flies and yeasts, and highlights 

the dynamic nature of gene regulatory programs in different species 3,4,7,58. Furthermore, by 

comprehensively delineating the potential cis regulatory elements we demonstrated that 

specific groups of genes and regulatory elements have undergone more rapid evolution than 

others. Of particular interest is the finding that cis regulatory sequences next to immune 

system related genes are more divergent. The finding of species-specific cis-elements near 

genes involved in immune function suggests rapid evolution of regulatory mechanisms 

related to the immune system. Indeed, previous studies have uncovered extensive 

differences in the immune systems among different mouse strains and between humans and 

mice 59, ranging from relative makeup of the innate immune and adaptive immune cells 59, 

to gene expression patterns in various immune cell types 60, and transcriptional responses to 

acute inflammatory insults 61,62. At least some of these differences may be attributed to 

distinct regulatory mechanisms 60, and our finding that many predicted mouse cis elements 

near genes with immune function lack sequence conservation supports the model that 

evolution of cis regulatory sequences contributes to differences in the immune systems 

between humans and mice. More generally, our findings are consistent with the view that 

changes in transcriptional regulatory sequences are a source for phenotypic differences in 

species evolution.
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How can species-specific gains or loss of cis regulatory elements during evolution be 

compatible with their putative regulatory function? The finding of different rates of 

divergence associated with regulatory programs of distinct biological pathways suggests 

complex forces driving the evolution of the cis regulatory landscape in mammals. We 

discovered that specific classes of endogenous retroviral elements are enriched at the 

species-specific putative cis regulatory elements, implicating transposition of DNA as a 

potential mechanism leading to divergence of gene regulatory programs during evolution. 

Previous studies have shown that endogenous retroviral elements can be transcribed in 

tissue-specific manner 63,64, with a fraction of them derived from enhancers and necessary 

for transcription of genes involved in pluripotency 65,66. Future studies will be necessary to 

determine whether retroviral elements at or near enhancers is generally involved in driving 

tissue-specific gene expression programs in different mammalian species.

Despite the divergence of the regulatory landscape between mouse and human, the pattern 

of chromatin states (defined by histone modifications) and the large-scale chromatin 

domains are highly similar between the two species. Half of the genome is well conserved in 

replication timing (and by proxy, chromatin interaction compartment) with the other half 

highly plastic both between cell types and between species. It will be interesting to 

investigate the significance of these conserved and divergent classes of DNA elements at 

different scales, both with regard to the forces driving evolution and for implications of the 

use of the laboratory mouse as a model for human disease.

Extended Data

Extended Data Figure 1. Clustering analysis of human and mouse tissue samples

a, RNA-seq data from Ilumina Body Map (Adipose, Adrenal, Brain, Colon, Heart, Kidney, 

Liver, Lung, Ovary and Testis) were analyzed together with that from the matched mouse 

samples using clustering analysis. Genes with high variance across tissues were used, 
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resulting in cell samples clustering by tissues, not by species. b, Clustering employing genes 

with high variance between species shows clustering by species instead of tissues. c, 

Principal Component Analysis (PCA) was performed for RNA-seq data for 10 human and 

mouse matching tissues. The expression values are normalized within each species and we 

observed the clustering of samples by tissue types.

Extended Data Figure 2. Comparative analysis of sequence conservation in the cis elements 
predicted in the human and mouse genome

a, The predicted mouse-specific promoters and enhancers can function in human ES cells 

(hESCs). Percentages of predicted enhancers or promoters that test positive are shown in a 

bar chart. b, A bar chart shows the percentage of the predicted mouse-specific promoters 

containing various subclasses of LTR and SINE elements. As control, the predicted mouse 

cis elements with homologous sequences in the human genome or random genomic regions 

are included.
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Extended Data Figure 3. Replication timing boundaries preserved among tissues are conserved 
during evolution

a, Heatmap of TTR overlap with positive (yellow) or negative (blue) slope. Replication 

timing (RT) boundaries were identified as clustered TTR endpoints (gray) above the 95th 

percentile (dashed line) of randomly resampled positions (black). b, Examples of 

constitutive boundaries (blue regions) and regulated boundaries (gray regions) highlighted. 

c, Spearman correlations between differences in chromatin feature enrichment and 

differences in RT in non-overlapping 200kb windows. d, Percentage of boundaries 

preserved between the indicated number of human cell types. (e & f). Distribution of 

boundary replication timing in mouse (e) and human (f) as a function of preservation level 

between cell types. g, Comparison of changes in replication timing vs. various histone marks 

across a segment of mouse Chr6.

Extended Data Table 1

A seven-state chromHMM model learned from four histone modifications in 15 mouse cell 

types or lines and six human cell lines is shown. The numbers represent the emission 

probabilities of each histone modification (column) in each chromatin state (row). The 

enriched histone modifications in each state are summarized in the first column. The fraction 

of genome assigned in each state was calculated (Supplementary Fig. 2). The average and 

variation of these fraction values across all included cell types/tissues are listed in the last 

two columns.

State Feature H3K27m3 H3K4m3 H3K4m1 H3K36m3 Average% Variation

1 K4m3 0.07 0.92 0.05 0.03 0.75 0.07

2 K4m1/3 0.17 0.85 0.88 0.05 0.55 0.10

3 K4m1 0.01 0.01 0.47 0.02 3.35 0.57
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State Feature H3K27m3 H3K4m3 H3K4m1 H3K36m3 Average% Variation

4 K4m1+K36m3 0.01 0.05 0.59 0.71 0.58 0.23

5 K36m3 0.00 0.00 0.01 0.42 6.31 1.54

6 Unmarked 0.01 0.00 0.00 0.00 85.45 9.20

7 K27m3 0.29 0.00 0.02 0.00 3.01 3.87

Extended Data Table 2

Self-Organizing Map of histone modifications shows 

enrichment of human GWAS SNPs when mapped onto 

mouse

a, Kidney-specific H3K4me1 that shows enrichment of specific GWAS hits associated with 

urate levels and metabolites. b, Liver-specific H3K36me3 unit shows enrichment in GWAS 

hits related to cholesterol, alcohol dependence, and triglyceride levels. c, Brain-specific 

H3K27me3 signals show enrichment in GWAS SNPs associated with neurological 

disorders.

a

 rs6900341 Metabolite

 rs1668871 Platelet counts

 rs1063856 Coagulation factor levels

 rs6798928 Immunoglobulin A

 rs2079742 Urate levels

b

 rs1789891 Alcohol dependence

 rs3811647 Hepcidin levels

 rs10199768 Cardiovascular disease risk factors

 rs17155315 QT interval

 rs12686004 HDL cholesterol

 rs3890182 HDL cholesterol

 rs7758229 Colorectal cancer

 rs6017342 Ulcerative colitis

 rs603446 Triglycerides

 rs2266788 HDL Cholesterol - Triglycerides

 rs6056 Fibrinogen

 rs641153 Age-related macular degeneration (CNV)

c

 rs6952808 Bipolar disorder and schizophrenia

 rs2424635 Bipolar disorder and schizophrenia

 rs2023454 Functional MRI

 rs17115100 Parkinson’s disease

 rs9312648 Response to amphetamines
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Figure 1. Overview of the mouse ENCODE data sets

a, A genome browser snapshot shows the primary data and annotated sequence features in 

the mouse CH12 cells (methods). b, Chart shows that much of the human and mouse 

genomes is transcribed in one or more cell and tissue samples. c, A bar chart shows the 

percentages of the mouse genome annotated as various types of cis-regulatory elements 

(Method). d, Pie charts show the fraction of the entire genome that is covered by each of the 

seven states in the mouse embryonic stem cells (mESC) and adult heart. e, Charts showing 

the number of replication timing (RT) boundaries in specific mouse and human cell types, 

and the total number of boundaries from all cell types combined.
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Figure 2. Comparative analysis of the gene expression programs in human and mouse samples

a. Principal Component Analysis (PCA) was performed for RNA-seq data for 10 human and 

mouse matching tissues. The expression values are normalized across the entire dataset. 

Solid squares denote human tissues. Open squares denote mouse tissues. Each category of 

tissue is represented by a different color. b. Gene expression variance decomposition (see 

Method) estimates the relative contribution of tissue and species to the observed variance in 

gene expression for each orthologous human-mouse gene pair. Green dots indicate genes 

with higher between-tissue contribution and red dots genes with higher between-species 

contributions. c, Neighborhood analysis of conserved co-expression (NACC) in human and 

mouse samples. The distribution of NACC scores for each gene is shown. d, A scatter plot 

shows the average of NACC score over the set of genes in each functional GO category. 

Highlighted are those biological processes that tend to be more conserved between human 

and mouse and those processes that have been less conserved (See Supplementary Table 21 

for list of genes).
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Figure 3. Comparative analysis of the cis elements predicted in the human and mouse genome

a, Charts show the fractions of the predicted mouse cis regulatory elements with 

homologous sequences in the human genome (Methods). b, A bar chart shows the fraction 

of the DNA fragments tested positive in the reporter assays performed either using the 

mESCs or Mouse embryonic fibroblasts (MEF). c, A chart shows the Gene ontology (GO) 

categories enriched near the predicted mouse-specific enhancers. d, A bar chart shows the 

percentage of the predicted mouse-specific enhancers containing various subclasses of LTR 

and SINE elements. As control, the predicted mouse cis elements with homologous 

sequences in the human genome or random genomic regions are included.
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Figure 4. Analysis of conservation in biochemical activities at the predicted mouse cis regulatory 
sequences with human orthologs

(a & b) Histograms show the distribution of the NACC score for the chromatin modification 

H3K27ac signal at the predicted mouse promoters (a) or enhancers (b). (c & d) Histograms 

show the distributions of NACC scores for DNase I signal at the promoter proximal (c) and 

distal (d) DNase hypersensitive sites (DHS).
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Figure 5. Chromatin landscape is stable within individual cell lineages

a, Map displaying the distribution of chromatin states over the neighborhoods of human-

mouse one-to-one ortholog genes in CH12 cells. The gene neighborhood intervals were 

sorted by the transcription level of each gene, shown by white dots. b & c, Distribution of 

chromatin states in human-mouse one-toone orthologs that are differentially expressed genes 

between (b) erythroid progenitor and erythroblasts models and (c) erythroblast and 

megakaryocyte.
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Figure 6. Human GWAS hits when mapped onto mouse genome are associated with specific 
chromatin states

a, A self-organization map of histone modification H3K4me1 shows association between 

kidney H3K4me1 state and specific GWAS hits associated with urate levels (Methods). b, 

Liver-specific H3K36me3 unit shows enrichment in GWAS hits related to cholesterol, 

alcohol dependence, and triglyceride levels. c, Brain-specific H3K27me3 high unit shows 

enrichment in GWAS SNPs associated with neurological disorders. d, Characterization of 

every unit with statistically significant GWAS enrichments in terms of highest histone 

modification signal in at least one sample. Units with no signal in top 100 map units for 

every histone modification are listed as none.
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Figure 7. RT boundaries preserved among tissues are conserved in mice and humans

a, Depiction of a timing transition region (TTR) between the early and late replication 

domains. Early and late boundaries are defined as slope changes at either end of TTRs. b. 

Boundaries conserved between species for matched mouse and human cell types as a 

function of preservation among mouse cell types. c. Percentage of boundaries conserved 

between species (bar graph) and overall conservation of boundaries between comparable 

mouse and human cell types (CH12 vs. GM06990, mESC vs. hESC, mEpiSC vs. hESC) as a 

function of preservation among mouse cell types. (d) A Venn diagram compares the 

replication timing boundaries identified in the mouse and human genome.
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