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Abstract

An Active Appearance Model (AAM) allows complex models of shape and
appearance to be matched to new images rapidly. An AAM contains a sta-
tistical model of the shape and grey-level appearance of an object of interest
The associated search algorithm exploits the locally linear relationship be-
tween model parameter displacements and the residual errors between model
instance and image. This relationship can be learnt during a training phase.
To match to an image we measure the current residuals and use the model
to predict changes to the current parameters. The algorithm converges in a
few iterations. In this paper we describe variations of the basic algorithm
aimed at improving the speed and robustness of search. These include sub-
sampling and using image residuals to drive the shape rather than full appear-
ance model. We show examples of search and give the results of experiments
comparing the performance of the different algorithms.

1 Introduction

Model based methods are now widely used in image interpretation. By constraining valid
solutions a more robust result can be obtained. Recently models have been developed
which represent the full appearance of an object, allowing convincing synthetic images to
be generated [3][8] [9][11]. With such models image interpretation can be interpretted as
an optimisation problem in which we seek the parameters which minimise the difference
between a synthetic model image and the target image. Typically the models will have 50
or more parameters. Optimisation in such a high dimensional space using standard meth-
ods is possible but slow [9]. However, by exploiting the relationship between parameter
displacements and image differences, a fast algorithm can be developed.

An Active Appearance Model (AAM) contains a statistical model of the shape and
grey-level appearance of an object of interest, which can be fit rapidly to an example in a
new image [3]. The appearance model, given a good enough training set, can generalise
to almost any valid example of the class of objects represented, potentially giving a full
photo-realistic approximation.

During a training phase a model instance is randomly displaced from the optimum
position in a set of training images. The difference between the displaced model instance
and the image is recorded, and linear regression is used to estimate the relationship be-
tween this residual and the parameter displacement.
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During image search we wish to find the parameters which minimise the difference
between image and synthesised model instance. An initial estimate of the instance is
placed in the image and the current residuals are measured. The relationship is then used
to predict the changes to the current parameters which would lead to a better fit. A good
overall match is obtained in a few iterations, even from poor starting estimates. The
algorithm is capable of fitting a 10000 pixel, 93 parameter model of a face to a new image
in a few seconds.

The AAM, though related to the Active Shape Model (ASM) [5], differs from it by
matching a full model of grey-level appearance to a target image. The ASM only located
the shape of the modelled objects, not the texture, so was not taking full advantage of the
information available.

In this paper we describe modifications to the basic AAM algorithm aimed at improv-
ing the speed and robustness of search. Since some regions of the model may change little
when parameters are varied, we need only sample the image in regions where significant
changes are expected. This should reduce the cost of each iteration.

The original formulation manipulates the combined shape and grey-level parameters
directly. An alternative approach is to use image residuals to drive the shape parameters,
computing the grey-level parameters directly from the image given the current shape. This
approach may be useful when there are few shape modes and many grey-level modes.

In the following we describe the algorithm in more detail, show examples of search
and give the results of experiments comparing the effects of the modifications.

2 Background

In recent years many model-based approaches to the interpretation of images of de-
formable objects have been described. One motivation is to achieve robust performance
by using the model to constrain solutions to be valid examples of the object modelled. A
model also provides the basis for a broad range of applications by ‘explaining’ the appear-
ance of a given image in terms of a compact set of model parameters. These parameters
are useful for higher level interpretation of the scene. For instance, when analysing face
images they may be used to characterise the identity, pose or expression of a face. In order
to interpret a new image, an efficient method of finding the best match between image and
model is required.

Various approaches to modelling variability have been described. The most common
general approach is to allow a prototype to vary according to some physical model. Ba-
jcsy and Kovacic [1] describe a volume model (of the brain) that also deforms elastically
to generate new examples. Christensenet al [2] describe a viscous flow model of defor-
mation which they also apply to the brain, but is very computationally expensive.

Turk and Pentland [14] use principal component analysis to describe face images in
terms of a set of basis functions, or ‘eigenfaces’. Though valid modes of variation are
learnt from a training set, and are more likely to be more appropriate than a ‘physical’
model, the eigenface is not robust to shape changes, and does not deal well with variability
in pose and expression. However, the model can be matched to an image easily using
correlation based methods.

Poggio and co-workers [8] [9] synthesise new views of an object from a set of example
views. They fit the model to an unseen view by a stochastic optimisation procedure. This
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is slow, but can be robust because of the quality of the synthesised images. Cooteset
al [4] describe a 3D model of the grey-level surface, allowing full synthesis of shape
and appearance. However, they do not suggest a plausible search algorithm to match the
model to a new image. Nastarat al [12] describe a related model of the 3D grey-level
surface, combining physical and statistical modes of variation. Though they describe a
search algorithm, it requires a very good initialisation. Ladesat al [10] model shape and
some grey level information using Gabor jets. However, they do not impose strong shape
constraints and cannot easily synthesise a new instance.

Cooteset al [5] model shape and local grey-level appearance, using Active Shape
Models (ASMs) to locate flexible objects in new images. Lanitisat al [11] use this ap-
proach to interpret face images. Having found the shape using an ASM, the face is warped
into a normalised frame, in which a model of the intensities of the shape-free face is used
to interpret the image. Edwardsat al [6] extend this work to produce a combined model
of shape and grey-level appearance, but again rely on the ASM to locate faces in new
images. Our new approach can be seen as a further extension of this idea, using all the
information in the combined appearance model to fit to the image.

Sclaroff and Isidoro describe ‘Active Blobs’ for tracking [13]. The approach is similar
to that of the AAM, though Active Blobs are derived from a single example, rather than a
training set of examples. The example is used as a template, with low energy elastic shape
deformations allowed. A simply polynomial model is used to allow changes in intensity
across the object. In contrast, AAMs learn what are valid shape and intensity variations
from their training set.

An application of the AAM to tracking and face recognition is described by Edwards
[7].

3 Active Appearance Models

This section outlines the basic AAM algorithm. A more comprehensive description is
given in [3]. The AAM contains two main components. A parameterised model of ob-
ject appearance and an estimate of the relationship between parameter displacements and
induced image residuals.

3.1 Appearance Models

The appearance model can represent both shape and texture changes seen in a training set.
The training set consists of labelled images, where key landmark points are marked on
each example object. For instance, to build a face model we require face images marked
with points at key positions to outline the main features (Figure 1).

Given such a set we can generate a statistical model of shape variation (see [5] for
details). The labelled points,x, on a single object describe the shape of that object. Any
example can then be approximated using:

x = �x+Psbs (1)

where�x is the mean shape,Ps is a set of orthogonalmodes of shape variationandbs
is a set of shape parameters.
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Figure 1: Example of face image labelled with 122 landmark points

To build a statistical model of the grey-level appearance we warp each example image
so that its control points match the mean shape (using a triangulation algorithm). We then
sample the grey level information from theshape-normalisedimage over the region cov-
ered by the mean shape. To minimise the effect of global lighting variation, we normalise
the resulting samples.

By applying PCA to the normalised data we obtain a linear model:

g = �g +Pgbg (2)

where�g is the mean normalised grey-level vector,Pg is a set of orthogonalmodes of
grey variationandbg is a set of grey-level parameters.

The shape and appearance of any example can thus be summarised by the vectorsbs
andbg . Since there may be correlations between the shape and grey-level variations, we
concatenate the vectors, apply a further PCA and obtain a model of the form

�
Wsbs
bg

�
= b =

�
Qs

Qg

�
c = Qc (3)

whereWs is a diagonal matrix of weights for each shape parameter, allowing for the
difference in units between the shape and grey models,Q is a set of orthogonal modes
andc is a vector ofappearanceparameters controlling both the shape and grey-levels of
the model.

Since the shape and grey-model parameters have zero mean,c does too.
Note that the linear nature of the model allows us to express the shape and grey-levels

directly as functions ofc

x = �x+PsWsQsc ; g = �g +PgQgc (4)

An example image can be synthesised for a givenc by generating the shape-free grey-
level image from the vectorg and warping it using the control points described byx.

For instance, Figure 2 shows the effects of varying the first two parameters,c1, c2, of
an appearance model trained on a set of face images.
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c1 varies by�2 s.d.s c2 varies by�2 s.d.s

Figure 2: First two modes of appearance model of a face

3.2 Active Appearance Model Search

We treat interpretation as an optimisation problem in which we minimise the difference
between a new image and one synthesised by the appearance model.

Given a set of model parameters,c, we can generate a hypothesis for the shape,x,
and texture,gm, of a model instance. To compare this hypothesis with the image, we
use the suggested shape to sample the image texture,gs, and compute the difference,
Æg = gs � gm. We seek to minimise the magnitude of this,jÆgj.

During a training phase, the AAM learns a linear relationship betweenÆg and the
parameter perturbation required to correct this,Æc,

Æc = AÆg (5)

The matrixA is obtained by linear regression on random displacements from the true
training set positions and the induced image residuals (See [3] for details).

We can use (5) in an iterative search algorithm. Given the current estimate of model
parameters,c0, and the normalised image sample at the current estimate,gs, each iteration
proceeds as follows:

� Evaluate the error vectorÆg0 = gs � gm

� Evaluate the current errorE0 = jÆg0j
2

� Compute the predicted displacement,Æc = AÆg0

� Setk = 1

� Let c1 = c0 � kÆc

� Sample the image at this new prediction, and calculate a new error vector,Æg1

� If jÆg1j2 < E0 then accept the new estimate,c1,

� Otherwise try atk = 0:5, k = 0:25 etc.

This is repeated until no improvement is made to the error,jÆgj2, and convergence is
declared.

We use a multi-resolution implementation, in which we iterate to convergence at each
level before projecting the current solution to the next level of the model. This is more
efficient and can converge to the correct solution from further away than search at a single
resolution.

For instance, Figure 3 shows examples of an AAM of a face converging from a dis-
placed position on a previously unseen image. This takes about one second (on a Sun
Ultra-SPARC) to fit a 93 parameter model representing about 10000 pixels.
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Initial 2 its 5 its 7 its final original

Figure 3: Multi-resolution AAM search from a displaced position

3.3 Sub-sampling During Search

In the original formulation, during search we sample all the points in the model to obtain
gs, with which we predict the change to the model parameters. There may be 10000 or
more such pixels, but fewer than 100 parameters. There is thus considerable redundancy,
and it may be possible to obtain good results by sampling at only a sub-set of the modelled
pixels. This could significantly reduce the computational cost of the algorithm.

The change in theith parameter,Æci, is given by

Æci = AiÆg (6)

WhereAi is theith row ofA.
The elements ofAi indicate the significance of the corresponding pixel in the cal-

culation of the change in the parameter. To choose the most useful subset for a given
parameter, we simply sort the elements by absolute value and select the largest. However,
the pixels which best predict changes to one parameter may not be useful for any other
parameter.

To select a useful subset for all parameters we compute the bestu% of elements for
each parameter, then generate the union of such sets. Ifu is small enough, the union will
be less than all the elements.

Given such a subset, we perform a new multi-variate regression, to compute the re-
lationship,A0 between the changes in the subset of samples,Æg0, and the changes in
parameters

Æc = A0Æg0 (7)

Search can proceed as described above, but using only a subset of all the pixels.

3.4 Search Using Shape Parameters

The original formulation manipulates the parameters,c. An alternative approach is to use
image residuals to drive the shape parameters,bs, computing the grey-level parameters,
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bg , and thusc, directly from the image given the current shape. This approach may be
useful when there are few shape modes and many grey-level modes.

The update equation in this case has the form

Æbs = BÆg (8)

where in this caseÆg is given by the difference between the current image samplegs
and the best fit of the grey-level model to it,gm,

Æg = gs � gm
= gs � (�g +Pgbg)

(9)

wherebg = PT
g (gs � �g).

During a training phase we use regression to learn the relationship,B, betweenÆbs
andÆg (as given in (9)). Since anyÆg is orthogonal to the columns ofPg , the update
equation simplifies to

Æbs = B(gs � �g)
= Bgs � boffset

(10)

Thus one approach to fitting a model to an image is simply to keep track of the pose
and shape parameters,bs. The grey-level parameters can be computed directly from
the sample at the current shape. The constraints of the combined appearance model can
be applied by computingc using (3), applying constraints then recomputing the shape
parameters. As in the original formulation, the magnitude of the residualjÆgj can be used
to test for convergence.

In cases where there are significantly fewer modes of shape variation than combined
appearance modes, this approach may be faster. However, since it is only indirectly driv-
ing the parameters controlling the full appearance,c, it may not perform as well as the
original formulation.

Note that we could test for convergence by monitoring changes in the shape param-
eters, or simply apply a fixed number of iterations at each resolution. In this case we
do not need to use the grey-level model at all during search. We would just do a single
match to the grey-levels sampled from the final shape. This may give a significantly faster
algorithm.

4 Results of Experiments

To compare the variations on the algorithm described above, an appearance model was
trained on a set of 300 labelled faces. This set contains several images of each of 40
people, with a variety of different expressions. Each image was hand annotated with
122 landmark points on the key features. From this data was built a shape model with
36 parameters, a grey-level model of 10000 pixels with 223 parameters and a combined
appearance model with 93 parameters.

Three versions of the AAM were trained for these models. One with the original
formulation, a second using a sub-set of 25% of the pixels to drive the parametersc, and
a third trained to drive the shape parameters,bs, alone.

A test set of 100 unseen new images (of the same set of people but with different
expressions) was used to compare the performance of the algorithms. On each image the
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optimal pose was found from hand annotated landmarks. The model was displaced by
(+15, 0 ,-15) pixels inx andy, the remaining parameters were set to zero and a multi-
resolution search performed (9 tests per image, 900 in all).

Two search regimes were used. In the first a maximum of 5 iterations were al-
lowed at each resolution level. Each iteration tested the model atc ! c � kÆc for
k = 1:0; 0:51; : : : ; 0:54, accepting the first that gave an improved result or declaring con-
vergence if none did.

The second regime forced the updatec! c�Æc without testing whether it was better
or not, applying 5 steps at each resolution level.

The quality of fit was recorded in two ways;

� The RMS grey-level error per pixel in the normalised frame,
p
jÆvj2=npixels

� The mean distance error per model point

For example, the result of the first search shown in Figure 3 above gives an RMS grey
error of 0.46 per pixel and a mean distance error of 3.7 pixels.

Some searches will fail to converge to near the correct result. This is detected by a
threshold on the mean distance error per model point. Those that have a mean error of
> 7:5 pixels were considered to have failed to converge.

Table 1 summarises the results. The final errors recorded were averaged over those
searches which converged successfully.. The top row corresponds to the original formu-
lation of the AAM. It was the slowest, but on average gave the fewest failures and the
smallest grey-level error. Forcing the iterations decreased the quality of the results, but
was about 25% faster.

Sub-sampling considerably speeded up the search (taking only 30% of the time for
full sampling) but was much less likely to converge correctly, and gave a poorer overall
result.

Driving the shape parameters during search was faster still, but again lead to more
failures than the original AAM. However, it did lead to more accurate location of the
target points when the search converged correctly. This was at the expense of increasing
the error in the grey-level match.

The best fit of the Appearance Model to the images given the labels gave a mean RMS
grey error of 0.37 per pixel over the test set, suggesting the AAM was getting close to the
best possible result most of the time.

Driven Sub-sample Iterations Failure Final Errors Mean
Params Max. Forced Rate Point Grey Time

�0:05 �0:005 (ms)
c 100% 5 1 4.1% 4.2 0.45 3270
c 100% 5 5 4.6% 4.4 0.46 2490
c 25% 5 1 13.9% 4.6 0.60 920
c 25% 5 5 22.9% 4.8 0.63 630
bs 100% 5 1 11.4% 4.0 0.85 560
bs 100% 5 5 11.9% 4.1 0.86 490

Table 1: Comparison between AAM algorithms given displaced centres (See Text)
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Table 2 shows the results of a similar experiment in which the models were started
from the best estimate of the correct pose, but with other model parameters initialised to
zero. This shows a much reduced failure rate, but confirms the conclusions drawn from
the first experiment. The search could fail even given the correct initial pose because
some of the images contain quite exaggerated expressions and head movements, a long
way from the mean. These were difficult to match to, even under the best conditions.

Driven Sub-sample Iterations Failure Final Errors
Params Max. Forced Rate Point Grey

�0:1 �0:01
c 100% 5 1 3% 4.2 0.46
c 100% 5 5 4% 4.4 0.47
c 25% 5 1 10% 4.6 0.60
c 25% 5 5 10% 4.6 0.60
bs 100% 5 1 6% 4.0 0.84
bs 100% 5 5 6% 4.1 0.87

Table 2: Comparison between AAM algorithms, given correct initial pose. (See Text)

5 Discussion and Conclusions

We have described several modifications that can be made to the Active Appearance
Model algorithm. Sub-sampling and driving the shape parameters during search both
lead to faster convergence, but were more prone to failure. The shape based method was
able to locate the points slightly more accurately than the original formulation. Testing
for improvement and convergence at each iteration slowed the search down, but lead to
better final results.

It may be possible to use combinations of these approaches to achieve good results
quickly, for instance using the shape based search in the early stages, then polishing with
the original AAM. Further work will include developing strategies for reducing the num-
bers of convergence failures and extending the models to use colour or multispectral im-
ages.

Though only demonstrated for face models, the algorithm has wide applicability, for
instance in matching models of structures in MR images [3]. The AAM algorithms, being
able to match 10000 pixel, 100 parameter models to new images in a few seconds or less,
are powerful new tools for image interpretation.
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