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1. Introduction

As computer speeds continue to obey Moore’s law, numerical optimization tech-
niques are being applied to increasingly complex and demanding problems. These
problems are characterized by relatively expensive objective function evaluations, a
large number of design variables, and a significant number of objectives and con-
straints. Optimization of an aerodynamic configuration, such as an aircraft wing,
based on the numerical solution of the Reynolds-averaged Navier-Stokes equations
is an example of such a problem. A typical objective in the design of a wing is
to minimize the drag coefficient at a prescribed lift coefficient. Multiple compet-
ing objectives arise since the wing must be able to operate efficiently over a range
of operating conditions. The need for satisfactory off-design performance and air-
craft handling qualities introduces additional objectives or constraints, depending on
how the problem is posed. Structural and manufacturing considerations lead to fur-
ther constraints. Several hundred shape parameters may be needed to define a ge-
ometric parameterization of sufficient flexibility. Finally, the numerical solution of
the Reynolds-averaged Navier-Stokes equations for turbulent flow over a complex ge-
ometry is itself a challenging and expensive task. These characteristics are typical
of many partial-differential-equation (PDE)-based, or simulation-based, optimization
problems.

There are several different issues involved in posing and solving such multiobjec-
tive optimization problems and numerous strategies for addressing these issues. One
key consideration is whether to use a gradient-based or a gradient-free optimization
algorithm. Each approach has advantages and disadvantages; these are discussed in
the next section. The simplest method for computing gradients is the finite-difference
method. If round-off error is a concern, then the complex-step method can be used
(Anderson et al., 2001). In either case, the cost of evaluating the gradient is pro-
portional to the number of design variables. Since the number of iterations needed
for convergence of a gradient-based algorithm is typically proportional to the num-
ber of design variables, the overall cost with a finite-difference approximation of the
gradient is proportional to the square of the number of design variables. The adjoint
approach (Jameson, 1988) provides a more computationally efficient alternative in
which the gradient calculation is almost independent of the number of design vari-
ables, and hence the overall cost of the optimization is roughly linearly proportional
to the number of design variables.

Since gradient-based and gradient-free optimization algorithms each have
strengths and weaknesses, the choice is problem dependent. The objective of this
paper is to provide data to help guide the selection of the appropriate approach for
a specific task. Among gradient-based algorithms we consider only the adjoint ap-
proach; among gradient-free algorithms we consider only a genetic algorithm. Our
emphasis is on a determination of the relative efficiency of the two algorithms for
a representative class of optimization problems: aerodynamic shape optimization in
two dimensions. Efficiency is one of several important considerations in choosing an
approach. A key aspect of our comparisons is that the two algorithms are applied to
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identical design spaces, including the geometry parameterization (design variables),
objective function (flow solver), and constraints (geometric constraints representing
structural and manufacturing considerations).

The potential benefits of aerodynamic optimization were recognized early on by
Hicks et al. (1974) and Hicks et al. (1978). However, their work was constrained
by the limitations of computers and algorithms at that time and furthermore by the
use of finite differences for the gradient computation. Pironneau (1974) introduced
the adjoint approach to optimization in fluid dynamics, but it was not until the work
of Jameson (1988) that the approach became popular in aerodynamic optimization.
There are two adjoint formulations currently in use, the continuous approach in which
the adjoint equations are derived from the governing partial differential equations and
then discretized and the discrete approach in which the discretized governing equa-
tions are differentiated to obtain the adjoint equations. Examples of the discrete ap-
proach can be found in (Elliott et al., 1997; Nielsen et al., 1999; Nemec et al., 2002),
while Reuther et al. (1999) provide an example of the continuous approach.

Genetic (or evolutionary) algorithms (Goldberg, 1989) have also become popu-
lar in aerodynamic optimization, especially for multiobjective optimization problems
(Deb, 2002; Coello Coello, 2002). Such algorithms use a combination of exploita-
tion of the positive characteristics of the existing set of solutions and exploration
of other areas of the design space to find an optimum. Examples of genetic algo-
rithms applied to aerodynamic optimization can be found in (Obayashi, 1997; Vicini et
al., 1997; Marco et al., 1999; Oyama, 2000; Holst et al., 2001; Giannakoglou, 2002).

One means of dealing with multiple competing objectives is through the concepts
of dominance and Pareto optimality. A given solution is said to dominate another if
it is not inferior with respect to any objective and is superior with respect to at least
one. The Pareto optimal set is the set of solutions that are non-dominated by any other
member of the total set of feasible solutions. The image of the Pareto optimal set in
the objective function space is known as the Pareto front. The Pareto front provides
the set of solutions of interest to the designer and reveals tradeoffs between objectives.
A simple means of computing a Pareto front is the weighted-sum method, in which a
single objective is formed by a weighted sum of the competing objectives. By varying
the weights, the Pareto front can be generated. This approach fails if the Pareto front
is nonconvex or poorly scaled. For our present application, the Pareto front is convex
and well scaled, so the weighted-sum method is effective. An alternative approach, the
dominance Pareto front technique (Goldberg, 1989; Deb, 2002; Coello Coello, 2002),
is often applied in conjunction with evolutionary algorithms. This technique uses non-
dominated sorting and selection coupled with a genetic algorithm to move a population
toward the Pareto front and does not suffer from convexity or scaling problems.

In this paper, we compare the performance of the gradient-based discrete-adjoint
optimization algorithm of Nemec et al. (2004) with that of the genetic algorithm of
Holst et al. (2001) for several single and multiobjective aerodynamic shape optimiza-
tion problems. Of particular interest is the dependence of the relative cost of the two
algorithms on the number of design variables and the degree of convergence needed.
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2. Genetic and gradient-based algorithms for optimization

In this section, we give a brief overview of the strengths and weaknesses of ge-
netic and gradient-based algorithms in the context of optimization problems where
each function evaluation is relatively expensive. We focus on problems in which the
number of design variables is significantly greater than the number of objectives and
constraints. In this context, the adjoint method is the most efficient approach for
gradient-based optimization; hence other approaches, such as the flow sensitivity ap-
proach, are not discussed.

Once the gradient is computed, there are several options for finding a minimum.
For constrained problems, sequential quadratic programming methods are popular
(Gill et al., 2002). Alternatively, an unconstrained formulation can be obtained by
adding the constraints as a penalty term to the objective function. For unconstrained
problems, quasi-Newton methods are effective, typically in conjunction with a line
search procedure (Dennis et al., 1983). In either case, one can expect the cost of
the optimization to be roughly proportional to the number of design variables. Rapid
convergence is the primary advantage of a gradient-based method. Clearly, proper
exploitation of gradient information can significantly enhance the speed of conver-
gence in comparison with a method that does not compute gradients. Another feature
of gradient-based methods is that they provide a clear convergence criterion. If the
gradient is reduced by many orders of magnitude, one can be confident that at least a
local optimum has been reached.

One of the key disadvantages of gradient-based methods using adjoints is the de-
velopment cost. Whether the linearization is performed by hand or using automatic
differentiation, with a complex code this can be time-consuming. Furthermore, each
time the code is altered, the adjoint computation may need to be modified. Another
potential weakness of gradient-based methods is that they are relatively intolerant
of difficulties such as noisy objective function spaces, inaccurate gradients, categor-
ical variables, and topology optimization. Another oft-mentioned disadvantage of
gradient-based methods is that they find a local rather than a global optimum. How-
ever, in many engineering design contexts this is unlikely to be an issue, since the
highly constrained nature of the design problem inhibits multimodality.

The key disadvantages of gradient-based methods are precisely the strengths of
genetic algorithms. First, genetic algorithms treat the function evaluation as a “black
box.” Consequently, development cost is minimal. Second, they are tolerant of noise
in the objective function and have no difficulty with categorical variables or topology
changes. Furthermore, in principle, genetic algorithms find a global optimum. The key
disadvantage associated with genetic algorithms is that they can converge very slowly,
especially near an optimum. A second weakness is that determining a termination
criterion is not straightforward.

Of course, research is underway to address the weaknesses of both genetic and
gradient-based algorithms. For example, the cost of genetic algorithms can be reduced
through the use of surrogates or response surfaces. Various hybrid algorithms are also
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under development (Vicini et al., 1999; Poloni et al., 2000). Furthermore, there exist
techniques, such as variable-fidelity optimization, that can enhance the performance
of both algorithm classes.

The issue of noisy objective function spaces remains open. In aerodynamic shape
optimization, such behavior can be encountered as a result of poor flow solver con-
vergence in some regions of the design space, usually associated with flow separation
and unsteadiness. One does not wish to resolve the noise but to determine the optimal
design with respect to meaningful design variable scales. It is not yet well understood
how well either a gradient-based1 or a genetic algorithm can deal with such design
problems. Although a genetic algorithm can proceed in principle, insufficiently con-
verged solutions can produce misleading results that can lead the genetic algorithm
into nonoptimal areas of the design space.

The above strengths and weaknesses must be considered in choosing an optimiza-
tion algorithm for a specific problem class. A key tradeoff is between the relatively
high development cost of the gradient-based method using an adjoint formulation and
the relatively high computational cost of the genetic algorithm. The more frequently
the algorithm is to be used, the more beneficial the gradient-based algorithm becomes.
Clearly, a quantitative assessment of the computational cost of the two algorithms is
needed to make an intelligent choice for a given class of problems.

3. Optimization process

We consider shape optimization of two-dimensional airfoil sections, including
single-point, multipoint, and multiobjective optimization. The flow is governed by the
compressible thin-layer Reynolds-averaged Navier-Stokes equations along with the
one-equation Spalart-Allmaras turbulence model. The optimization process begins
with an initial airfoil around which a mesh is generated using an elliptic mesh gener-
ator. A B-spline curve is fit to the initial airfoil surface using a prescribed number of
control points, leading to a slightly modified airfoil. The mesh is perturbed to conform
to the new airfoil using a simple algebraic procedure. Thus we have an analytically
defined airfoil whose shape is controlled by a relatively small number of parameters,
the locations of the B-spline control points. Details of the geometry parameterization
and the algebraic mesh modification technique can be found in (Nemec, 2002).

The optimization problem is posed in terms of operating conditions, design vari-
ables, objective functions, and constraints. The similarity parameters, freestream
Mach and Reynolds numbers, provide the necessary operating conditions. The design
variables are a specified subset of the B-spline control point locations. In addition, in
all cases studied here, the angle of attack is also a design variable. Objective functions
for each case are defined below. Geometric constraints, which represent structural
and manufacturing considerations, are imposed by requiring the airfoil thickness to be

1. Adjoint algorithms have been developed specifically for unsteady flows; these are not ad-
dressed in this paper.
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greater than or equal to a specified value at prescribed chordwise locations. These are
added to the objective function as penalty terms.

When the values of the design variables corresponding to the locations of B-spline
control points are changed, a new airfoil shape is produced. The algebraic mesh move-
ment algorithm is used to perturb the original mesh to conform to the altered geom-
etry. The goal of the optimization algorithm is to compute the values of the design
variables that minimize the objective function, which includes the constraints. The
genetic optimization algorithm utilizes the flow solver ARC2D (Pulliam, 1985) to
perform the objective function evaluation, i.e. to solve the governing equations, for a
given geometry. The spatial derivatives in the governing equations are discretized us-
ing second-order centered finite-difference approximations together with scalar artifi-
cial dissipation through a generalized curvilinear coordinate transformation. Iteration
to a steady state is achieved by an implicit approximate factorization algorithm. The
gradient-based optimization algorithm uses the same spatial discretization together
with a Newton-Krylov algorithm to iterate to a steady state (Pueyo et al., 1998). Identi-
cal parameters are used in the spatial discretizations, and consistency between the two
solvers was verified. For a given set of design variables (hence identical meshes) and
operating conditions, the two solvers produce identical solutions. The Newton-Krylov
solver converges somewhat more rapidly than the approximately-factored solver. This
does not affect our cost estimates, however, since we measure cost in terms of function
evaluations, so the actual expense of a function evaluation is not considered.

4. Gradient-based algorithm using the discrete-adjoint formulation

The present algorithm is described in detail in (Nemec et al., 2002; Nemec et
al., 2004). The compressible Navier-Stokes equations are solved with a Newton-
Krylov method in which the linear system at each Newton iteration is solved using the
generalized minimal residual method (GMRES) preconditioned with an incomplete
lower-upper (ILU) factorization with limited fill. The gradient is computed using the
discrete-adjoint method. The discretized flow and turbulence model equations have
been differentiated by hand to obtain the Jacobian. The adjoint equation is solved
using the same preconditioned Krylov solver used by the flow solver. A new set of
design variables is found using a quasi-Newton optimizer in which an estimate of the
inverse Hessian based on the BFGS (Broyden-Fletcher-Goldfarb-Shanno) rank-two
update formula (Nocedal et al., 1999) is used to compute a search direction. If the
initial step does not produce sufficient progress toward the minimum, the step size is
determined using a cubic line search, which terminates when the strong Wolfe condi-
tions (Nocedal et al., 1999) are satisfied. A detailed evaluation of the algorithm was
performed with emphasis on the accuracy and efficiency of the gradient computation
and the efficiency of the flow solver (Nemec, 2002). The resulting algorithm provides
a highly efficient approach for aerodynamic design problems governed by the Navier–
Stokes equations. The preconditioning strategy, in particular, has been optimized for
both the flow solution and the gradient evaluation. Nemec (2002) provides a detailed
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development and validation of the algorithm for single and multipoint airfoil shape
optimization.

5. Genetic algorithm

A generational genetic algorithm (Holst et al., 2001) is used. It combines a num-
ber of ranking and selection techniques, mutations, and perturbations performed on the
exploited chromosomes to produce the exploration set for the next generation. Briefly,
objective function (or fitness) values are computed using ARC2D for a set of chro-
mosomes (or a population) consisting of various sets of values of the design variables
(or genes). The chromosomes are then ranked according to their fitness values, and a
new intermediate generation is selected from the current population using a number
of selection algorithms (e.g. tournament selection, where 3 randomly chosen parents
compete based on ranking, the winners surviving to form the intermediate generation).
The intermediate generation is then processed by cross-over and mutation strategies
to produce the new generation of chromosomes. The genetic algorithm process is
repeated until convergence, which is difficult to define for algorithms of this type.
Typically, convergence of a genetic algorithm is assumed when the objective function
ceases to improve, although this is not always a good measure, since the genetic al-
gorithm can wander around for many generations until a new region of convergence
is found. There are a number of genetic algorithm parameters involved, such as the
number of chromosomes in a generation, the probability of selection, mutation, and
cross-over, and the convergence criterion. These were chosen to optimize the conver-
gence speed of the algorithm (Holst et al., 2001). Efficiency is obtained on a parallel
computing system by parallel evaluation of each chromosome’s fitness value. Most of
the results shown for the genetic algorithm were performed on 32 processors, where
the number of processors chosen was equal to the population size of the optimization
(which is 32 unless otherwise stated).

With a genetic algorithm, a Pareto front can be found using either the weighted-
sum or the dominance Pareto front technique. In the latter case, a chromosome
archival strategy is used, where new points found on the Pareto front are stored in
an accumulation file, producing a well defined front. The archival file can be used in
the ranking process and also as part of the selection pool.

6. Optimization problems

Details of the five optimization problems studied are provided in this section. The
problems are referenced A through E and have been chosen to be representative of
realistic optimization problems. However, design of a practical airfoil requires more
formal definition and treatment of structural and manufacturing constraints, operating
conditions, and off-design performance requirements. Therefore, the optimized air-
foils produced are not suitable for practical use. Problems A through C demonstrate
the effect of the number of design variables on the convergence of the two algorithms.
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Table 1. Thickness constraints for optimization problems A through C

constraint n˚ 1 2 3 4 5 6
location (%c) 5.0 35.0 65.0 85.0 95.0 99.0

thickness (%c) 4.0 11.0 4.0 2.6 1.2 0.2

Table 2. B-spline control points and design variables for problems A through C

problem n˚ of control points n˚ of design variables
(includes angle of attack)

A 15 9
B 25 19
C 45 35

Problem D permits a comparison of the two algorithms in the context of a multipoint
optimization problem, while Problem E is a two-objective example.

6.1. Problems A-C: lift-to-drag ratio maximization

For this problem the objective is to maximize the lift-to-drag ratio of a single-
element airfoil at a Mach number of 0.25 and a Reynolds number of 2.88 million in a
fully turbulent flow. Hence the objective function to be minimized is

J = Cd/Cl + ωTT [1]

where Cd and Cl are the drag and lift coefficients, respectively, T is the penalty term
from the thickness constraints, and ωT is a weight applied to the penalty term equal
to 0.05 for this case. The thickness constraints are given in Table 1 expressed as a
percentage of the airfoil chord c.

The initial shape for the gradient-based algorithm is the NACA 0012 airfoil at
an angle of attack of 9 degrees. The mesh has a “C” topology with 201 points in the
streamwise direction and 45 in the normal direction. Although a finer mesh is required
if high accuracy is needed, this mesh density is adequate for the current purpose.
For Problem A, the geometry is parameterized with 15 B-spline control points, as
shown in Figure 1. Three control points are frozen at the leading edge and four at the
trailing edge. Therefore, four control points on each surface serve as the shape design
variables. Combined with the angle of attack, there are thus nine design variables. For
the genetic algorithm, the initial population is based on a random sampling between
minimum and maximum values for all of the genes, i.e. design variables.
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Figure 1. B-spline control points for optimization problems A, D, and E. The shaded
points are the design variables for problem E

Table 3. Thickness constraints for optimization problem D

constraint n˚ 1 2 3 4
location (%c) 35.0 85.0 95.0 99.0
thickness (%c) 12.04 2.6 1.2 0.2

For Problems B and C, the geometry is parameterized with a larger number of B-
spline control points resulting in a greater number of design variables, as summarized
in Table 2. All other parameters are identical to Problem A.

6.2. Problem D: multipoint example

The objective is to minimize the drag coefficient at a fixed lift coefficient over a
range of Mach numbers from 0.68 to 0.76. The Reynolds number is 2.7 million. By
lifting the lift constraint into the objective function as a quadratic penalty term, the
following objective function is obtained:

J =

 ωl

(
1− Cl

C∗
l

)2

+ ωd

(
1− Cd

C∗
d

)2

+ ωTT if Cd > C∗
d

ωl

(
1− Cl

C∗
l

)2

+ ωTT otherwise
[2]

The target lift coefficient, C∗
l , is 0.733; the target drag coefficient, C∗

d , which is as-
sumed to be unattainable within the specified constraints, is 0.013. The weights are
ωl = 1.0, ωd = 0.1, and ωT = 1.0. The thickness constraints are given in Table 3.
The initial shape, the geometry parameterization, the design variables, and the mesh
are all the same as in Problem A.

A composite objective function is formed with four operating points distributed
over the specified range of Mach numbers. The composite objective function is

Jcomp = ω1JM=0.68 + ω2JM=0.71 + ω3JM=0.74 + ω4JM=0.76 [3]

where, for example, JM=0.68 denotes the objective function given in (2) evaluated at
a Mach number of 0.68. The four weights are ω1 = 1/7, ω2 = 1/7, ω3 = 2/7, and
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Table 4. Thickness constraints for optimization problem E

constraint n˚ 1 2 3 4
location (%c) 2.0 25.0 92.0 99.0

thickness (%c) 4.0 11.8 0.9 0.2

ω4 = 3/7. Since it becomes more difficult to reduce drag as the Mach number is
increased, the higher Mach numbers are given increased weight in order to achieve a
reasonably constant drag coefficient over the specified range of Mach numbers.2

6.3. Problem E: multiobjective example

In this multiobjective optimization problem the two competing objectives are given
by

Jl =
(

1− Cl

C∗
l

)2

+ ωTT and Jd =
(

1− Cd

C∗
d

)2

+ ωTT [4]

These two objectives are in competition because it is generally easier to produce low
drag at a low lift coefficient value. The target lift coefficient, C∗

l , is 0.55; the target
drag coefficient, C∗

d , which is again unattainable within the specified constraints, is
0.0095. The Mach number is 0.7, the Reynolds number, nine million. The weight on
the thickness constraints, which are listed in Table 4, is ωT = 1.0.

In the weighted-sum approach, the two objectives are combined as follows:

J = ωlJl + (1− ωl)Jd [5]

where the relative weight of the two objectives is controlled by ωl. If ωl = 1, then
the solution is nonunique, since there are many airfoil shapes, within the specified
constraints, that can produce a lift coefficient of 0.55. However, even a small weight
on Jd eliminates this nonuniqueness. Therefore, one end of the Pareto front is defined
by the limit as ω1 approaches unity. The other end of the front is obtained when
ω1 = 0, which leads to a pure drag minimization problem subject to the specified
thickness constraints.

The initial airfoil and grid are as described in Problem A. The geometry parame-
terization is also identical, but two additional B-spline control points near the trailing
edge are used as design variables, as shown in Figure 1. Thus there are eleven design
variables, including the angle of attack. Note that, as a result of the need to minimize
the strength of shock waves, aerodynamic optimization problems at transonic speeds

2. See Zingg et al. (2006) for an automated method for determination of the weights in multi-
point optimization.
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(e.g. Problems D and E) typically lead to smoother airfoils than problems at subsonic
speeds (e.g. Problems A to C) and consequently require fewer geometric constraints.

7. Results and discussion

Our goal is to compare the efficiency of the two algorithms for the five optimiza-
tion problems defined above. We measure cost in terms of the number of equivalent
function evaluations (or flow solutions) needed to achieve a given level of conver-
gence. In the genetic algorithm, the processing time needed to compute the required
flow solutions dominates the overall processing time. The total number of flow solu-
tions is roughly equal to the population size times the number of generations needed
to reach a prescribed value of the objective function. It is actually less than this prod-
uct because ten percent of the population survives from one generation to the next
and hence must not be recomputed. Furthermore, a few members of a population at a
given generation may be unacceptable (for example, the airfoil shape may be crossed
over) and hence the flow is not computed for those airfoil shapes. In the gradient-
based algorithm, the cost of computing the gradient is also significant, typically 20 to
50 percent of the cost of a flow solution. Consequently, when calculating the cost of
the gradient-based algorithm we count a gradient computation as equivalent to a flow
solution, which is typical of adjoint methods. Since each step of the gradient-based
algorithm, whether calculating a new search direction or within a line search, involves
one flow solution and one gradient computation, the total number of equivalent flow
solutions is determined simply by multiplying the total number of steps by two.

Each algorithm has several parameters that can affect its efficiency. For example,
within the gradient-based algorithm there must be a convergence criterion for both the
flow solver and the gradient computation. The genetic algorithm also requires a con-
vergence criterion for the flow solver. Another key parameter in the genetic algorithm
is the population size. In our comparisons we use the default set of parameters for
both algorithms. These parameter choices have been found to be efficient for the class
of problems under study.

There are several strategies possible for reducing the cost of both algorithms. For
example, one could consider beginning the optimization using a coarser grid, fewer
design variables, or a simpler set of equations such as the Euler equations (as in vari-
able fidelity optimization). Furthermore, both the genetic and the gradient-based al-
gorithm can be parallelized. The former is particularly amenable to parallelization.
These strategies are not considered in our current comparisons, primarily because in
principle they can benefit both algorithms. Therefore, our present comparison of effi-
cient implementations of the two algorithms in their basic form provides an important
baseline comparison. Given the approximations made in defining the cost of the two
algorithms and the variability associated with parameters and implementation, the re-
sulting comparisons should not be considered precise. Rather they provide a reason-
able estimate of the relative cost of the two algorithms to be expected when they are
applied to optimization problems with characteristics similar to our five examples.
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7.1. Problems A-C: lift-to-drag ratio maximization

7.1.1. Problem A: 9 design variables

The convergence history of the gradient-based algorithm is plotted in Figure 2(a).
The objective function plotted is J∗ = 1/J , where J is defined in (1). Hence J∗ is
roughly equal to the lift-to-drag ratio, but slightly lower due to the contribution from
the thickness constraints. J∗ is increased from 43.22 to 55.96 after 38 iterations, or 76
equivalent function evaluations. The gradient has been reduced by roughly five orders
of magnitude, indicating that the solution is well converged. The final airfoil shape is
shown in Figure 3. The corresponding convergence history of the genetic algorithm
is plotted in Figure 2(b) with respect to generations, where the population size is 32,
i.e. there are 32 chromosomes per generation. The genetic algorithm has produced an
airfoil with J∗ equal to 55.95 after 400 generations (6317 function evaluations).

Table 5 compares the cost of the two algorithms for various levels of conver-
gence, measured as a percentage of the change in J∗ achieved by the fully-converged
gradient-based solution. For example, 90% convergence corresponds to a J∗ value
of 54.68. For this degree of convergence, the genetic algorithm requires 7 times as
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Table 5. Cost to achieve various levels of convergence for problems A to C in terms
of equivalent function evaluations. The column labelled % gives the percentage of the
change in J∗ relative to the fully converged solution. The column labelled ratio gives
the cost of the genetic algorithm divided by the cost of the gradient-based algorithm

gradient-based genetic ratio
% algorithm algorithm

n˚ of variables n˚ of variables n˚ of variables
9 19 35 9 19 35 9 19 35

90 32 52 100 215 899 7,296 7 17 73
95 44 70 150 278 1,432 11,767 6 20 78
98 50 82 202 2,278 2,572 20,727 46 31 103
99 52 88 246 2,745 7,357 46,036 53 84 187

many equivalent function evaluations as the gradient-based algorithm. As the degree
of convergence is increased, this ratio increases dramatically. For 99% convergence,
the genetic algorithm is 53 times more expensive. This reflects the key shortcoming of
genetic algorithms: although the general vicinity of the optimum is found reasonably
quickly, convergence is slow near the optimum.

7.1.2. Problem B: 19 design variables

Figure 4(a) displays the convergence history of the gradient-based algorithm. The
gradient is again reduced several orders of magnitude. After 83 iterations, or 166
equivalent function evaluations, J∗ is increased to 58.48. As shown in Figure 5, the
additional design variables have been exploited to produce two concave regions on the
lower surface fore and aft of the primary thickness constraint at 35% chord. The re-
sulting airfoil shape reinforces the fact that this is not a practical example from either
a structural or off-design performance perspective, but it does provide a good test for
an optimization algorithm. The shape of the lower surface could be improved through
an alternative geometric constraint, such as a cross-sectional area constraint. The cor-
responding convergence history of the genetic algorithm is plotted in Figure 4(b) with
respect to generations, where the population size is again 32. The genetic algorithm
has produced an airfoil with J∗ = 58.41 after 800 generations (25,319 function eval-
uations).

Table 5 again compares the cost of the two algorithms for various levels of conver-
gence. The gradient-based algorithm requires on the order of twice as many function
evaluations as for Problem A. Given that this case has roughly twice as many design
variables, this is consistent with a linear dependence on the number of design vari-
ables. For 90% convergence, the genetic algorithm requires 17 times as many equiv-
alent function evaluations as the gradient-based algorithm. For 99% convergence, the
ratio is 84. The genetic algorithm can converge quite quickly, requiring hundreds of
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Figure 4. Convergence histories for problem B
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Figure 5. Initial and final airfoils from the gradient-based algorithm, problem B

function evaluations, when the number of design variables is small and the conver-
gence tolerance is not too stringent. However, if the number of design variables is
increased or the convergence tolerance is more stringent, then several thousand func-
tion evaluations are needed.

7.1.3. Problem C: 35 design variables

Results for Problem C are shown in Figures 6 and 7, and Table 5. The final J∗

value achieved by the gradient-based algorithm is 59.44, about 2% greater than that
achieved with 19 design variables. The line search stalls when the gradient is re-
duced only to roughly 0.005. Further study is needed to determine whether this is
associated with increased stiffness caused by the increase in the number of design
variables. The gradient-based convergence results are again consistent with a roughly
linear dependence on the number of design variables. A population of 128 chromo-
somes was used with the genetic algorithm for this case, although a population size
of 32 converged only slightly more slowly in terms of function evaluations. After 500
generations (63,216 function evaluations), the genetic algorithm produced an airfoil
shape with J∗ = 59.31, very close to the converged value from the gradient-based al-
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Figure 7. Initial and final airfoils from the gradient-based algorithm, problem C

gorithm. The cost of the genetic algorithm increases more rapidly with the number of
design variables than the roughly linear dependence displayed by the gradient-based
algorithm. As a result, the genetic algorithm requires 73 times as many function evalu-
ations for 90% convergence and 187 times as many for 99% convergence. The relative
performance of the two algorithms reinforces the observations made for Problems A
and B.

7.2. Problem D: multipoint example

In this example, the gradient-based algorithm reduces the objective function from
0.314 to 0.0123 in 104 iterations. Since each iteration involves four flow solutions,
one at each Mach number, this corresponds to 416 flow solutions or 832 equivalent
function evaluations (including the cost of the gradient computation). The gradient is
reduced by over five orders of magnitude, indicating that an optimum has been found.
Figure 8 shows the initial and final airfoils as well as the drag coefficient versus Mach
number at Cl = 0.733. Note that during the optimization the target lift coefficient is
not precisely achieved, as a result of the penalty approach to the imposition of the lift
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constraint.3 However, for the data plotted in Figure 8 the angles of incidence have
been adjusted such that the lift coefficient is exactly 0.733. The drag coefficient is
reasonably constant over the range of Mach numbers used for the optimization. After
18 iterations (144 function evaluations), the objective function is reduced to 0.0268,
and the drag coefficient at M = 0.76 is within five counts (0.0005) of the converged
value.

The genetic algorithm reduces the objective function to 0.0125 after 800 genera-
tions (101,424 function evaluations). A similar value of the objective function is at-
tained by the gradient-based algorithm after 60 iterations (480 function evaluations),
or 211 times faster. The lift and drag coefficients produced by the two algorithms at
the four operating points are almost identical. After 600 generations (76,044 func-
tion evaluations), the genetic algorithm reduces the objective function to 0.0129; the
gradient-based algorithm achieves this value 179 times faster. The genetic algorithm
requires 3,520 function evaluations to reduce the objective function to 0.267, which is
24 times slower than the gradient-based algorithm.

When a multipoint optimization problem is solved with a fixed set of weights, as
we have done here, it is equivalent to obtaining one point on a Pareto front4 using
the weighted-sum approach. Using the genetic algorithm, one can also treat this as
a four-objective problem and apply the dominance Pareto front technique. Figure 9
shows the results from the archival file. Since a four-dimensional front cannot be eas-
ily plotted, the individual fitness values for each individual Mach number are shown.
The chromosomes are ordered in terms of the fitness function computed at the lowest
Mach number. Of course, it is expensive to generate such data, but they can be help-
ful in understanding and subsequently modifying the optimization problem to achieve

3. Zingg et al. (2007) present an alternative approach in which the lift constraint is strictly
enforced.
4. In this case, the front is four-dimensional.
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Figure 9. Results of dominance Pareto front approach, problem D

a specific goal. The fitness functions corresponding to Mach numbers of 0.68 and
0.71 behave similarly. The fitness at the highest Mach number is almost completely
opposed, i.e. an airfoil shape that produces a low fitness function value at low Mach
number produces a high value at high Mach number and vice-versa. The third objec-
tive function lies in between. With the weighted objective function, the optimum is
found for a specific set of weights. With the data shown in the figure, the optimum
can be found for any combination of weights without further optimization. Therefore,
it can be advantageous to take a multiobjective approach to a multipoint problem. The
cost of producing the data plotted in Figure 9 using the genetic algorithm is 38,912
function evaluations. With the equivalent expense, approximately 48 different sets of
weights can be evaluated using the gradient-based algorithm.

7.3. Problem E: multiobjective example

Here we compare the cost of producing a two-dimensional Pareto front by the
gradient-based technique using the weighted-sum approach and the genetic algorithm
using both the weighted-sum and the dominance Pareto front approaches. For the
weighted-sum approach, we use fifteen different values of ωl ranging from 0.01 to
0.99, as shown in Tables 6 and 7.



120 REMN – 17/2008. Shape design in aerodynamics

0 0.1 0.2 0.3 0.4 0.5 0.6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

J d =
 (

1−
(C

d/C
d* ))

2  +
 T

J
l
 = (1−(C

l
/C

l
*))2 + T

ω
l
 = 0.99 

ω
l
 = 0.50 

ω
l
 = 0.01

ω
l
 = 0.20

ω
l
 = 0.10

ω
l
 = 0.02ω

l
 = 0.05

Dominance Pareto Front (Generation 600)

Weighted Sum Genetic Algorithm

Weighted Sum Gradient−Based

Figure 10. Pareto front calculation

The fronts generated are plotted in Figure 10. The drag minimization objective, Jd,
is plotted on the y-axis, the lift objective, Jl, on the x-axis. The front generated using
the gradient-based algorithm can be considered the true Pareto front, since there is a
substantial reduction in the gradient for each point. Furthermore, the front is convex,
so the weighted-sum approach is effective. With ωl = 0.99, the lift objective is close
to zero, since the target lift coefficient is achievable. The drag objective does not
approach zero, even with ωl = 0.01, since the target drag is unattainable. The three
methods produce the same front with small differences related to convergence. This
indicates that the property of the gradient-based algorithm of finding a local minimum
is not an issue for this optimization problem.

The trade-off between lift and drag is shown more clearly by plotting the front
in terms of the lift and drag coefficients rather than the objective functions, as in
Figure 11.5 With ωl = 0.99, the gradient-based algorithm produces an airfoil with a
lift coefficient of 0.549 and a drag coefficient of 0.0121. With ωl = 0.01, the values
are 0.132 and 0.0104. Tables 6 and 7 give detailed data for the airfoils generated by
the two algorithms using the weighted-sum approach. Lack of convergence of the
genetic algorithm is particularly noticeable in the angle of attack (α), but this design
variable tends to vary in conjunction with the trailing edge angle, and the net effect on
the objective function is small. The anomalous results showing the genetic algorithm

5. Note that this obscures the contribution of the thickness constraints.
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Figure 11. Pareto fronts showing lift and drag coefficients

result to be superior (e.g. ωl = 0.01) are caused by incomplete flow solver convergence
in the genetic algorithm result.

Figure 12 shows the intermediate results of the dominance Pareto front approach.
After 600 generations, the front lies very close to that computed using the gradient-
based algorithm. The costs are as follows:

– gradient-based algorithm: the number of iterations needed to compute well con-
verged solutions for each of the fifteen points with the gradient-based algorithm ranges
from 49 to 151. A total of 1,219 iterations are required; hence the cost of computing
the Pareto front shown in Figure 10 is 2,438 equivalent function evaluations;

– genetic algorithm, weighted-sum approach: well converged solutions for each
point are obtained using the genetic algorithm with roughly 4,700 function evalua-
tions. This is consistent with the cost of a convergence level between 98 and 99%
for Problem A, which has a similar number of design variables. The total cost of
computing the front using the weighted-sum approach is thus roughly 70,000 function
evaluations, which is 28 times the cost of the gradient-based approach;

– genetic algorithm, dominance Pareto front approach: as shown in Figure 12, the
front produced using the dominance Pareto front approach after only five generations
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Table 6. Gradient-based algorithm results, problem E

ωl Cl Cd α Jl Jd

0.99 0.5494 0.01211 0.286 0.0000 0.0754
0.90 0.5439 0.01203 0.264 0.0002 0.0713
0.80 0.5371 0.01195 0.243 0.0009 0.0671
0.70 0.5291 0.01187 0.221 0.0023 0.0631
0.60 0.5194 0.01178 0.193 0.0044 0.0592
0.55 0.5137 0.01174 0.180 0.0059 0.0571
0.50 0.5073 0.01169 0.166 0.0079 0.0550
0.45 0.5000 0.01164 0.152 0.0104 0.0527
0.40 0.4915 0.01158 0.135 0.0136 0.0503
0.30 0.4693 0.01145 0.090 0.0242 0.0447
0.20 0.4346 0.01127 0.023 0.0467 0.0375
0.15 0.4080 0.01115 -0.007 0.0693 0.0328
0.10 0.3680 0.01099 -0.055 0.1117 0.0268
0.05 0.2955 0.01074 -0.140 0.2159 0.0189
0.01 0.1321 0.01040 -0.261 0.5781 0.0100

Table 7. Genetic algorithm results with weighted-sum approach, problem E

ωl Cl Cd α Jl Jd

0.99 0.5491 0.01245 2.123 0.0000 0.0961
0.90 0.5437 0.01221 1.884 0.0004 0.0814
0.80 0.5361 0.01197 0.406 0.0011 0.0683
0.70 0.5284 0.01194 1.333 0.0024 0.0668
0.60 0.5194 0.01186 1.309 0.0044 0.0630
0.55 0.5120 0.01175 0.712 0.0064 0.0579
0.50 0.5079 0.01170 0.434 0.0078 0.0558
0.45 0.4949 0.01167 1.000 0.0119 0.0539
0.40 0.4894 0.01162 1.063 0.0145 0.0524
0.30 0.4695 0.01149 0.984 0.0242 0.0470
0.20 0.4338 0.01128 0.420 0.0474 0.0379
0.15 0.3978 0.01111 0.192 0.0789 0.0312
0.10 0.3687 0.01010 -0.003 0.1109 0.0272
0.05 0.2814 0.01069 -0.115 0.2395 0.0167
0.01 0.1402 0.01037 -0.275 0.5561 0.0094
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Figure 12. Pareto front comparison

(105 function evaluations) already displays the basic trade-off between the two com-
peting objectives. Note that for this optimization forty percent of the population is
passed through without alteration from one generation to the next, so the number of
function evaluations is substantially less than the product of the number of generations
and the population size. After ten generations (205 function evaluations), the front is
marginally improved. After 100 generations, the front is well converged except for
the region corresponding to small values of ωl. For 100 generations, 1,999 function
evaluations are needed, which is similar to the expense of the gradient-based method
to achieve a well converged front. Finally, 11,937 function evaluations are needed to
compute 600 generations. The cost using the genetic algorithm with the dominance
Pareto front approach is thus on the order of five times that of the gradient-based
algorithm.

8. Summary and conclusions

A comparative evaluation of a genetic algorithm and a gradient-based algorithm
using the discrete-adjoint approach has been presented in the context of a typical PDE-
constrained optimization problem, namely aerodynamic shape optimization. Single-
point optimization problems with varying numbers of design variables, a multipoint
problem, and a multiobjective problem have been examined. Aspects of the compu-
tations other than the optimization algorithms under study, including the geometry
parameterization and the flow solution are identical, thus permitting an accurate com-
parison between the two algorithms. The objective is to determine a rough estimate
of the relative computing expense of the two algorithms for a representative optimiza-
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tion problem. Given that genetic and gradient-based algorithms have various strengths
and weaknesses, as discussed earlier, their relative cost is a key factor in choosing an
algorithm for a specific class of optimization problems.

The algorithms’ cost is measured in terms of the number of flow solutions required
to obtain specified degrees of convergence. There are several parameters affecting cost
and some approximations made in calculating it, so these numbers should be consid-
ered only as a rough indication of the relative cost. For the single-point optimization
problems, the genetic algorithm varies from 6 to 187 times more expensive than the
gradient-based algorithm, depending on the number of design variables and the degree
of convergence. For the multipoint problem, the genetic algorithm requires roughly
24 to 200 times as many function evaluations. For the multiobjective problem, the
Pareto front can be computed using the weighted-sum approach with either algorithm.
Alternatively, with the genetic algorithm the dominance Pareto front approach can be
used. With the dominance Pareto front approach the genetic algorithm produces a well
converged front three to six times more rapidly than with the weighted-sum approach,
but five times slower than the gradient-based algorithm.

Based on our data the following conclusions can be drawn:

– the gradient-based algorithm using the adjoint approach scales roughly linearly
with the number of design variables, while the genetic algorithm’s cost increases more
rapidly as the number of design variables is increased;

– the cost of the genetic algorithm relative to the gradient-based algorithm in-
creases dramatically with tighter convergence requirements;

– the two algorithms produce essentially identical Pareto fronts;
– using the genetic algorithm, the dominance approach produces a Pareto front

more efficiently than the weighted-sum approach;
– using the weighted-sum approach, the gradient-based algorithm can compute a

Pareto front on the order of five times more rapidly than the genetic algorithm with
the dominance approach.

Although relative cost is only one of several important considerations in choos-
ing an optimization algorithm, our results suggest the following important overall
conclusion. The genetic algorithm may be more suited to preliminary design where
low-fidelity models are typically used (hence reduced function evaluation cost), lower
convergence tolerances are required, and understanding trade-offs is extremely im-
portant. The gradient-based algorithm may be more appropriate for detailed design,
where high-fidelity simulations are used, tighter convergence tolerances are needed,
and although a good understanding of trade-offs remains important in posing the opti-
mization problem, the range of possible designs under consideration is much narrower.
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