
RESEARCH Open Access

A comparative evaluation of hybrid error
correction methods for error-prone long
reads
Shuhua Fu1, Anqi Wang1 and Kin Fai Au1,2,3*

Abstract

Background: Third-generation sequencing technologies have advanced the progress of the biological research by

generating reads that are substantially longer than second-generation sequencing technologies. However, their notorious

high error rate impedes straightforward data analysis and limits their application. A handful of error correction methods

for these error-prone long reads have been developed to date. The output data quality is very important for downstream

analysis, whereas computing resources could limit the utility of some computing-intense tools. There is a lack

of standardized assessments for these long-read error-correction methods.

Results: Here, we present a comparative performance assessment of ten state-of-the-art error-correction methods for

long reads. We established a common set of benchmarks for performance assessment, including sensitivity, accuracy,

output rate, alignment rate, output read length, run time, and memory usage, as well as the effects of error correction

on two downstream applications of long reads: de novo assembly and resolving haplotype sequences.

Conclusions: Taking into account all of these metrics, we provide a suggestive guideline for method choice based on

available data size, computing resources, and individual research goals.

Background
Biomedical research has been revolutionized by the ad-

vent of single-molecule long-read sequencing technolo-

gies, also termed Third Generation Sequencing (TGS)

[1]. The leading platforms are Pacific Biosciences (Pac-

Bio) and Oxford Nanopore Technologies (ONT). Com-

pared to Second Generation Sequencing (SGS)

technologies that produce 100-700 bp reads, PacBio

reads are on average > 10 kb, with maximum read

lengths over 60 kb [1–3]. The ONT platform produces

even longer reads at average of > 20 kb, with maximum

read length > 800 kb [4–8]. The long read (LR) length of

TGS data is particularly useful to address some of the

problems that SGS short reads (SRs) fail to address due

to genome complexity or combinatorial genomic events

[9, 10]. For example, LRs can substantially reduce the

ambiguity of read alignment at highly repetitive genomic

regions and uncertainty in genome or transcriptome as-

sembly [11]. In addition, PacBio data have been reported

to exhibit fewer GC biases compared to Illumina plat-

forms because it does not rely on PCR [12]. Moreover,

the single-molecule sequencing feature of TGS allows

the study of genetic variations and epigenetic modifica-

tions with single molecule resolution [1, 13, 14]. A great

number of laboratories have applied TGS technologies

to different research areas, including biomedical re-

search, plant and animal sciences, and microbial ge-

nomes [15–19]. With the increasing accessibility,

declining cost as well as more demonstrated utilities, the

number of TGS applications is expanding exponentially

(Additional file 1: Figure S1).

A caveat of the single-molecule sequencing with TGS

platforms is the low signal-to-noise ratio and thereby a

high error rate in base calling. The error rates of PacBio

and ONT data can be up to 15% and 40% [20, 21], re-

spectively, which are nearly two orders of magnitude

greater than that of SGS technologies [22]. These high

error rates pose considerable barriers for downstream

data analyses, in particular for single nucleotide analyses
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(e.g., single nucleotide variant (SNV) calling and splice

site determination) [22]. Therefore, error correction

serves as a crucial step to improve data analysis and ap-

plication. It is worth noting that most current TGS gen-

ome assembly tools include a built-in error-correction

stage prior to assembly, which further demonstrates the

importance of error correction [23, 24].

Since 2012, a number of error correction methods have

been developed and generally fall into two categories: self

correction and hybrid correction. The self-correction

strategy corrects error-prone LRs by generating a consen-

sus from a constructed layout of LRs. The built-in

self-correction modules by PacBio and ONT output con-

sensus of LRs from the same DNA molecule, which are

termed Circular Consensus Sequencing (CCS) reads (Pac-

Bio) or 2D reads (ONT) [1, 25]. In the open-source soft-

ware PBcR, the self-correction mode corrects erroneous

regions using the consensus of overlapping LRs [23].

LoRMA polishes reads using long-distance dependencies

from multiple alignments after employing an iterative

de-Bruijn-graph-based approach with increasing k-mer

lengths [26]. However, the self-correction strategy is not

feasible for LRs with low coverage. By contrast, the

hybrid-correction strategy, which utilizes high-accuracy

and cost-effective SR data, can rescue more LRs, especially

the low-coverage LRs. Based on algorithm design,

hybrid-correction methods can be classified into three

classes: alignment-based, graph-based, and dual align-

ment/graph-based (dual-based).

The alignment-based methods map SRs or sequences

assembled from SRs to error-prone LRs and compute a

consensus. pacBioToCA was the first hybrid-correction

method and implemented as a part of Celera Assembler

[27]. LSC increases the sensitivity of SR-LR alignment by

applying homopolymer compression transformation to

SRs and LRs prior to alignment [28]. Proovread per-

forms an iterative procedure for alignment and correc-

tion with successively increasing sensitivity [29].

Nanocorr and ECTools correct LRs with SRs or

SR-assembled unitigs, respectively, both of which are op-

timized using the longest increasing subsequence algo-

rithm [30, 31].

The graph-based methods construct a de Bruijn graph

by SRs, followed by searching for matched paths to LRs

for correction. LoRDEC maps LRs to the de Bruijn graph

based on shared k-mers [32]. Jabba seeks maximal exact

matches (MEMs) between larger k-mers in LRs and a de

Bruijn graph [33]. FMLRC builds an FM index from

Burrows-Wheeler transform (BWT) of SR data and cor-

rects erroneous regions in LRs by seeking paths in a de

Bruijn graph via two passes with short and long k-mers

respectively [34].

In addition, a few error correction tools exploit both

strategies. CoLoRMap corrects LRs by finding a sequence

in an overlapping graph that is constructed by mapping

SRs to LRs; CoLoRMap also corrects regions without SR

alignment by local assembly of unmapped SRs if they have

mapped mates [35]. HALC aligns SR-assembled contigs to

LRs, splits aligned contigs and the corresponding LR re-

gions to construct a contig graph, corrects LRs by seeking

paths representing alignments with minimal total edge

weight, and refines repeat regions in LRs with SRs using

LoRDEC [36].

Among the abovementioned methods, Jabba, ECTools,

and pacBioToCA are known to discard uncorrected

bases, trim, and output parts of LR data, resulting in low

throughput (i.e., termed “selective methods,” underlined

in the figures below).

Here, we present a comparative performance assess-

ment of the ten available state-of-the-art error correc-

tion methods (Table 1, Additional file 2: Note 1). The

objective was to establish a common set of benchmarks

and to provide suggestive guideline on software choice

based on data size, research interest, and computing re-

source requirement. The methods were evaluated in

multiple dimensions, including sensitivity, accuracy, out-

put rate, alignment rate, output read lengths, run time,

and memory usage, as well as the effects of error correc-

tion on two downstream applications of LRs: de novo

assembly and resolving haplotype sequences.

Data and computing settings

We compared the performance of ten error correction

methods on datasets from four model organisms with

different genome sizes. Herein, we refer to the Escheri-

chia coli and Saccharomyces cerevisiae datasets as

“small” datasets that were produced by the PacBio or

ONT platform, and Drosophila melanogaster and Arabi-

dopsis thaliana datasets as “large” datasets that were

produced by the PacBio platform (Table 2). To investi-

gate the effect of SR coverage on error correction per-

formance, we generated random subsets of each SR

dataset with coverages of 5×, 20×, 50×, 75×, and 100×.

All experiments were run on servers with 20 machines

of 16 cores and 256 G memory.

Evaluation strategies

To evaluate the performance of different error correc-

tion methods, original and corrected reads were aligned

to the corresponding reference genomes with BLASR

[37]. True positive (TP) positions are those with errors

that are corrected by an error correction tool, whereas

false negative (FN) positions are erroneous positions

without correction [32]. TP and FN positions can be

computed by Error Correction Evaluation Toolkit [38]

by comparing original and corrected data with the refer-

ence genome. Error rates are computed as the sum of

the numbers of bases of insertions, deletions, and
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substitutions in the alignment divided by the length of

aligned regions for each read [32].

The following evaluation statistics were computed:

� Sensitivity: TP/(TP + FN)

� Accuracy: 1 − error rate

� Output rate: the percentage of reads output from

the original data

� Alignment rate: the percentage of reads aligned to

the reference genome relative to the output data

� Output read length: the lengths of output reads

� Run time: elapsed time consumed by the error

correction tool

� Memory usage: peak memory taken by the error

correction tool

In addition, we also examined the effects of error cor-

rection by different methods on improving de novo as-

sembly and resolving haplotype sequences.

For error correction methods that output split reads

such as Jabba, ECTools, pacBioToCA, and Nanocorr, we

applied the previously published sensitivity calculation

strategy [36], i.e., TH × TP/(TP + FN), where TH is the

ratio of the number of output bases relative to the total

number of bases from initial reads.

Error correction methods with run times greater than

20 days with twenty 16-core machines (i.e., maximal total

elapsed time is ~ 3.46 × 107 s) were not included in the as-

sessment below. The alignment-based methods ECTools

and LSC required run times above this limit for the large

datasets, and thus their performances were not included.

Results
Certain methods were not included in some cases for

the following reasons. pacBioToCA crashed when it

was applied to the S. cerevisae PacBio data with SR

coverage of 75× or 100× and the S. cerevisae ONT

data with SR coverage of 50× or 75×. proovread

crashed when it was applied to the S. cerevisae Pac-

Bio data with SR coverage of 50×, 75×, or 100×. A

tiny fraction (0.005%) of S. cerevisae ONT LRs were

with length > 500 kb and were not included in evalu-

ation by LoRDEC and HALC, owing to that both

have a limit of input read length. LSC crashed on

parts of S. cerevisae ONT data that had insufficient

SR alignment, because LSC applies compression of

homopolymer on SRs and LRs, while errors at homo-

polymer were not as frequent among ONT LRs as

PacBio LRs [39]. For the large datasets, ECTools and

LSC were not included due to excessive run times,

Nanocorr and proovread were not included due to

memory usage issues, and pacBioToCA crashed with

unidentified reasons. In each result section below, we

first examined the performance on PacBio datasets,

followed by ONT datasets.

Sensitivity

Sensitivity is calculated as TP/(TP + FN), with TP being

the number of erroneous positions that are corrected by

error correction tool, and FN being the number of

erroneous positions without correction (see details in

“Evaluation strategies”). In general, most methods dem-

onstrated increased sensitivity on correcting PacBio LRs

with increasing SR coverage (Fig. 1, Additional file 3:

Table S1a). Specifically, FMLRC, Jabba, LoRDEC, HALC,

CoLoRMap, ECTools, and proovread improved dramat-

ically with increasing SR coverage until they reached

saturation (defined as a sensitivity gain of ≤ 0.03 im-

provement). By contrast, LSC, Nanocorr, and pacBio-

ToCA only demonstrated a mild increase in sensitivity

Table 1 References and software URLs of hybrid-correction methods for LRs

Error correction
methods tested

Main strategy Author, year Version in test Reference Software URL

FMLRC Graph-based (Wang et al., 2018) 0.1.2 [34] https://github.com/holtjma/fmlrc

Jabba Graph-based (Miclotte et al., 2015) 1.0.0 [33] https://github.com/biointec/jabba

LoRDEC Graph-based (Salmela et al., 2014) 0.5.3 [32] http://www.atgc-montpellier.fr/lordec/

HALC Dual-based (Bao et al., 2017) 1.1 [36] https://github.com/lanl001/halc

CoLoRMap Dual-based (Haghshenas et al., 2016) 2016-11-30 [35] https://github.com/sfu-compbio/
colormap

ECTools Alignment-based (Lee et al., 2014) 2014-06-27 [30] https://github.com/jgurtowski/ectools

LSC Alignment-based (Au et al., 2012) 1.beta [28] https://www.healthcare.uiowa.edu/
labs/au/LSC/

Nanocorr Alignment-based (Goodwin et al., 2015) 2016-02-27 [31] https://github.com/jgurtowski/Nanocorr

pacBioToCA Alignment-based (Koren et al., 2012, 2013) From Celera
Assembler version 8.1

[27] https://sourceforge.net/projects/
wgs-assembler/files/wgs-assembler/

proovread Alignment-based (Hackl et al., 2014) 2.14.0 [29] https://github.com/BioInf-Wuerzburg/
proovread
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with SR coverage from 5× to 20×. This is likely because

LSC, Nanocorr, and pacBioToCA can correct LR regions

with low SR coverage after SR-LR alignment, while the

methods utilizing a graph-based strategy (FMLRC, Jabba,

LoRDEC, HALC, and CoLoRMap) require sufficient SR

coverage to build the graph.

LoRDEC, HALC, and proovread reached sensitivity

saturation at 20× SR coverage, while FMLRC and

ECTools were at 50×. Depending on the LR dataset,

CoLoRMap and Jabba saturated at high SR coverages

of 20–50× and 75–100×, respectively (and beyond

100× for Jabba on the S. cerevisae and A. thaliana

datasets). In terms of the saturation sensitivities,

FMLRC dominated the other tools on all LR datasets

(e.g., for E. coli 0.9808 vs. 0.3719–0.8897 and except

A. thaliana dataset). However, when only 5× SR cover-

age was available, LoRDEC, HALC, CoLoRMap, LSC,

Nanocorr, pacBioToCA, and proovread provided a

higher sensitivity than FMLRC on the small datasets

(0.1651–0.5458 vs. 0.0242–0.0749). pacBioToCA generally

had very low or the lowest sensitivity in most cases

(0.2507–0.3719).

Overall, the sensitivities achieved with the E. coli Pac-

Bio dataset (i.e., the smallest LR dataset) by most tested

methods were generally greater than those on other

datasets, with the exception of ECTools, which exhibited

a slight higher saturation sensitivity with the S. cerevisae

dataset (0.5458 vs. 0.4936). Jabba, ECTools, and pacBio-

ToCA processed and output incomplete data, which

may contribute to their lower sensitivities (0.0024–

0.8326 on the small datasets).

With respect to SR coverage, the peak sensitivities of

correcting ONT data generally were lower compared to

PacBio data with the same size of LRs, with the excep-

tion of FMLRC, LoRDEC, HALC, and proovread (Add-

itional file 1: Figure S2, Additional file 3: Table S1b).

Similar with the results of the PacBio data, the sensitiv-

ities for E. coli ONT dataset were mostly higher than

those for S. cerevisae ONT dataset, with the exception of

ECTools (e.g., 0.3502 vs. 0.3896 with 100× SRs).

Table 2 Datasets used in performance assessment

Datasets Bacteria Yeast Fly Plant

Reference organism

Name Escherichia coli Saccharomyces cerevisiae Drosophila melanogaster Arabidopsis thaliana

Strain K-12 substr. MG1655 S288C iso-1 Ler-0

Reference sequences NC_000913 NC_0011{33–48}
NC_001224

NT_0337{77–79}
NC_0043{53–54}
NC_0245{11–12}
NT_037436

NC_0030{70–71}
NC_0030{74–76}
NC_001284
NC_000932

Genome size (Mbp) 4.64 12.13 143.73 119.67

PacBio data

Accession number DevNet [53] DevNet [54] SRX499318 [55] SRX533607 [55]

Number of reads 55,137 220,947 6,864,972 7,515,360

Median read length 8473 5295 810 1099

Coverage 113x 112x 204x 301x

Chemistry P6C4 P4C2 P5C3 P5C3

ONT data

Accession number ERR1147227, ERR1147228 [56] ERR1883{398–402}, ERR1883389 [57]

Number of reads 58,221 183,062

Median read length 8652 6427

Coverage 113x 112x

Chemistry R7.3 R7.3/R9

Illumina data

Accession number ERR022075 [58] SRP014568 [59] ERX645969 [60] SRR3166543 [45]

Number of reads 45,440,200 28,943,170 179,363,706 324,725,120

Read length 101 101/152 101 100

Note: To maximize the quality of tested LR data, CCS or 2D LR data were used if available; otherwise, subreads or template LRs from the same molecules were

used instead. ONT LRs were randomly picked out to get the same data size as PacBio data. For E. coli data, 16.29% DNA molecules had ≥ 2 CCS passes in the

PacBio dataset and 70.59% DNA molecules generated 2D LRs in ONT dataset. For S. cerevisae data, 0.68% DNA molecules had ≥ 2 CCS passes in the PacBio dataset

and 42.38% DNA molecules generated 2D LRs in the ONT dataset. There were no CCS reads in the datasets of D. melanogaster and A. thaliana, as provided by the

original authors of the resource [23]
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Accuracy

We next assessed the accuracy of the corrected PacBio

LRs, where accuracy was computed as 1 − error rate (i.e.,

1 − sum of base numbers of insertions, deletions, and

substitutions in the alignment divided by the length of

aligned region for each read; see details in “Evaluation

strategies”). For all methods except Jabba, Nanocorr, and

pacBioToCA, accuracy increased with increasing SR

coverage, and the accuracy patterns with respect to SR

coverages were similar to the sensitivity results for each

method (Fig. 1 and Fig. 2, Additional file 4: Table S2a).

Since Jabba outputs a selected proportion of LRs, the ac-

curacy was the highest for all datasets and at all SR cov-

erages including shallow 5× (e.g., ≥ 0.9996 and ≥ 0.9967

for E. coli and S. cerevisae datasets, respectively); this

level of accuracy approaches the quality of Illumina data.

Therefore, there is little additional benefit by increasing

SR coverage for the accuracy of Jabba, though it is im-

portant to note that sensitivity of Jabba was improved

with more SRs. For the same reason, pacBioToCA was
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Fig. 1 Sensitivity of ten methods on four PacBio datasets using five SR coverages. For the methods that output untrimmed LRs, sensitivity was

calculated as TP/(TP + FN), where TP is true positive and FN is false negative. For the methods that output split reads, sensitivity was calculated as

TH × TP/(TP + FN), where TH is the ratio of the number of output bases over the total number of bases of original reads
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Fig. 2 Accuracy of ten methods on four PacBio datasets using five SR coverages. Accuracy was defined as 1 − error rate, where error rate was

calculated as the total number of bases of insertions, deletions, and substitutions in the alignment divided by the total aligned length of the

corresponding genome
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also of high accuracy (≥ 0.9953 and ≥ 0.9866 for E. coli

and S. cerevisae datasets, respectively). However, it is in-

teresting that the other selective method ECTools had

relatively low accuracy at 5× SR coverage accuracy

(0.9738 and 0.9281 for E. coli and S. cerevisae datasets,

respectively), though the accuracy at ≥ 20× SR coverage

was similar to Jabba. Altogether, these selective methods

output high-accuracy LR fragments under sufficient SR

coverage, although they fail to output whole datasets of

full-length LRs. The trend and accuracy at saturating

coverage levels with FMLRC were very similar to

ECTools, though the relative accuracy of FMLRC at 5×

SR coverage was far lower (< 0.88). LoRDEC, HALC,

and Nanocorr comprised the intermediate group, with

accuracy saturation ranging from 0.9619 to 0.9887 on

the small datasets. CoLoRMap, LSC and proovread

underperformed comparatively with accuracy saturations

ranging from 0.9122 to 0.9718 on the small datasets.

It is worth noting that both sensitivity and accuracy

reach to the saturated values at the same SR coverage

for all methods except Jabba, ECTools, and Nanocorr.

That is, it is possible to achieve the best sensitivity

and accuracy simultaneously as long as sufficient SRs

are provided.

For the non-alignment-based methods that can be ap-

plied to all four PacBio datasets, they generally achieved

greater or equivalent accuracies on the small datasets as

compared to the large datasets. For unknown reasons,

increasing SR coverage reduced the accuracy of Jabba

with the A. thaliana dataset.

Prior to correction, raw ONT LRs had lower accuracy

compared to PacBio raw LRs (0.8221 vs. 0.8677 on E.

coli data and 0.7959 vs. 0.8501 on S. cerevisae data), and

such disadvantage of ONT data remained after error

correction (except correction by the selective methods)

(Additional file 1: Figure S3, Additional file 4: Table

S2b). The output PacBio and ONT LRs by the selective

methods had no substantial difference of accuracy on

the small datasets, as they only trim and output

high-quality fragments of LRs (0.9281–0.9999 vs.

0.9082–0.9999). Considering the other methods, the ac-

curacy difference between corrected ONT and PacBio

LRs decreased, with exception of LSC.

Output rate

Errors are distributed randomly among LRs, and some

LRs are so error-prone that they are hard to correct and

thus may not be output by the error correction software

[1]. Therefore, it is important to evaluate the amount of

data remaining after error correction. When PacBio

datasets were corrected, all methods, except for Jabba,

ECTools, and pacBioToCA, output all or > 90% of input

data (Fig. 3, Additional file 1: Figure S4a, Additional file 5:

Table S3a). Specifically, FMLRC, HALC, and CoLoRMap

output the whole dataset. LoRDEC and proovread only

excluded a trivial number of reads (output rate: > 99.99%

and ≥ 99.16%, respectively). LSC and Nanocorr lost a

small amount of data (output rate: 94.17–97.16% and

92.84–95.70%, respectively) since these alignment-based

methods may not be able to correct and thereby would

not output LRs with no aligned SRs. In particular, the

output rate with these methods did not depend on SR

coverage and LR data size. Note that the output rate

could be increased to 100% by changing the software de-

sign and implementation to include both corrected and

uncorrected LRs. A high output rate can allow users to

maintain data for different research interests and exe-

cute different data analysis strategies.

In contrast, the selective methods Jabba, ECTools, and

pacBioToCA output only the trimmed reads with cor-

rected regions, so their output rates were far lower than

100%. With an output rate of ~ 21% regardless of SR

coverage, pacBioToCA generally had the lowest output

rate among all tests and methods. Exceptions to this

trend include Jabba at 5× SR coverage for all LR datasets

(15.50–18.91%) except E. coli, and ECTools at 5× SR

coverage for the small datasets (0.40–1.28%). With Jabba

and ECTools, the output rate increased considerably be-

tween 5× and 20× SR coverage and continued to in-

crease until saturation at 50–75× and 20–50× SR

coverage, respectively. However, these two methods still

lost a significant amount of data even at saturation (e.g.,

output rate ~ 32% for Jabba on the large datasets).

When ONT datasets were corrected, FMLRC and

CoLoRMap also output whole datasets, and the output

rate of LoRDEC, HALC, and proovread was very high as

well (≥ 97.77%) (Additional file 1: Figure S4b and Figure

S5, Additional file 5: Table S3b). It should be noted that

LoRDEC and HALC that uses LoRDEC as a module

failed to correct LRs with lengths > 500 kb and therefore

excluded a small portion of LRs on S. cerevisae data. Ex-

cept these high-output-rate methods, the other methods

had lower output rates for ONT datasets than the corre-

sponding PacBio datasets from the same species (0.22–

77.54% vs. 0.40–97.16%), as higher error rate of raw data

resulted in fewer correctable LRs.

Alignment rate

Most sequencing data analysis starts with alignment, espe-

cially to reference genomes, so a high alignment rate is

critical for subsequent analyses [40]. While accuracy can

affect alignment rate, these two metrics should be evalu-

ated separately since the alignment tools (e.g., BLASR)

can tolerate certain numbers of errors. More importantly,

accuracy is critical for nucleotide analysis, such as variant

calling and alternative splice site detection, while some

other applications such as fusion gene detection and

abundance estimation require high alignment rate but not
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high resolution at the single nucleotide level [41]. For the

small datasets from the PacBio platform, the alignment

rates were almost contrastive to the output rates: ECTools

and pacBioToCA had the highest alignment rates (≥

99.48% and ≥ 99.29%, respectively) though they had the

poorest output rates; LSC and Nanocorr had intermediate

alignment rates (≥ 97.38% and ≥ 98.28%, respectively),

similar to their rank for output rate; FMLRC, LoRDEC,

HALC, CoLoRMap, and proovread, which output all or

almost all LRs, had the lowest alignment rates (95.51–

97.27% with 5× SR coverage) (Fig. 3, Additional file 1: Fig-

ure S4a and Figure S6a, Additional file 6: Table S4a). It is

likely that Jabba, ECTools, and pacBioToCA selectively

output high-quality LR fragments that were easy to align,

while the high output-rate methods included uncorrected

LRs that thus caused lower alignment rate. Overall, the

alignment-based methods (except proovread) tended to

achieve higher alignment rates because their output LRs

had been corrected by aligned SRs, which in turn could

serve as the seeds to align the output LRs.

As SR coverage increased from 5× to 100×, the align-

ment rates of LoRDEC, HALC, CoLoRMap, and proov-

read all decreased by 1–7% with the small datasets. A

similar yet smaller decrease (< 1%) in alignment rate

with respect to SR coverage existed in LSC, Nanocorr,

and pacBioToCA with the small datasets. As exceptions,

the alignment rates of FMLRC, Jabba, and ECTools did

not have a clear dependence on SR coverage.

The alignment rates for the graph-based methods were

much lower for the large datasets as compared to the small

datasets (Additional file 1: Figure S6b). Jabba achieved the

highest alignment rates with the large datasets. As SR

a

b

Fig. 3 Output rates and alignment rates of ten methods on PacBio datasets using five SR coverages. The comparisons were performed on a the

small datasets (i.e., E. coli and S. cerevisae) and b the large datasets (i.e., D. melanogaster and A. thaliana). The tests that failed to complete are not

shown. The circle diameter is positively correlated to the output rate, with the scale on the right side ranging from 0.20 to 100.00%. The dashed

circles represent 100.00% output rates. The numbers labeled in circles represent the corresponding alignment rates that are also scaled with rainbow

colors. The output rates of raw reads are 100.00% and the corresponding alignment rates are also shown for comparison
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coverage increased, the alignment rates of LoRDEC and

CoLoRMap increased mildly but were still at low values of

~ 30%. In contrast, the alignment rates for FMLRC, Jabba,

and HALC improved strikingly with increasing SR cover-

age, where Jabba was still highest at 86.50% and 92.02%

with D. melanogaster and A. thaliana datasets, respectively.

Because of the lower accuracy (Additional file 4: Table

S2b), raw ONT LRs had lower alignment rates than Pac-

Bio raw LRs (74.02% vs. 96.93% on E. coli data and

57.64% vs. 96.13% on S. cerevisae data; see Additional

file 6: Table S4b). After error correction, the output of

most methods had much lower alignment rates of ONT

data than the corresponding PacBio data from the same

species (e.g., 74.30–82.64% vs. 96.20–97.54% on E. coli

data by FMLRC), with the exception of the selective

methods and Nanocorr that merely output parts of data-

sets (Additional file 1: Figure S5 and Figure S6c).

Output read length

LR length is the main advantage of TGS data for many ap-

plications (e.g., genome assembly) [31]. Thus, we investi-

gated how well the methods maintain the read lengths on

PacBio datasets (Fig. 4, Additional file 1: Figure S7). All

methods, except for the three selective methods and

Nanocorr, output read lengths that were similar to the

length of the input data (median length: 7920–8443 bp

output vs. 8473 bp input for E. coli dataset and

5006-5453.5 bp vs. 5295 bp for S. cerevisae dataset). The

output read lengths generally mildly decreased as SR

coverage increased since insertions are the main errors in

PacBio data, i.e., the increasing SR coverage improved the

accuracy, and the corrected reads with fewer insertion er-

rors were slightly shorter [12]. In contrast, the selective

methods output very distinct length profiles that were

much longer or much shorter than input LRs, which oc-

curred due to two reasons: (1) the selective methods

merely output a small proportion of LRs and (2) they out-

put trimmed reads with corrected regions. For the small

datasets, Jabba output very short reads (median length: 93

bp for E. coli dataset and 360 bp for S. cerevisae dataset) at

5× SR coverage and generally exhibited significant in-

creases in output read lengths with increasing SR cover-

age, which was consistent with the improved output rates

(up to > 80%). Although the median output read length of

ECTools was far shorter than the median input length

(4926 bp vs. 8473 bp for E. coli dataset and 3627 bp vs.

5295 bp for S. cerevisae dataset) at 5× SR coverage, it sig-

nificantly increased as SR coverage was increased from 5×

to 50× and then saturated. The corresponding median

read length at 50× SR coverage was much longer than the

input read length (9159 bp for E. coli dataset and 6403 bp

for S. cerevisae dataset). In case of sufficient SR coverage,
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Fig. 4 Output LR lengths of ten methods on E. coli PacBio dataset using five SR coverages. The length distributions were shown in boxplots

(outliers not shown). The medians are labeled above the corresponding boxplots
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ECTools appeared to selectively remove some short LRs

for an unknown reason. The median lengths of output

reads by pacBioToCA were only 211–450 bp, and no sub-

stantial improvement was observed with increasing SR

coverage. pacBioToCA appeared to trim LRs into many

small corrected pieces. Interestingly, Nanocorr also output

shorter reads (longest median length: 6486 bp vs. 8473 bp

for E. coli datasets and 3278 bp vs. 5295 bp for S. cerevisae

dataset), and read length increased as SR coverage in-

creased, similar to Jabba. However, Nanocorr output read

length was generally longer than Jabba, especially for shal-

low SR coverage (i.e., 5×). The output rate of Nanocorr

was still around 95% as compared to the selective methods

of 0.40–88.35% (Fig. 3). A possible explanation is that

Nanocorr trimmed small fragments from each LR, such as

the 5′ and 3′ termini where SR coverage is missing, the

selective methods trimmed single reads into multiple cor-

rected fragments. The remaining methods output intact

reads including corrected and uncorrected regions.

As SR coverage increased, there was a mild trend of

decreasing output ONT read length as E. coli PacBio

dataset, by the methods except the selective ones, LSC

and Nanocorr (Additional file 1: Figure S8). The overall

output read lengths by LSC were much longer than the

raw ONT LRs (median length: 9237–9263 bp vs. 8652 bp

on E. coli ONT data and 9367.5–9626 bp vs. 6427 bp on

S. cerevisae ONT data), as longer ONT LRs had higher

probability to have SR alignment for correction by LSC.

Run time

Run time is an important practical factor users need to

consider before they apply an error correction method.

For PacBio LRs, the graph-based methods generally proc-

essed the small datasets with much shorter run time rela-

tive to the alignment-based methods (magnitude of 10–

103 s vs. magnitude of 102–107 s) (Fig. 5, Additional file 1:

Figure S9a, Additional file 7: Table S5a). The differences

were magnified with increasing SR coverage, i.e., the run

times for the alignment-based methods were more

dependent on SR coverage than the graph-based methods.

The graph-based methods use SR-constructed graphs ra-

ther than direct usage of SRs in correction. Graph size

may not considerably enhance when SR data are sufficient,

and also the graph construction stage is very time-efficient

[42, 43]. SR coverage effect thereby is not as striking as

the alignment-based methods on run time. Jabba outper-

formed all other methods on the small datasets with dif-

ferent SR coverage in terms of run time (only 32–1041 s),

while FMLRC or LoRDEC had the shortest run times on

the large datasets (44,312–202,940 s). Jabba has been pre-

viously reported to use long run time on the large datasets

[36]. As expected, the run times for the dual-based

methods, HALC and CoLoRMap, were generally inter-

mediate (e.g., magnitude of 103–104 s for the small

datasets) between the graph-based and the alignment-

based methods. Among the alignment-based methods,

pacBioToCA required the shortest run time (e.g., 534–

29,956 s for the small datasets), though it crashed due to

unidentified reasons when the input was higher coverage

SR data (i.e., 75× and 100× for S. cerevisae data) or the

large datasets. The alignment-based methods ECTools,

LSC, Nanocorr, and proovread had much longer run times

(magnitude of 104–107 s) with the small datasets as com-

pared to other methods. Among the slowest methods, in-

put LRs were divided into small portions to run ECTools,

LSC, and Nanocorr as the software manuals suggested.

This protocol of splitting LRs for SR alignment separately

has been reported to take longer total run time [44], so

the run times of these methods may be overestimated. In

particular, ECTools and LSC did not complete the large

datasets by the 20-day run time limit; Nanocorr and

proovread exceeded the memory usage limit of 256 G and

crashed with higher SR coverage or the large datasets.

ONT LRs with the same data size as PacBio data gen-

erally took less run time, e.g., the run time of E. coli

ONT and PacBio data by FMLRC was 119–944 s and

169–1072 s, respectively (Additional file 1: Figure S9b

and Figure S10, Additional file 7: Table S5b). Compared

to PacBio data, ONT raw reads are of higher error rate

and thus have more extremely erroneous regions [1] that

are not correctable. Few SR-LR alignments or paths be-

tween solid k-mers can be found at extremely erroneous

regions and thus correction by the alignment-based

methods or the graph-based methods was difficult. With

the exception of the selective methods, the graph-based

methods still outperformed the alignment-based

methods on the ONT data (magnitude of 102–104 s vs.

magnitude of 104–107 s), and the dual-based methods

were between them (magnitude of 103–104 s). This trend

was the same as the PacBio data.

Memory usage

Memory usage is another factor that users should con-

sider with their computing resources available. In terms

of memory usage for correcting PacBio LRs, LoRDEC

was one of most efficient methods with no appreciable

SR coverage dependence (Fig. 5, Additional file 1: Figure

S11a, Additional file 8: Table S6a), which only required

1–2 G on both the small and large datasets. This is likely

because LoRDEC utilizes GATB core to construct de

Bruijn graph from SRs and traverse paths in the graph,

which is particularly memory-efficient [43]. FMLRC and

Jabba had similar memory efficiencies and very mild SR

coverage dependence for the small datasets (from 1 to 8

G). By contrast, the memory usage for Jabba, and to a

lesser extent FMLRC, exhibited substantial SR coverage

dependence for the large datasets, e.g., Jabba’s memory

usage for D. melanogaster data with 100× SR coverage
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exceeded 180 G, majorly given to the storage of the en-

hanced sparse suffix array [33].

The dual-based methods HALC and CoLoRMap

generally were less memory-efficient than the graph-

based methods (e.g., 19–118 G vs. 1–8 G on the

small datasets) and some alignment-based methods

(i.e., ECTools, LSC, and pacBioToCA for the small

datasets (0.32–31 G)). Memory usage of HALC was

relatively stable for LR datasets regardless of SR

coverage (19–36 G on the small datasets and 114–

142 G on the large datasets). The memory usage for

CoLoRMap for the small datasets rose as SR cover-

age increased and reached a plateau at 20× or 50×

SR coverage (in the neighborhood of 82 G and 113 G

for E. coli and S. cerevisae datasets, respectively),

while it was of little dependence on SR coverage and

Fig. 5 Run time and memory usage of ten methods on PacBio datasets using five SR coverages. The comparison was performed on four PacBio

datasets with five SR coverages. The performances for run times are shown with bars and for memory usages are shown with line plots. The best

performance of run time is labeled with an asterisk. Methods are organized from left-to-right as follows: “G”- graph-based (FMLRC, Jabba and

LoRDEC), “D”- dual-based (HALC and CoLoRMap), and “A” - alignment-based (ECTools, LSC, Nanocorr, pacBioToCA and proovread). “T/M/U” - the

method failed due to Time/Memory/Unidentified issue
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maintained at high memory usage (122–165 G) for

the large datasets.

Among the alignment-based methods, ECTools,

LSC, and pacBioToCA were very memory-efficient. In

particular, ECTools used the similar memory (≤ 4 G)

as LoRDEC for the small datasets. However, two other

alignment-based methods, Nanocorr and proovread,

required a lot more memory (up to > 200 G for the

small datasets) and their memory usage highly

depended on LR data size or SR coverage. They

crashed due to > 256 G memory usage with the large

datasets; proovread also crashed with the S. cerevisae

LR datasets at ≥ 50× SR coverage.

Considering practical application, regular desktops

with 32 G memory could be sufficient to run FMLRC,

Jabba, LoRDEC, ECTools, and LSC for the small data-

sets. By contrast, CoLoRMap, Nanocorr, and proovread

required far more memory as SR coverage increased and

High-Performance Computing (HPC) machines should

be used. To run the large datasets, except that LoRDEC

required only 2 G memory, HPC machines were re-

quired for FMLRC, Jabba, HALC, and CoLoRMap (e.g.,

some cases even reached > 128 G memory usages).

Overall, ONT LRs had less memory usage than

PacBio LRs (e.g., 5–33 G vs. 21–161 G on the small

datasets by proovread) (Additional file 1: Figure S10

and S11b, Additional file 8: Table S6b). The memory

consuming method proovread did not crash on ONT

data as PacBio data, perhaps because fewer SR-LR

alignments could be obtained due to the lower

accuracy of raw ONT LRs [1]. The graph-based

methods were also memory efficient on ONT LRs

(0.15–2 G for the small datasets).

Overall performance

We here assessed the overall performance of the ten

error correction methods by taking into consideration

the metrics evaluated above. Using the E. coli PacBio

dataset as an example, the methods were segregated into

three groups: graph-/dual-based, alignment-/dual-based,

and selective methods (Fig. 6). Generally, the graph-/

dual-based methods had better overall performance, and

FMLRC had the best overall performance.

The graph-based methods FMLRC and LoRDEC together

with the dual-based method HALC had very similar perfor-

mances: superior sensitivity and accuracy, high output rate

and alignment rate, and efficient memory usage (shaded in

blue in Fig. 6). Their time efficiency was better than the

others yet lower than Jabba, though Jabba only output part

of the data. The only caveat was that sensitivity relied on

SR coverage: their sensitivities were poor on 5× SR cover-

age data, whereas 20× SR coverage was sufficient to achieve

reasonable performance. In particular, FMLRC provided

the highest sensitivity at 50× SR coverage. HALC required

Fig. 6 Radar charts of ten methods on E. coli PacBio dataset using five SR coverages. The six performance metrics include sensitivity, time

efficiency, memory efficiency, accuracy, alignment rate, and output rate. The color depth is positively correlated to SR coverage. Time efficiency is

computed as the log10 transformed run time that is further normalized to 0–1 range: 0 corresponds to the longest run time and 1 corresponds

to the shortest run time among ten methods with five SR coverages. Memory efficiency is computed as the memory usage that is normalized to

0–1 range: 0 corresponds to the highest memory usage and 1 corresponds to the lowest memory usage among ten methods with five SR

coverages. According to the overall performance, ten methods are grouped and shaded: blue—the graph-based FMLRC and LoRDEC plus the

dual-based HALC; pink—the alignment-based LSC, Nanocorr, and proovread plus the dual-based CoLoRMap; gray—the selective methods Jabba,

ECTools, and pacBioToCA
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more memory usage as it is dual-based, and the alignment

part may not be memory-efficient.

The second group consisted of the alignment-based

methods LSC, Nanocorr, and proovread and the

dual-based method CoLoRMap (shaded in pink in Fig. 6).

As compared to the first group, these tools had compar-

able yet slightly lower sensitivities, accuracies, and out-

put rates. However, their alignment rates were generally

slightly higher, especially compared to LoRDEC and

HALC (90.87–99.30% vs. 89.69–97.27%). The second

group shared the drawback of poor computing effi-

ciency. Except for LSC, the methods in this group re-

quired high memory usage that increased dramatically

with SR coverage. Because of the memory issue, Nano-

corr and proovread failed in the large datasets. In

addition, they all had exceptionally long run times. The

run times for LSC (from 149,736 s to 3,266,168 s) and

Nanocorr (from 120,518 s to 1,816,642 s) increased by

one order of magnitude as SR coverage increased from

5× to 100×. Within this group, a specific weakness of

Nanocorr was the relatively short output read length

(Fig. 4) (range of median lengths: 4056–6486 bp for

Nanocorr vs. 8097–8443 bp for the other members).

Output read length and output rate were notable is-

sues for the selective methods (shaded in gray in Fig. 6).

Because these methods output a small subset of the data

(i.e., very low output rate and sensitivity), they were

memory efficient (0.35–20 G) and their output data were

of high accuracy (0.9738–0.9999) and alignment rate

(95.72–99.98%). However, run times were still long ex-

cept Jabba (534–33,257 s vs. 32–161 s). It is worth noting

that Jabba rescued the output rate and sensitivity with

75× SR coverage to approach the output rate and sensi-

tivity of the other two groups of methods. While the in-

creasing SR coverage improved the output rate of

ECTools (from 1.28 to 72.95%), it could not improve the

output rate of pacBioToCA (from 21.53 to 21.63%) but

extended the run time (from 534 to 11,142 s).

As compared to the E. coli dataset, the sensitivity and

alignment rate decreased when larger PacBio LR datasets

were applied (Additional file 1: Figure S12). The overall

performance of the methods was very similar between

the two small datasets. For the large datasets, the

graph-based and the dual-based methods ran success-

fully while the alignment-based methods failed. In par-

ticular, the first group mentioned above maintained high

accuracy and output rate. Although the overall perform-

ance of all methods decreased for the large datasets, sev-

eral graph-/dual-based methods still stood out on

specific metrics, such as a high computing efficiency by

LoRDEC and a relatively high alignment rate by Jabba

and HALC.

Overall, high computing efficiency was a remark-

able advantage for the graph-based methods over the

alignment-based methods, which is very likely due to

the algorithm design [34]. On the other hand, the

alignment-based methods could achieve reasonable

performance with shallow SR coverage. The dual-

based method HALC uses LoRDEC as a plugin and

thus had similar performance to the graph-based

methods, while the other dual-based method CoLoR-

Map is similar to the alignment-based methods.

Most methods had similar performance on correcting

ONT data with PacBio data, yet with lower alignment

rate and accuracy (Additional file 1: Figure S13). Raw

ONT LRs had lower accuracy, resulting in bigger chal-

lenges of correction. We next analyzed the effects of

error correction on two downstream applications: de

novo assembly and resolving haplotype sequences.

Performance on improving de novo assembly

An important goal of error correction is to provide

better-quality LRs for de novo assembly, so we also

evaluated the error correction performance by ten

error correction methods on improving de novo as-

sembly (Additional file 2: Note 2, Additional file 9:

Table S7). All assemblies were performed by Miniasm

[45], a software that performed assembly without

built-in error correction or consensus calling. There

were some failures of assembly due to insufficient

genome coverage of corrected LRs, including those by

the selective methods, and LSC that crashed and only

output parts of S. cerevisae ONT dataset (labeled with

“NA” in Additional file 9: Table S7).

First, we assessed the number of assembled contigs

that should be ideally close or equal to the number of

chromosomes. When assembling E. coli genome by Pac-

Bio data, both raw and corrected LRs (except by the se-

lective methods) generated similar numbers of contigs

(1–3) with the number of chromosome (1). However,

the assemblies of more complicated genomes (i.e., D.

melanogaster and A. thaliana) by corrected LRs pro-

duced a lot more contigs than the raw data, with an ex-

ception of the selective method Jabba. The contig

numbers assembled from ONT LRs were closed to those

from the corresponding PacBio datasets.

N50 of the assemblies by selective-method-corrected

LRs was far shorter than the others, including the ones

by raw data, because the selective methods only output

small fractions of LRs. Considering the other methods,

the assemblies of the simple E. coli genome by corrected

LRs produced N50 closer to the true value, especially

when enough SR coverage was provided (e.g., 4.64Mb

by FMLRC-corrected PacBio LRs with 75× SRs vs. 4.64

Mb E. coli genome size). When assembling the more

complicated genome of S. cerevisae, N50 improved sig-

nificantly with corrected LRs except by the selective

methods, compared to raw reads (e.g., 666,643–817,703
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bp using 100× SRs vs. 586,605 bp by raw reads). Interest-

ingly, the corrected LRs mostly provided shorter N50 for

the large datasets than raw LRs (e.g., 13,830–1,331,739

bp vs. 1,501,783 bp on A. thaliana data), given that hy-

brid correction is harder for complex genomes and this

process may introduce errors, resulting in misassemblies.

Compared to PacBio LRs, the maximal N50 of assem-

blies by the corresponding ONT LRs (with/without cor-

rection) was shorter (e.g., 817,703 bp vs. 782,610 bp on

S. cerevisae data).

We next examined genome fraction that reflects

completeness of assemblies. The assemblies on the Pac-

Bio small datasets by the methods (including FMLRC,

HALC, and CoLoRMap) with 100% output rate (Add-

itional file 5: Table S3a) had genome fractions closed or

equal to 1. Although ECTools and pacBioToCA only

output LR fragments selectively, they still achieved gen-

ome fractions closed or equal to 1 with sufficient SR

coverage (e.g., ≥ 50×). However, genome fraction by

Jabba was low even using 100× SRs (0.82 on E. coli data

and 0.51 on S. cerevisae data), albeit it had higher out-

put rates than the other two selective methods (15.50–

88.35% vs. 0.40–73.00% on small PacBio datasets, Add-

itional file 5: Table S3a). Both raw and corrected LRs of

the large datasets (except being corrected by Jabba) had

higher genome fractions than the small datasets (1.07–

1.82 vs. 0.97–1.05), while those by Jabba remained very

low (≤ 0.39). Assemblies on ONT LRs with correction

generally had genome fractions lower than those by

PacBio LRs (e.g., 0.93–0.98 vs. 1.01 on S. cerevisae data

by FMLRC).

The effect of ten hybrid-correction methods on contig

sequence accuracy (i.e., 1 − error rate of contig se-

quences) was also evaluated. With hybrid correction

prior to assembly, contig sequence accuracy was im-

proved dramatically for all methods (e.g., for E. coli Pac-

Bio data, assembly by raw data 0.8686 vs. corrected data

0.8828–0.9995, more details in Additional file 9: Table

S7a). The improvement generally increased with SR

coverage and tiny variance existed after saturation. Al-

though the assembly by Jabba-corrected data provided

the highest contig sequence accuracy in most cases, it

should be noted that the corresponding genome fraction

was very low.

Altogether, except the selective methods, assemblies

by the other hybrid-corrected LRs improved contig

numbers, N50, and genome fraction in most cases. Error

correction methods except selective ones generally im-

proved contig sequence accuracy that increased with SR

coverage. The selective methods, especially Jabba, helped

to achieved assemblies with highest contig sequence ac-

curacy, while they sacrificed the assembly completeness

and continuousness. However, with sufficient SRs,

assemblies on the output of ECTools and pacBioToCA

could achieve genomic fractions close to 1. To date,

a handful of algorithms have been developed to as-

semble genomes with built-in error correction mod-

ules [24, 46, 47].

Performance on correcting bases at heterozygous

positions

Given that heterozygosity study is a crucial for diploid

or polyploid organisms, we assessed the performance of

TGS error correction methods on correcting bases at

heterozygous positions of simulated human genomic

data: paternal and maternal genomic LRs were corrected

by randomly mixed SRs from these two haplotypes. We

presented the results of FMLRC and LoRDEC here, as

they were time- and memory-efficient to handle the hu-

man data of large volume (Additional file 2: Note 3,

Additional file 10: Table S8).

Many errors at heterozygous positions of the simu-

lated PacBio LRs remained uncorrected (6.19–12.36%

false negative rate (FNR) in our tests), but also a number

of correct bases at heterozygous positions were altered

to errors by FMLRC or LoRDEC (5.66–13.32% false

positive rate (FPR) in our tests). Both FPR and FNR of

FMLRC increased substantially with SR coverage from

5× to 20×: FPR rose from 5.66 to 9.50% and FNR from

6.19 to 9.49%. On the contrary, FPR and FNR of LoR-

DEC decreased from 13.32 to 5.96% and from 12.36 to

9.13%, respectively. That is, shallow SR coverage (e.g.,

5×) is relatively beneficial for FMLRC to maintaining in-

formation of haplotypes during correction whereas

higher SR coverage (e.g., 20×) is favorable by LoRDEC.

FPR and FNR were higher for the simulated ONT LRs

than those for the corresponding PacBio LRs (e.g., FPR:

9.51% vs. 5.66% by FMLRC with 5× SRs). It indicates

that it is more challenging to maintain information of

haplotypes when correcting ONT data. As SR coverage

increased from 5× to 20×, FPR and FNR for the simu-

lated ONT data corrected by FMLRC rose dramatically

(from 9.51 to 14.26% and from 9.75 to 14.44%, respect-

ively) as for the simulated PacBio data, while there was

only mild difference for correcting the simulated ONT

data by LoRDEC (from 15.91 to 14.77% and from 16.01

to 15.35%, respectively).

Although FMLRC and LoRDEC showed superior per-

formance in the other evaluations, neither of them could

recover/maintain true heterozygous bases in PacBio or

ONT LRs with low FPR or FNR. Therefore, error cor-

rection on heterozygous genomic LRs remains a tough

problem, as shown in SGS genomic data previously [48].

Comparison between self correction and hybrid

correction

Both self correction and hybrid correction can in-

crease accuracy of LRs (Additional file 1: Figure S14,

Fu et al. Genome Biology           (2019) 20:26 Page 13 of 17



Additional file 2: Note 4). Pass number is the number

of raw reads (e.g., subreads) to generate corrected

consensus (e.g., CCS reads). The accuracy of CCS

reads with at least two passes was generally higher

than subreads (median 0.9069–0.9961 vs. 0.8728),

which increased as pass number increased and satu-

rated at pass number of 5. Similarly, ONT 2D reads

also generally had higher accuracy than the raw reads

(named template reads) (median 0.8572 vs. 0.6807). It

should be noted that the accuracy of 2D LRs was not

high, because the accuracy of the raw ONT data is

low and the maximal pass number for ONT data is

only 2.

Using hybrid correction, PacBio reads reached a

saturated accuracy with ≥ 50× SRs (median 1.0000),

which was comparable to the saturated accuracy of

PacBio CCS reads with ≥ 5 passes (median 0.9961).

The accuracy of ONT 2D reads (median 0.8572) was

generally between hybrid correction with 5× SR

coverage (median 0.6867) and 20× SR coverage (me-

dian 0.9526), while it was far lower than the satu-

rated accuracy with ≥ 50× SRs (median 1.0000).

Considering the trade-off between read length and

pass number of PacBio CCS reads [1], and the rela-

tively low accuracy of ONT 2D reads (median < 0.9),

hybrid correction could be very helpful to obtain

highly accurate LRs.

Discussions and future directions

Given the strengths of LR length and no requirement

on PCR, use of TGS technologies will inevitably con-

tinue to expand [1]. Since the corresponding high

error rate is inherent to the low signal-to-noise ratio

in single-molecule sequencing technologies, it will be

hard to achieve the accuracy of SGS in the near fu-

ture [39]. Thus, error correction prior to downstream

data analyses is essential. Self correction and hybrid

correction both can increase accuracy of raw LRs,

while self correction has remarkable limits: the

greater number of passes can increase accuracy of

PacBio CCS reads yet at the cost of read length, and

the highest pass number of ONT data is only 2. Hy-

brid correction could be helpful to obtain highly ac-

curate LRs. Furthermore, hybrid error correction

using SRs can rescue LRs so that they can be align-

able and usable for assembly, which can reduce the

relatively high cost of TGS data [32].

In this study, we assessed ten existing error correc-

tion methods in terms of sensitivity, accuracy, output

rate, alignment rate, output read length, run time,

and memory usage. The test data included four Pac-

Bio datasets as well as two ONT datasets from four

model organisms with five different SR coverages.

Overall, the graph-based methods compared favorably

with the alignment-based methods. FMLRC in par-

ticular had slightly better overall performance than

the other graph-based methods. However, if only low

SR coverage data are available, the graph-based

methods are not as robust as the alignment-based

methods. The alignment-based methods except the se-

lective methods generally have comparable yet slightly

lower sensitivity, accuracy, output rate, and alignment

rate, while the primary drawbacks of the alignment-

based methods are long run time and high memory

usage. ECTools and pacBioToCA require similar

memory usage as the graph-based methods. Although

it is not clear how and what criteria Jabba, ECTools,

and pacBioToCA use to select and trim reads, these

methods may still satisfy some specific research inter-

ests, such as scenarios that require very high accuracy

but are not concerned with read length or data loss.

Unlike SR coverage, LR coverage is not a key factor af-

fecting performance of hybrid-correction methods, be-

cause each LR is treated independently in hybrid

correction regardless of the types of algorithms. Some

procedures that rely on LR coverage, such as LR layout

generation or consensus inference, are rarely carried out

in hybrid correction, yet the LR coverage needs to be

taken into account in self-correction methods [26].

Generally, the tested methods had better overall per-

formance on the small datasets than the large datasets.

Theoretically, both the alignment-based and the graph-

based algorithms corrected LRs separately, so the rela-

tively poorer performance on the large datasets is likely

due to the complexity of the genomes of D. melanoga-

ster and A. thaliana. de Bruijn graphs from complex ge-

nomes could contain more branches, bubbles, or other

complicated structures [49]. On the other hand, in a

complex genome, the alignment of SRs against LRs

could also include a number of false positive results [28].

In particular, high repeat content across a genome poses

substantial challenges to error correction, such as the

stage of assigning SRs to LRs in alignment-based

methods, as well as the process of searching LR-matched

paths in de Bruijn graphs constructed with SRs in

graph-based methods [38, 50, 51].

In addition, parameter setting is an important consid-

eration to run the error correction methods. For

example, the choice of k-mer length is key for the per-

formance of the graph-based and the dual-based

methods. For example, Jabba was designed to correct

LRs by de Bruijn graph with a relatively large k-mer size

(e.g., 71 or 75), which aimed to gain high accuracy per

base as well as to resolve repeats in the graph [33]. On

the contrary, LoRDEC was developed with short k-mer

(e.g., 17 or 19 for data from small genomes, and 21 for

large genomes). The coverage threshold of k-mers is an-

other important parameter in LoRDEC: lower values
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result in more complex graphs and higher values cause

gaps of de Bruijn graph. Besides, the number of threads

affects the run time: shorter run times with more

threads. The parameter setting details in our work is in-

cluded in Additional file 2: Note 1.

In addition to the abovementioned quantitative met-

rics, the difficulty of installation and software imple-

mentation cannot be quantified but is also a critical

issue for the practical application of these methods

(see the corresponding details of ten methods in Add-

itional file 2: Note 5 “Installation and implementation

details,” Additional file 11: Table S9). The most com-

mon issues include the need to (1) install two to

three other software such as aligners and graph con-

structors, and often with specific versions and (2)

pre-process data, such as building an index of SRs

and assembly of SRs. Any failure of these steps halts

the error correction. For example, FMLRC had the

best output when sufficient SR coverage is applied,

while users must build a BWT index from SRs using

the software ropebwt2 and msbwt. When the index

builder runs incorrectly or fails, an incorrect index

file with a similar file size to the correct index can

still be output. FMLRC can run successfully with this

incorrect index without a clear warning or error mes-

sage, yet the output would have even worse quality

than the input. Albeit only a single command line is

needed to run LoRDEC, its installation may pose con-

siderable challenges: each version of LoRDEC may re-

quire the installation of GATB core with a specific

version, and GATB core installation is particularly

problematic. The installation for Nanocorr is very

complicated, requiring BLAST and its implementation

is recommended with Sun Grid Engine or a similar

scheduler. CoLoRMap and LSC are comparably more

user-friendly, which only need a single command line

to run. The ideal and new methods should include

simple modules that automatically confirm the ver-

sions and installation of the required software as well

as integrate the pre-processing of data with error cor-

rection in a single command line.

According to different research interests, users may

place different weight on each of the performance

metrics. For example, high accuracy (e.g., > 0.99) is

important for studies requiring single nucleotide reso-

lution (e.g., detection of alternative splice sites in

transcriptome research and breakpoints in cancer re-

search) as well as sequence analysis (e.g., open read-

ing frame analysis) [52]. In the other areas, such as

detection of gene isoforms, fusion genes and abun-

dance estimation, a high alignment rate would be very

useful even with relatively low accuracy (e.g., 0.90–

0.95) [41]. Therefore, users should always have a

comprehensive consideration of data size, computing

resources, and research interests when selecting a

method for error correction. On the other hand,

our performance evaluation identifies specific factors

that can be improved in future optimization of

existing error correction methods or the develop-

ment of new methods.
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