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A Comparative Evaluation of Search Techniques for 
Query-by-Humming Using the M USART Testbed 

Roger B. Dannenberg, William P. Birmingham, Bryan Pardo,  
Ning Hu, Colin Meek, George Tzanetakis 

Abstract 
Query-by-Humming systems offer content-based 

searching for melodies and require no special musical 
training or knowledge. Many such systems have been 
built, but there has not been much useful evaluation 
and comparison in the literature due to the lack of 
shared databases and queries. The MUSART project 
testbed allows various search algorithms to be 
compared using a shared framework that 
automatically runs experiments and summarizes 
results. Using this testbed, we compared algorithms 
based on string alignment, melodic contour matching, 
a hidden Markov model, n-grams, and CubyHum. 
Retrieval performance is very sensitive to distance 
functions and the representation of pitch and rhythm, 
which raises questions about some previously 
published conclusions. Some algorithms are 
particularly sensitive to the quality of queries. Our 
queries, which are taken from human subjects in a 
fairly realistic setting, are quite difficult, especially for 
n-gram models. Finally, simulations on query-by-
humming performance as a function of database size 
indicate that retrieval performance falls only slowly as 
the database size increases. 

Introduction 
In “Query-by-Humming” systems, the user sings or 

hums a melody and the system searches a musical 
database for matches. Query-by-Humming can be 
thought of as an automated version of the game 
“Name That Tune.” In addition to providing song 
titles, Query-by-Humming systems offer an interesting 
interface possibility for portable MP3 players, for 
digital music search through the web, and for kiosks 

offering to sell music. Query-by-Humming is an 
alternative to text searches for title, composer, and 
artist in digital music libraries. A particularly 
interesting feature of Query-by-Humming is that the 
user is not required to understand music notation or 
any music-theoretical description of the sought-after 
content.  

Aside from practical benefits, Query-by-Humming 
offers many intrinsically interesting challenges for 
researchers. At the heart of any Query-by-Humming 
system is some model of melodic similarity. There is 
never an exact match between a sung query and the 
desired content, so a Query-by-Humming system must 
ignore the superficial details of the query waveform 
and work at more abstract levels in order to make 
meaningful comparisons. Many issues arise relating to 
the production and perception of music, including how 
users remember melody, the limitations of amateurs in 
the vocal production of melody, our perception of 
melody, and the nature of melodic similarity. There 
are also many issues relating to algorithms and 
databases, including probabilistic models of error and 
melodic distance, efficient search algorithms, and 
system architecture. Finally, there are interesting 
intellectual property and business issues that bear on 
what musical databases can contain, what information 
they can provide, and what services can be offered. 

We have studied many of the technical aspects of 
Query-by-Humming in the MUSART project. In our 
investigations, we constructed a number of different 
search systems, assembled several experimental 
databases, and collected many different queries. We 
also built various tools for estimating musical pitches 
in sung queries, for transcribing queries into 
sequences of notes, and for automatically extracting 
musical themes from standard MIDI files. After 
working on these various experimental systems for 
some time, we found that our work was becoming 
fragmented, with incompatible software versions that 
could not be compared under controlled conditions. 
This state of affairs mirrors what we observe in the 
research community at large: While there are many 
different research systems with published performance 
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measurements, these measurements cannot be 
compared. In order to learn more about search 
algorithms and their performance, we need carefully 
developed tests. 

To solve this problem, at least within our project, we 
built the MUSART Testbed, a framework for testing 
and comparing various approaches to Query-by-
Humming. We adapted our previous work (standalone 
experimental software to study various aspects of the 
problem) to operate within the testbed, enabling us to 
make fair comparisons between different approaches. 
The MUSART Testbed includes a database of songs, 
collections of recorded audio queries, programs to 
extract data from queries and song files, and a 
collection of search algorithms. Tests can be run 
automatically to evaluate the performance of different 
algorithms with different collections of songs and 
queries. 

We have compared a number of approaches to 
Query-by-Humming and obtained some surprising 
results. Some sophisticated and computationally 
expensive search techniques do not perform much 
better than one that is simpler and much faster. We 
found search performance is very sensitive to the 
choice of distance functions (the likelihood that a 
“state” will be transcribed, given a “state” in the 
melody). The conclusions of many previous studies 
must be considered carefully in this new light.  

Due to the problems of collecting and annotating 
large databases, our test database is limited in size. To 
examine issues of scalability, we estimate 
performance as a function of the database size. In all 
cases we have examined, the database precision falls 
roughly according to 1/log(x) where x is the database 
size. This is encouraging because this function is flat, 
meaning performance falls very slowly with increases 
in database size. 

Related Work 
Query-by-Humming can be considered a special 

case of melodic search given a query that 
approximates at least a portion of the melody of a 
target song. For example, the query may be a text-
encoded sequence of pitches, rhythms, or a note 
sequence recorded from a digital piano keyboard. 
Melodic search has been the focus of many studies, 
and concepts of melodic similarity are presented in 
(Hewlett & Selfridge-Field, 1998). References on 
melodic search can be found at www.music-ir.org. 
Various approaches have been taken to the problem of 

identifying similar melodic sequences. String-
matching approaches using dynamic programming 
(Sankoff & Kruskal, 1983) have been popular 
(Bainbridge, Dewsnip, & Witten, 2002; Bainbridge, 
Nevill-Manning, Witten, Smith, & McNab, 1999; 
McNab, Smith, Witten, Henderson, & Cunningham, 
1996; Pauws., 2002) and work well with melody, as 
we shall see. Another approach uses n-grams, which 
are widely used in text retrieval and allow efficient 
indexing. (Clausen, Englebrecht, & al., 2000; 
Doraisamy & Ruger, 2002, 2003; Downie & Nelson, 
2000; Tseng, 1999; Uitdenbogerd & Zobel, 1999) 
Another set of techniques rely on statistical models 
including Markov and hidden Markov models. (Durey 
& Clements, 2001; Hoos, Rentz, & Gorg, 2001; Jin & 
Jagadish, 2002; C. Meek & W.P. Birmingham, 2002; 
Pardo, Birmingham, & Shifrin, 2004). It should be 
noted that there is, at best, a weak distinction between 
melodic search based on hidden Markov models and 
search based on string matching. (Durbin, Eddy, 
Krogh, & Mitchison, 1998; Hu & Dannenberg, 2002; 
Bryan Pardo & William P. Birmingham, 2002) 

Hsu, et al. (Hsu & Chen, 2001; Hsu, Chen, Chen, & 
Liu, 2002) describe their Ultima project, created for 
the study, evaluation and comparison various music 
search algorithms. Three search algorithms for melody 
matching are described and compared using 
automatically generated queries.  Bainbridge, 
Dewsnip, and Witten (2002) describe their workbench 
for symbolic music information retrieval in the 
Greenstone digital-library architecture. In the reported 
experiments, a large folksong database was searched 
using synthetically generated queries where 
subsequences of songs in the database were altered to 
simulate human errors. Like the MUSART testbed, both 
the Ultima project and Greenstone workbench 
implement several search techniques, provide a 
database of melodies, and support experimentation 
and comparison of different techniques. Synthetic 
queries allow researchers to control query lengths and 
error counts, but leave open the question of 
performance with real human queries. 

Query Processing and Music 
Representation 

Audio signals cannot be compared directly, as even 
two “identical” melodies from the same instrument or 
vocalist will have little if any direct correlation 
between their waveforms. Therefore, melodic search 
must be performed on a higher-level or more abstract 
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representation. In typical audio recordings, the 
mixture of vocals, harmony, bass, and drums results in 
a complex waveform that cannot be separated 
automatically into symbolic (e.g., notes) or even audio 
components. In spite of progress in extracting melody 
from recorded audio (Goto, 2000), current systems are 
not sufficiently robust to enable effective music 
searching. Therefore, Query-by-Humming systems 
assume a symbolic representation of music in the 
database. We use a database of MIDI files, which 
describe the pitch1, starting time, duration, and relative 
loudness of every note in a piece of music. Most MIDI 
files are organized into a set of tracks, where each 
track contains the notes for one instrument. These 
representations are normally prepared by hand. They 
can also be extracted automatically from machine-
readable music notation if available. In our testbed, we 
use MIDI files found on the Web. 

Queries, on the other hand, contain only the sound 
of one voice, which makes analysis much more 
tractable. Depending on the search algorithm, we must 
obtain a sequence of fundamental frequency estimates 
or a sequence of notes from the query. Our system 
analyzes the fundamental frequency of the signal 
every 10 milliseconds, using an enhanced 
autocorrelation algorithm (Tolonen & Karjalainen, 
2000) with a 50 millisecond window size. In this step, 
we report “no pitch” when the amplitude is below 
threshold or when there is no clear fundamental 
indicated by the autocorrelation. 

To transcribe the query into notes, we must separate 
the frame sequence into notes. Notes begin when there 
is a sequence of five or more frames with frequency 
estimates that fall within the range of one semitone. In 
other words, a note must exhibit a steady pitch. The 
note ends when the pitch changes or when no pitch is 
detected. Pitch is also quantized from a continuous 
scale to the 12-pitches-per-octave Western scale. We 
assume that singers do not have an absolute pitch 
reference, but that singers attempt to sing exact equal-
temperament pitches. To avoid an absolute pitch 
reference, we quantize pitch intervals to the nearest 

                                                      
1 Nomenclature varies somewhat across disciplines. 
Scientifically, “pitch” denotes a percept closely 
related to the physical property of “fundamental 
frequency,” the rate of vibration. Musically, “pitch” 
often refers to the musical scale, e.g. C4, C#4, D4, 
etc., where the number refers to the octave, and C4 is 
“middle C.” We will use pitch in the musical sense 
because it is more concise than “the chromatic scale 
step corresponding to the fundamental frequency.” 

integer number of semitones. In practice, many 
singers make significant pitch errors, and the pitch 
estimation can introduce further errors, so it is 
important for the search algorithms to take this into 
account. 

Extracting Melody from MIDI 
Files 

In addition to preprocessing the audio queries, we 
also preprocess the database of MIDI files. Complete 
MIDI files include much more than just melodies. In a 
typical song, the melody is repeated several times. 
There is also harmony, drumming, a bass line, and 
many notes may be performed by more than one 
instrument, e.g., if a violin and flute may play the 
same notes, the MIDI file will have separate copies of 
the notes for the violin and flute. Searching entire 
MIDI files will take more time and could result in 
spurious matches to harmonies, bass lines, or even 
drum patterns . For both speed and precision, we 
extract melodies from MIDI files and search the 
melodies. (Tseng, 1999) 

We developed a program called ThemeExtractor 
(Meek & Birmingham, 2001) to find musical themes 
in MIDI files. The principle is simple: melodies are 
almost always repeated several times, so if we find 
significant sequences that repeat, we will locate at 
least most of the melodies. To enhance the accuracy of 
melody identification, repeating melodic patterns are 
analyzed to obtain various features that include 
register (average pitch height), rhythmic consistency, 
and other features that help identify patterns that are 
“interesting.” (It is common to find repeating patterns 
of just one or two pitches, used for rhythm or 
accompaniment, and these should not qualify as 
“melody.”) The features are weighted to form a score 
for each melodic pattern. The patterns with the highest 
scores are returned as the most significant melodic 
phrases or themes of the piece. Tests indicate that 
ThemeExtractor finds a very high percentage of 
themes labeled by hand. (Meek & Birmingham, 2001) 

Searching for Melody 
The MUSART testbed maintains a collection of 

themes that have been extracted from the database 
using the ThemeExtractor program. We call these 
themes the targets of the search. To process a query, 
the testbed first processes the audio as described 
earlier to obtain a symbolic representation of the 
query. Then, the query is compared to every target in 
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the database. Each comparison results in a melodic 
similarity value, and the targets are sorted according 
to this similarity. In some searches, distance is 
reported rather than similarity, but this only requires 
that we sort in the opposite direction. 

To measure system performance, we need to know 
the rank of the correct target(s) in the sorted list result-
ing from each search. The testbed includes a list of 
correct matches for each query. Correct matches are 
determined manually by listening and using file 
names. Call r the rank of the correct target for a query. 

Here, r = 1 indicates the correct target was ranked 
first. The mean right rank for a trial is the average 
value for r over all queries in the trial. This measure 
can be sensitive to poorly ranking outliers. We can 
capture the same information in a manner that is less 
sensitive to outliers by using the mean reciprocal rank 
(MRR). The reciprocal rank is 1/r, and the mean 
reciprocal rank is just the mean of the reciprocal rank 
over all queries in the trial. If the system always ranks 
a correct answer highest (rank 1), the MRR will be 1. 

If the system gives random similarity values to targets, 
the MRR will be roughly log(N)/N, and the worst 
possible MRR is 1/N, where N is the number of targets 
in the database. These relations are shown in Equation 
1. 

1

1

1
1  = 

Q

q qrMRR
Q N

=≥ ≥
∑

 
Equation 1 

We have implemented five different search 
algorithms for comparison in the MUSART testbed. 

These algorithms are now described. 

Note Interval Matching 
The Note Interval matcher treats melodies as strings 

and uses dynamic-programming techniques to align 
two strings, resulting in a similarity score.  

Figure 1 illustrates the representations used by this 
matcher. The Pitch component can be expressed in 
two ways:  

1. The absolute pitch in MIDI key values (it 
cannot be 0 as 0 means silence). 

2. The relative pitch, which is the pitch interval 
between two adjacent notes that are expressed 
in absolute pitches. 

Absolute Pitch:    67             69     71    67

Relative Pitch:             2           2      −4

IOI:     1             0.5    0.5 1

IOI Ratio:            0.5        1         2

Log IOI Ratio:            -1          0         1 
 

Figure 1. Pitch Interval and IOI Ratio calculation. 

The advantage of relative pitch is that 
transposition (singing the query in a different key) 
amounts to an additive offset to absolute pitch, so 
there is no effect on relative pitch. We say that 
relative pitch is transposition invariant. 

Similarly, there are three different kinds of 
representation for the Rhythm component of Ni: 

1. The inter-onset-interval (IOI), which is the 
time difference between two adjacent note 
onsets: 
Rather than IOI, one might consider duration, 
that is, toffset(Ni) – tonset(Ni). In our 
experience, IOI is a better representation for 
search than note duration. The beginning of a 
note (tonset) is perceptually more salient than 
the ending (toffset), and therefore the IOI 
seems to be a better indication of the 
perceived musical rhythm. Furthermore, the 
note offset times detected from the query are 
not accurate. Using IOI rather than note 
duration amounts to extending each note as 
necessary to remove any silence before the 
next note. (For the last note, we use duration 
for lack of anything better.) 

2. The IOI Ratio (IOIR), which is the ratio 
between the IOI values of two succeeding 
notes: 

}7{1,2,...12)(NP iabs ∈
, where 

ni1 ≤≤  
Equation 2 

)(NP)(NP)(NP 1iabsiabsirel −−=
, 

where ni1 ≤<  

0)N(P 1rel =
 

Equation 3 

)(Nt)(Nt)(NT ionset1ionsetiIOI −= + , 
where ni1 <≤  

)(Nt)(Nt)(NT nonsetnoffsetnIOI −=  

Equation 4 
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3. The Log IOI Ratio (LogIOIR) (Bryan Pardo & 
W.P. Birmingham, 2002), the logarithm of the 
IOI Ratio: 

))(Nlog(T)(NT iIOIRiLogIOIR = , 

where ni1 ≤≤  
Equation 6 

Both IOIR and LogIOIR have the nice property that 
they are invariant with respect to tempo. Thus, even if 
the query tempo is faster or slower than the target, the 
IOIR and LogIOIR values will still match. 

A Note Interval combines a pitch interval with a Log 
IOI Ratio to form a <Pitch, Rhythm> pair. In the Note 
Interval matcher, LogIOIR is quantized to the nearest 
integer, and 5 LogIOIR values ranging from −2 to +2 
are used. (Bryan Pardo & W.P. Birmingham, 2002) 
For example, the full representation of the melody in 
Figure 1 would be: <<2, −1>, <2, 0>, <−4, 1>>. In the 
Sensitivity Studies section, we consider the effect of 
using other representations, but for now, we will 
consider only the best-performing configuration 
(Pardo et al., 2004) using pitch intervals and 
LogIOIRs as the melodic representation. 

Using the classic dynamic-programming approach, 
the Note Interval matcher computes the melodic 
similarity D(A, B) between two melodic sequences 

maaaA L21=  and nbbbB L21=   

by filling the matrix ( nmd
KK 1,1 ). Each entry jid ,  

denotes the maximum melodic similarity between the 

two prefixes iaa K1  and ).1( jwbb jw ≤≤K  

 We use a classical calculation pattern for the algo-
rithm as shown:  

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, 
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Equation 7 
In this formulation, substitutionReward(a, b) is the 

reward (similarity) between note intervals a and b. 
The skipCosta and skipCostb are penalties for either 
deleting a note interval a from the target or inserting 

the note interval b found in the query. Local alignment 
means any portion of the query is allowed to match 
any portion of the target. This is implemented 
efficiently simply by replacing any negative value by 
zero in the matrix, effectively ignoring any prefix of 
the query or target that does not make a good match. 
The overall similarity is taken to be the maximum 
value in the matrix, which may ignore contributions 
from query and target suffixes. The calculation of di,j 
is illustrated in Figure 2, showing how the 
computation can be organized as a matrix computed 
from left-to-right and top-to-bottom. 

di-1, j
di-1, j-1

di, j-1 di, j

bj-1 bj

ai

ai-1

 
Figure 2. Calculation pattern for Simple Note 

Interval matcher. 

N-Gram Matching 
A standard approach in text retrieval is the use of n-

grams, tuples of N words. An index from n-grams to 
documents can be constructed, allowing the search 
algorithm to consider only those documents that 
contain n-grams of interest. In music, n-gram-based 
searches can use pitch intervals and/or inter-onset 
intervals to retrieve songs. 

N-gram approaches generally assume that the query 
contains specific n-grams that have a high probability 
of occurrence in the correct target and a low 
probability of occurrence elsewhere. When multiple n-
grams can be obtained from the query, the probability 
of finding most or all of these in any but the correct 
target can become vanishingly small. This is 
particularly true of text searches, where words are 
discrete symbols, and of symbolic music searches, 
where pitches and intervals are discrete. With sung 
queries, the singing is far from perfect, and 
transcriptions to symbolic data contain substantial 
errors. There is a tension between choosing long n-
grams (large N) to decrease the probability of 
matching incorrect targets, and choosing short n-
grams (small N) to decrease the probability that 
singing and transcription errors will prevent any 
matches to the correct target. 

)(NT

)(NT
)(NT

1iIOI

iIOI
iIOIR

−

= , where 

ni1 ≤<  

1)(NT 1IOIR =  

Equation 5 
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N-gram search algorithms 
Our n-gram search operates as follows: The audio 

query is transcribed into a sequence of notes as in the 
note-interval search, and note intervals are computed. 
Pitch intervals are quantized to the following seven 
ranges, expressed as the number of half steps: 
     < −7, −7 to −3, −2 to −1, unison, 1 to 2, 3 to 7, >7. 

IOI Ratios are quantized to five ranges separated by 
the following four thresholds: 

                   4/2 , 2/2 , 2 , 22 . 
Thus, the nominal IOI Ratios are ¼, ½, 1, 2, and 4. 
These fairly coarse quantization levels, especially for 
pitch, illustrate an important difference between n-
grams and other approaches. Whereas other searches 
allow the consideration of small differences between 
query intervals and target intervals, n-grams either 
match exactly or not at all. Hence, coarse quantization 
is used so that small singing or transcription errors are 
not so likely to cause a mismatch.  

There are two important differences between note 
interval matching and n-gram search. First, there is the 
obvious algorithmic difference. Secondly, there is the 
fact that n-grams are based on exact matching whereas 
note interval matching considers approximate matches 
through the use of skip costs and replacement costs. 
We have not tried to study these two factors 
independently, as both degrade search performance 
and both are necessary to achieve the efficiency gains 
of n-gram search. 

N-grams are formed from sequences of intervals. A 
set of n-grams is computed for the query and for each 
target by looking at the n pitch intervals and IOI 
Ratios beginning at each successive note. For 
example, trigrams would be formed from query notes 
1, 2, and 3, notes 2, 3, and 4, notes 3, 4, and 5, etc. 
Note that the IOI for the last note is not defined, so we 
use the last note’s duration instead. In Figure 1, the 
trigram formed from pitch intervals (2, 2, and −4) and 
IOI Ratios (0.5, 1, and 2) before quantization is  
                         <2, 0.5, 2, 1, −4, 2>. 

To compute similarity, we count the number of n-
grams in the query that match n-grams in the target. 
Several variations, based on concepts from text 
retrieval (Salton, 1988; Salton & McGill, 1983) were 
tested. The following are independent design 
decisions and can be used in any combination: 

1. Count the number of n-grams in the query that 
have a match in the target (once matched, n-
grams are not reused; if there are q copies of 
ngram in the query and t copies in the target, 
the score is incremented by min(q, t)). 

Alternatively, weight each n-gram in the 
query by the number of occurrences in the tar-
get (i.e. increment the score by t). This is a 
variation of term frequency (TF) weighting. 

2. Optionally weight each match by the inverse 
frequency of the n-gram in the whole database 
This is known as Inverse Document 
Frequency (IDF) weighting, and we use the 
formula log(N/d), where N is the total number 
of targets, and d is the number of targets in 
which the n-gram occurs. 

3. Optionally use a locality constraint: consider 
only target n-grams that fall within a temporal 
window the size of the query. 

4. Choose n-gram features: (a) Incorporate 
Relative Pitch and IOI Ratios in the n-grams, 
(b) use only Relative Pitch, or (c) use only IOI 
Ratios. 

5. Of course, n is a parameter. We tried 1, 2, 3, 
and 4. 

Two-stage search. 
It is unnecessary for the n-gram approach to work as 

well as note-interval matching or other techniques. 
The important thing is for n-grams to have very high 
recall with enough precision to rule out most of the 
database targets from further consideration. Even if 
thousands of results are returned, a more precise 
search such as the note-interval matcher can be used 
to select a handful of final results. This two-stage 
search concept is diagrammed in Figure 3. We 
implemented a flexible n-gram search to explore this 
possibility. 

 

Complete
Database

N-gram
Search

Note-Interval
Search

Results
 

Figure 3. A two-stage search using n-gram search 
for speed and note-interval search for precision. 

Melodic Contour Matching 
Our Melodic Contour matcher (Mazzoni & 

Dannenberg, 2001) uses dynamic time-warping to 
align the pitch contour of the query with that of the 
target. This is similar in spirit to the Note Interval 
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matcher operating with absolute pitch, but there are 
significant differences. Most importantly, the Melodic 
Contour matcher uses fixed-sized frames of about 100 
ms duration rather than notes, which can have any 
duration. The advantage of this contour representation 
is that there is no need to segment queries into discrete 
notes. Segmentation is a difficult problem when users 
do not clearly articulate notes, and each segmentation 
error effectively inserts or deletes a spurious note into 
the query. Users also have problems holding a steady 
pitch and making a quick pitch transition from note to 
note, resulting in possible pitch errors in the 
transcribed queries. In contrast, the contour 
representation treats pitch as an almost continuous 
time-varying signal and ignores note onsets, so it is 
more tolerant of transcription errors. 

To match queries to targets, the target melodies are 
also split into equal-duration frames. If a frame 
overlaps two or more notes, the frame is assigned to 
the pitch of the note that occupies the greatest amount 
of time in the frame. Notes are extended to the onset 
of the next note, eliminating rests. 

To deal with tempo variation, we time-scale the 
target data by factors of 0.5, 1.0, and 2.0 (finer-grain 
scaling does not seem to help.) Then, we use dynamic 
time warping (DTW) to align the query frames to the 
target frames. We have experimented with different 
variations of DTW. (Hu and Dannenberg, 2002) In 
some variations, extreme tempo changes are allowed, 
allowing a fairly good match by selectively skipping 
large portions of target melodies to select pitches that 
match the query. This, of course, can lead to false 
matches. We had better results with the calculation 
pattern shown in Figure 4, which limits the local 
tempo change to a factor of two speed-up or slow-
down. 

Another important aspect of this matcher is that we 
want to allow a query to match any portion of the 
target, without requiring a full match. The DTW 
algorithm used allows the skipping of any prefix and 

any suffix of the target with negligible differences in 
run time. This is accomplished by setting d0,j=0 for all 
j, allowing the match to begin anywhere in the target 
without penalty, and taking the best value in the final 
column, allowing the match to end anywhere without 
penalty. Transposition is handled by calculating the 
contour similarity with 24 different transpositions in 
1/24th octave steps. All pitches are mapped to a single 
octave by using the actual pitch number modulo 12 in 
case the melody has been transposed more than one 
octave. 

HMM Matching 
One of the limitations of the matchers described so 

far is that they do not have a detailed model of 
different types of errors. In contrast, musicians will 
recognize common problems in queries: perhaps the 
singer’s pitch will get progressively flatter, a single 
high note will be sharp, or the tempo might slow down 
or speed up. While the previously described matchers 
model a few error types and tolerate others, the 
Hidden Markov Model matcher can model many more 
error types. This allows a less-than-perfect but still 
plausible query to achieve a high similarity score 
against its target. In general, there are two types of 
errors modeled: “local” errors are momentary 
deviations in pitch or tempo, and “cumulative” errors 
are the result of a trend. 

 “Johnny Can't Sing” (JCS) models local and 
cumulative error in pitch and rhythm. A detailed 
description of the training and matching algorithms 
used by JCS are published (Meek & Birmingham, 
2004). JCS is an extended hidden Markov model 
(HMM) (Rabiner, 1989) in which the target and query 
notes are associated through a series of hidden states. 
Each hidden state is defined by a triple 

]['],[],[ iSiKiEsi = , where E[i] is the “edit” type 

that accounts for errors such as skipping, inserting, 
merging, or splitting notes, K[ i] is the “key” that 
accounts for transpositions in pitch between the target 

di, j 

 

bj- 1 

 

bj- 2 

 

ai 

 

di- 1, j- 1 

 

di- 2, j- 1 + w(ai- 1, bj)  
 

+ w(ai, bj), 
 

di, j = min  

 

(1 = i = m, 1 = j = n) 
 

di- 1, j- 2 + w(ai, bj- 1)  
 

di- 1, j- 1 

 

di- 1, j- 2 

di- 2, j- 1 

 

ai- 2 

 

ai- 1 

 

bj 

 

  
Figure 4. The calculation for the dynamic time warping in the Melodic Contour search. 
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and the query, and S’[i] is the “speed” that accounts 
for differences in tempo and duration. 

Observations are defined by the duple 

][],[, tRtPRhythmPitchot == , which is the 

pitch and rhythm (IOI) observed in the query. As in 
the standard hidden Markov model, the observations 
occur with some probability that depends only on a 
corresponding hidden state, and the hidden state 
depends only on the previous hidden state. Once the 
HMM is defined, the goal of the matching algorithm is 
to determine the probability of a match between the 
target and the query. This involves searching over all 
possible sequences of hidden states (which specify 
sequences of note alignment, transposition, and 
tempo) and then determining the probability of each 
observation of pitch and rhythm. 

Given the many possible edit types, transposition 
amounts, and tempo mappings, the number of states is 
huge. JCS deals with this problem by assuming that 
the three components of the hidden state are somewhat 
independent. Figure 5 illustrates a conventional HMM 
structure on the left and the JCS distributed state 
structure on the right. In the distributed state structure, 
the edit type (E) depends only on the previous edit 
type. The “key” or transposition (K) depends on the 
previous key and the current edit type. A pitch 
observation (P) depends on the current edit type and 
key but is independent of tempo. The probability of 
the observation depends on the discrepancy between 
the observation and the expectation established by the 
transposition and the target’s pitch. Similarly, the 
observed rhythm (R) depends on the edit type (E) and 
tempo (S’), but not on transposition. By factoring the 
model into components and assuming independence, 
the size of the model is greatly reduced, making 
similarity ratings much more tractable. 

Figure 6 shows an example of how the components 
of a state are combined. The edit (E) indicates that the 
first two target notes are joined to match the next note 
of the query. The key (K) indicates a transposition of 
+2 semitones, and the tempo (S’) indicates a scaling of 

1.25. The resulting transformed event represents the 
most likely observation given the current hidden 
state(s) <E, K, S’>. The actual observation (shown in 
black) is higher in pitch and shorter in IOI. It is said to 
have a pitch error of +1 (semitones) and a rhythm 
error of 0.8 (a factor). 

The HMM were trained in a variety of ways, which 
are described in another paper. (Meek and 
Birmingham, 2004) We summarize the training by 
mentioning that we tested various training/test set 
partitioning strategies: random, by singer (different 
singers in the test and training sets), and by song. 

 

S:

O:

E:

K:

S’:

P:

R:
 

Figure 5: Dependency schemata for basic and 
distributed state HMM representations. Shaded 
circles indicate “hidden” states, and white 
circles indicate fully observable states. Arrows 
indicate probabilistic dependencies in the 
models, which evolve over time from left to 
right. The conventional HMM structure is 
shown at the left, and an alternative distributed 
state structure is shown at the right. Note that 
the new state S’ is dependent on the states E 
and K. In addition, the observations are 
dependent on the state S’. Thus, rather than 
one state corresponding to one observations, the 
definition of “state” and “observation” are now 
expanded to include several variables. 

The CubyHum Matcher 
CubyHum is a QBH system developed at Philips 

Research Eindhoven. It uses a edit distance for 
melodic search. An interesting aspect of the system is 

 
Figure 6: Interpretation of a JCS state. 
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that it models errors such as modulation or tempo 
change using elaborate rules in the dynamic-
programming calculation. Since dynamic 
programming is a special case of HMMs, CubyHum 
can be viewed as an alternative to the HMM model of 
JCS described above. It would be interesting to 
discover that the elaborate mechanisms of JCS could 
be replaced by a much faster algorithm. Therefore, we 
are particularly interested in comparing the 
performance of CubyHum with our algorithms. We re-
implemented the CubyHum search algorithm in our 
system, following the published description (Pauws, 
2002). 

Like the Note Interval matcher, CubyHum uses a 
representation based on pitch intervals and IOI ratios. 
Pitch intervals are quantized to nine ranges and 
assigned values of -4 to 4. IOI ratios are not quantized. 
The CubyHum dynamic programming calculation 
pattern computes an edit distance that includes five 
rules to handle various error types: 

• The modulation or no error rule adds a penalty 
for pitch interval differences and IOI ratio 
differences between corresponding intervals in 
the query and the target. Since it is based on 
intervals, this error models a transposition or a 
tempo change, or both. An isolated pitch or 
duration error would be modeled as two 
modulations or two tempo changes, respectively. 

• The note-deletion rule can be applied when two 
intervals of the query sum to one corresponding 
interval of the target, implying there is an extra 
note in the query. This is essentially a 
consolidation rule: the two notes of the query are 
consolidated as if the pitch of the first were 
changed to that of the second, resulting in a 
longer note with the correct pitch interval. There 
is a fixed penalty for the extra note, and an 
additional penalty for the difference in IOI ratios. 

• The note-insertion rule is similar to note deletion; 
it handles the case where two pitch intervals in 
the target sum to match a single interval in the 
query. The two target notes are consolidated into 
one note, and a fixed penalty plus a penalty based 
on IOI ratios is added. 

• The interval-deletion rule skips an interval in the 
target, and  

• The interval-insertion rule inserts an interval in 
the target, adding a fixed penalty plus a penalty 
based on IOI ratios. 

The CubyHum description (Pauws, 2002) also 
presents methods for query transcription and an 

indexing method for faster search. In order to focus on 
melodic similarity algorithms and to make results 
comparable, we use the same query transcription for 
testing all of our search algorithms, and we did not 
implement the CubyHum indexing method. 

Results of the Comparison 
Testing was performed using the MUSART testbed 

(Dannenberg et al., 2003), which has two sets of 
queries and targets. Database 1 is a collection of 
Beatles songs, with 2844 themes, and Database 2 
contains popular and traditional songs, with 8926 
themes. In most instances, we use the mean reciprocal 
rank (MRR) to evaluate search performance. 

There are two sets of queries, corresponding to the 
two databases. Query Set 1 was collected by asking 10 
subjects to sing the “most memorable” part after 
presenting one of 10 Beatles songs. No instructions 
were given as to how to sing, so some subjects sang 
lyrics. Subjects were allowed to sing more than one 
query if they felt the first attempt was not good, so 
there are a total of 131 queries. Most of these can be 
recognized, but many do not correspond very well to 
the intended targets. Subjects skipped sections of 
melody, introduced pitch errors, and sang with pitch 
inflections that make pitch identification and note 
segmentation difficult. There are also noises from 
touching the microphone, self-conscious laughter, and 
other sounds in the queries. The total size is about 75 
MB for audio, but only 28 KB for transcriptions. The 
Database 1 MIDI files occupy about 5.4 MB and the 
themes are 0.96 MB. 

Query Set 2 is the result of a class project in which 
students were asked to find and record volunteers who 
sang songs from memory (the target song was not 
played for the subject before recording the query). A 
total of 165 usable queries were collected, and all 
correspond to songs in Database 2. These queries 
suffer from the same sorts of problems found in Query 
Set 1. The total size is about 125 MB for audio, and 45 
KB for transcriptions. The Database 2 MIDI files 
occupy about 22 MB, and the themes total 2.2 MB. 
Table 1 has additional statistics on the queries and 
databases. 

Performance of Melodic Comparison 
Algorithms 

Table 2 shows the results of running Query Set 1 
against the 2844 themes of Database 1. One can see 
that the matchers are significantly different in terms of 
search quality. At least with these queries, it seems 



A Comparative Evaluation of Search Techniques… 

Page 10 

that better melodic similarity and error models give 
better search performance. 

Table 3 shows the results of running Query Set 2 
against the 8926 themes of Database 2. All five 
algorithms performed better on this data than with 
Query Set 1, even though there are many more 
themes. Unlike Table 2, where the algorithms seem to 
be significantly different, the top three algorithms in 
this test have similar performance, with an MRR near 
0.3. The Note-Interval algorithm is about 100 times 
faster than the other two, so at least in this test, it 
seems to be the best, even if its MRR is slightly lower. 

Both CubyHum and n-gram search performed 
considerably less well than the others. Pauws says of 
CubyHum (Pauws, 2002), “In our singing experiment, 
we found that the percentage of errors allowed is in 
the range of 20-40%.” It is likely that the MUSART 
queries are often much worse than this, but recall that 
all of these queries were sung by subjects who were 
presumably trying to produce a reasonable query. The 

n-gram search is discussed at greater length in the next 
section. 

The fact that the Note Interval algorithm works well 
in this test deserves some comment. In previous work, 
we compared note-by-note matchers to contour- or 
frame-based matchers and concluded that the melodic-
contour approach was significantly better in terms of 
search performance (Mazzoni & Dannenberg, 2001). 
For example, in one test, 65% of correct targets were 
ranked 1 using melodic contour, while only 25% were  
ranked 1 using a note-based search. For that work, we 
experimented with various note-matching algorithms, 
but we did not find one that performs as well as the 
contour matcher. Apparently, the note-matching 
approach is sensitive to the relative weights given to 
duration versus pitch, and matching scores are also 
sensitive to the assigned edit penalties. Perhaps also 
this set of queries favors matchers that use local 
information (intervals and ratios) over those that use 
more global information (entire contours). Because 

Table 1: Statistics on Queries and Databases. 

 Query Set 1 Query Set 2 Database 1 Database 2 

Number of Queries 
and Songs 

155 131 868 258 

Total Notes 3658 2527 365065 112771 

Number of Themes - - 8902 2844 

Mean No. Themes - - 10 11 

Std. Dev. No. Themes - - 5.4 3.6 

Mean No. Notes per 
Query or Theme 

24 19 41 40 

Std. Dev. No. Notes per 
Query or Theme 

14 7 34 31 

Mean Duration 
(Queries and Themes) 

10 s 9.3 s 20 s 19 s 

Std. Dev. Duration 
(Queries and Themes) 

6.5 s 3.2 s 18 s 16 s 

Table 2 Mean. Reciprocal Rank (MRR) for 
Query Set 1. 

Search Algorithm MRR 
Note Interval 0.134 
N-gram 0.090 
Melodic Contour  0.210 
Hidden Markov Model 0.270 
CubyHum 0.023 

 

Table 3. Mean Reciprocal Rank (MRR) for 
Query Set 2. 

Search Algorithm MRR 
Note Interval 0.282 
N-gram 0.110 
Melodic Contour  0.329 
Hidden Markov Model 0.310 
CubyHum 0.093 
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the Note Interval approach seems to be important, we 
explore the design space of a family of related 
matchers in later sections. 

Performance on Synthetic Data 
One might also ask how well these algorithms 

perform using synthetic data. For each query, we 
constructed a synthetic query by extracting the first n 
notes of the first theme of a matching target, where n 
is the number of detected notes in the query. Thus, the 
synthetic queries are perfect partial matches. Using 
dynamic programming on pitch intervals only, the 
MRR for Query Set 2 (the larger of the two) is 0.85. 
With n-grams of length 3 using pitch intervals and IOI 
ratios, the MRR for Query Set 2 is 0.87. These MRRs 
are much higher than with any of the search 
algorithms using real query data. The MRRs are still 
less than perfect (a perfect MRR is 1.0) for several 
reasons. First, the quality of some queries is so low 
that only a few notes can be extracted, so even the 
synthetic queries can be very short. Second, while 
most recognizable themes are included in the 
database, we did specifically select these distinctive 
themes for synthetic queries; instead, many synthetic 
queries are constructed from very repetitive 
accompaniment lines that might occur in other targets. 
Finally, the search algorithms are not optimized to 
distinguish exact matches, since these do not occur 
with real data, and often ties for first place led to a 
rank less than one. Nevertheless, it is clear that the 
quality of the query is very important. Any query-by-
humming system design should consider how to get 
the best possible queries from its users, regardless of 
the search algorithm. 

Run-Time Performance 
Dynamic programming, used in the Note Interval 

matcher, is an O(nm) algorithm, where n and m are the 
lengths of the two input strings. Actual run time is of 
course dependent on hardware and software 
implementation details, but our software averages 
about 2.3ms to compare a query to a theme. With 
about 10 themes per song, run-time is 23ms per song 
in the database using a 1.8GHz Pentium 4 processor, 
or 205s for the 8926 songs in Database 2. Nearly all of 
the run time, measured as “wall time,” is actually CPU 
time, and we estimate that this could be tuned to run at 
least several times faster. Additional speed can be 
obtained using multiple processors. 

Our N-Gram implementation does not use a fast 
indexing scheme, but even with linear search, our 
implementation averages about 0.2ms per theme, 
2.0ms per song, and about 34s to search Database 2. 
With an index kept in main memory, we would expect 
the run time to be greatly reduced. 

Using N-Grams 
Recall that the design space for n-grams is fairly 

large (96 permutations), so we were unable to test 
every one. However, each design choice was tested 
independently in at least several configurations. The 
best performance was obtained with an n-gram size of 
n = 3, using combined IOI Ratios and Relative Pitch 
(three of each) in n-grams, not using the locality 
constraint, using inverse document frequency (IDF) 
weighting, and not using term frequency (TF) 
weighting. This result held for both MUSART 
databases. 

Figures 7 and 8 show results for different n-gram 
features and different choices of n. As can be seen, 
note interval trigrams (combining pitch and rhythm 
information) work the best with these queries and 
targets. In general, results are slightly worse without 
IDF weighting. Results are also slightly worse with 
TF weighting and with the locality constraint. 

N-grams in a two-stage search 
The n-gram search results are not nearly as good as 

those of the note-interval search algorithm (note 
interval search has MRRs of 0.13 and 0.28 for the two 
databases, vs. n-grams with MRRs of 0.09 and 0.11), 
but our real interest is the potential effectiveness of a 
two-stage system in which n-grams are used to reduce 
the size of the database to something manageable with 
a slower but more precise search. There is a tradeoff 
here: to make searching more efficient, we want to 
reduce the size of the set returned by the n-gram 
search, but to insure that the correct result is in that 
set, we want to increase the size.  

To study the possibilities, consider only the queries 
where a full search with the note-interval search algo-
rithm will return the correct target ranked in the top 
10. (If the second stage is going to fail, there is little 
reason to worry about the first stage performance.) 
Among these “successful” queries, the average rank in 
the n-gram search tells us the average number of 
results an n-gram search will need to return to contain 
the correct target. Since the slower second-stage 
search must look at each of these results, the possible 
speed-up in search time is given by Equation 8. 
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Figure 7. N-gram search results on Database 1.  
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Figure 8. N-gram search results on Database 2. 
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Figure 9. Performance of the best n-gram search showing the 

proportion of correct targets returned as a function of the 
total number of results returned. 

Table 4. Fraction of database 
and potential speedup. 

Database r /N s 
1 (Beatles) 0.49 2.06 
2 (General) 0.29 3.45 
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where s is the speedup (s ≥ 1), N is the database size, 
and r is the mean (expected value of) rank. Table 4 
shows results from our two databases. Thus, in 
Database 2, we could conceivably achieve a speedup 
of 3.45 using n-grams to eliminate most of the 
database from consideration. 

Of course, we have no way to know in advance 
where the n-gram search will rank the correct target, 
and n-gram searching takes time too, so this 
theoretical speedup is an upper bound. Another way to 
look at the data is to consider how results are affected 
by returning a fixed fraction of the database from the 
n-gram search. Again, considering only queries where 
the second-stage search ranks the correct target in the 
top 10, we can plot the number of correct targets 
returned by the first-stage n-gram search as a function 
of the fraction of the database returned. As the fraction 
of the database increases from zero to one, the 
proportion of correct targets returned goes from zero 
to one. A search that just picks results at random 
would form a diagonal on the graph (see Figure 9), 
whereas a “good” search will have a steep initial 
slope, meaning that correct targets usually have a low 
rank. 

As seen in Figure 9, n-gram search is significantly 
better than random, but somewhat disappointing as a 
mechanism to obtain large improvements in search 
speed. As can be seen, if the n-gram search returns 
10% of the database, which would reduce the second-
stage search time ten-fold, about 50% to 65% of the 
correct results will be lost. Even if the n-gram search 
returns 50% of the entire database, the number of 
correct results is still cut by 25% to 40%. These 
numbers might improve if the n-gram search returns a 
variable number of results based on confidence. 

The n-gram search fails on a substantial number of 
queries that can be handled quite well by slower 
searches. Bainbridge, et al. say “It is known that 
music-based n-gram systems are computationally very 
efficient and have high recall…” (Bainbridge et al., 
2002), but with our data, we see that about 40% of the 
correct Database 1 targets are ranked last, and about 
20% of the correct Database 2 targets are ranked last. 
A last-place ranking usually means that the target tied 
with many other targets with a score of zero (no n-
grams matched). In the event of a tie, we report the 
highest (worst) rank. This explains why one of the 
curves in Figure 9 drops below the “random” 
diagonal. Overall, our results with “real” audio queries 

suggest that singing and transcription errors place sig-
nificant limits on n-gram system recall. 

Sensitivity Studies 
In our studies, we have implemented a number of 

QBH systems using string-matching algorithms to 
align melodies and rate their similarity, and many 
such systems are described in the literature. Our 
results have been inconsistent, such that seemingly 
small design changes might result in large changes in 
performance. We conducted some carefully controlled 
experiments to examine the impact of various design 
variations on the performance of string-matching 
approaches to QBH. This work was conducted within 
the MUSART testbed framework so that the results 
could be compared directly to our other QBH search 
algorithms. 

To study design alternatives, we created yet another 
matcher that we will call the General Note Interval 
matcher. (In a previous publication (Dannenberg & 
Hu, 2004), we referred to this matcher as “NOTE-
SIMPLE.”) This matcher is highly configurable, and 
while “note interval” implies the use of relative pitch 
and IOI ratios, we can actually specify absolute pitch 
or any of the rhythm representations (IOI, IOIR, or 
LogIOIR). We use a classical calculation pattern for 
the algorithm as shown in Figure 10. 

The calculation of di,j is given by Equation 9. w(ai, 
φ) is the weight associated with the deletion of ai,  
w(φ, bj) with the insertion of bj and w(ai, bj) with the 
replacement of ai by bj, w(ai, bj-k+1, …, bj) and w(ai-k+1, 
…, ai, bj) with the fragmentation and the consolidation 
(Hu & Dannenberg, 2002; Mongeau & Sankoff, 1990) 
respectively. Fragmentation considers the possibility 
that the query is not properly segmented; therefore, a 
single note of the target should be split into multiple 
notes in order to match a sequence of notes in the 
query. On the other hand, consolidation combines 
multiple notes in the target to match a single note in 
the query. Initial conditions are given by Equation 10. 

In order to simplify the algorithm, we define  

rNs /=  Equation 8 

di,0 = di-1,0 + w(ai, φ), i ≥ 1
 (deletion) 

d0,j = d0,j-1 + w(φ, bj), j ≥ 1
 (insertion) 

and d0,0 = 0 

Equation 10 
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w(ai, φ)= k1 Cdel  

w(φ, bj)=k1 Cins 
Equation 11 

where Cdel and Cins are constant values representing 
deletion cost and insertion cost respectively. We also 
define the replacement weight  

w(ai, φ)= k1 Cdel  

)()()()(),( 1 jijiji bTaTkbPaPbaw −+−=
 

Equation 12 

where P() can be Pabs() or Prel(), and T() is either TIOI() 
or TLogIOIR(). If IOIR is used, then 
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Equation 13 

k1 is the parameter weighting the relative importance 
of pitch and time differences. It is quite possible it can 
be tuned for better performance, but in this 
experiment, we arbitrarily picked k1 = 1 if the Rhythm 
form is IOI or IOIR and k1 = 6 if the form is LogIOIR. 
Those values achieved reasonable results in our initial 
experiments. 

The equations for computing fragmentation and con-
solidation (Hu & Dannenberg, 2002; Mongeau & 
Sankoff, 1990) are only used in the calculation pattern 
when the Rhythm input is in IOI form, as our previous 
experiments based on IOI (Hu & Dannenberg, 2002) 
prove that fragmentation and consolidation are benefi-
cial to the performance. We do not use fragmentation 
or consolidation for the Rhythm input in IOIR or 
LogIOIR form, since fragmentation and consolidation 
do not really make sense when dealing with ratios. 

di-1, j
di-1, j-1

di, j-1 di, j

bj-1 bj

ai

ai-1

bj-2

ai-2

 
Figure 10. Calculation pattern for General Note 

Interval matcher. 

If the algorithm is computed on absolute pitches, the 
melodic contour will be transposed 12 times from 0 to 
11 in case the query is a transposition of the target. 
(Hu & Dannenberg, 2002) Also the contour will be 
scaled multiple times if IOI is used. Both transposition 
and time scaling will increase the computing time in 
proportion to the number of transpositions and scale 
factors used. 

The General Note Interval matcher does not 
completely emulate the Note Interval matcher (Pardo 
et al., 2004) described earlier. In particular, the Note 
Interval matcher uses a different calculation pattern 
that supports local alignment, whereas the General 
Note Interval matcher always performs a forced 
alignment of the entire query to any contiguous 
subsequence of the target. Furthermore, the Note 
Interval matcher normalizes its penalty and reward 
functions to behave as probability functions. 

Table 5 contains some results obtained from the 
General Note Interval matcher for different 
representations of melodic sequence using Query Set 
2. For each of these tests, the insertion and deletion 
costs were chosen to obtain the best performance. The 
combination of Relative Pitch and Log IOI Ratio 
results in the best performance. One surprise is that 

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, 
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Absolute Pitch is consistently worse than Relative 
Pitch, even though Absolute Pitch searches are 
performed with the query transposed into all 12 
possible pitch transpositions. This must mean that 
there is often significant modulation (change of 
transposition) in the middle of queries. With Relative 
Pitch, such a modulation will only affect one pitch 
interval and, therefore, contribute less to the overall 
estimate of melodic distance. 

Table 5. Retrieval results using various representa-
tions of pitch and rhythm, Query Set 2. 

Representations MRR 
Absolute Pitch & IOI 0.019 
Absolute Pitch & IOIR 0.045 
Absolute Pitch & LogIOIR 0.052 
Relative Pitch & IOI 0.103 
Relative Pitch & IOIR 0.136 
Relative Pitch & LogIOIR 0.232 

 
The relationship between the insertion and deletion 

costs is another interesting issue to be investigated. 
Table 6 shows the results from different combinations 
of insertion and deletion costs using the best 
representations for pitch and rhythm (Relative Pitch 
and LogIOIR). Note that these values are scaled by k1 
= 6. 

 
Table 6. Retrieval results using different insertion 

and deletion costs. 

Cins : Cdel MRR 
0.5 : 0.5 0.129 
1.0 : 1.0 0.148 
2.0 : 2.0 0.161 
1.0 : 0.5 0.116 
1.5 : 1.0 0.136 
2.0 : 1.0 0.129 
0.5 : 1.0 0.174 
1.0 : 1.5 0.200 
0.2 : 2.0 0.219 
0.4 : 2.0 0.232 
0.6 : 2.0 0.232 
0.8 : 2.0 0.226 
1.0 : 2.0 0.213 

 
The main point of Tables 5 and 6 is that design 

choices have a large impact on retrieval performance. 
The General Note Interval matcher does not perform 
quite as well as the Note Interval matcher algorithm 
described earlier, perhaps because it normalizes the 

replacement cost function to behave as a probability 
distribution and uses local alignment. Further tuning 
might result in more improvements.  

In particular, notice that a change in representation 
from absolute pitch to relative pitch results in a huge 
performance increase (from 0.052 to 0.232). Even a 
change from IOIR to LogIOIR produces a significant 
performance increase (from 0.135 to 0.232). Insertion 
and deletion costs are also critical. Cins : Cdel values of 
1.0 : 1.0 result in an MRR of only 0.148 while values 
of 0.6 : 2.0 yield an MRR of 0.232. 

Overall, we conclude that the system is quite 
sensitive to parameters. Best results seem to be 
obtained with relative pitches, Log IOI Ratios, and 
carefully chosen insertion and deletion costs. Previous 
work that did not use these settings may have drawn 
false conclusions by obtaining poor results. 

Sources of Error 
We have studied where errors arise in the queries. 

The major problem is that many melodies as sung in 
the queries are simply not present in the original 
songs. In Set 1, only about half were judged to match 
the correct target in the database in the sense that the 
notes of the melody and the notes of the target were in 
correspondence (see Figure 11). About a fifth of the 
queries partially matched a target, and a few did not 
match at all. Interestingly, about one fourth of the 
queries matched material in the correct target, but the 
query contained extra repetitions or out-of-order 
phrases. An example is where subjects alternately hum 
a melody and a countermelody, even when these do 
not appear as any single voice in the original song. 
Another example is where subjects sing two phrases in 
succession that did not occur that way in the original 
song. Sometimes subjects repeat phrases that were not 
repeated in the original. The presence of non-matching 
melodic material in the query should favor the local 
alignment policy used in the Note Interval matcher. 
Ultimately, query-by-humming assumes reasonably 
good queries, and more work is needed to help the 
average user create better queries. 

Scaling to Larger databases 
We have focused our work on melodic similarity. 

Because some algorithms are quite slow and do not 
offer a fast indexing method, we have worked with 
databases that are limited in size. 
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Good Match

Partial Match

Out-of-order or repetition

No Match

 

Figure 11: Distribution of query problems. We 
judged only about half the queries to have a 
direct correspondence to the correct target. 

An interesting question is how does search 
performance change as a function of the database size. 
Will search scale up to larger databases? We can 
explore this question by simulating databases using 
random subsets of our full database. We could 
implement this idea by altering the MUSART databases 
and running a full test on each new database, but this 
could take a long time. Instead, we compute the 
similarity rating for every query-target pair just once, 
and then simulate results with different database sizes.  

Assume there are Q queries, T targets, and we have 
a table of melodic similarity ratings, S(q, t), 0 ≤ q < Q 
and 0 ≤ t < T. We also know the correct target C(q) for 
each query q. To simulate a search for a query q in a 
random database of size N < T, we first construct the 
random database consisting of C(q) and N−1 targets 
randomly selected from {0…T−1}−{C(q)}. Calling 
this random database R, the rank of the correct target 

C(q) will be: 

rankR,N = 1 + |{x: x∈R and 
S(q, x) ≥ S(q, C(q))}| 

Equation 14 

In practice, we can “grow” the random database one 
target at a time. The rank after adding a new target tnew 
will be the same as without the target if tnew is less 
similar to the query than the correct target. Otherwise, 
the rank will be one greater: 





 <

+=+  

 

     otherwise1
)),(,(
),( if0

rankrank NR,1NR, qCqS
tqS new

 

Equation 15 

After simulating different database sizes for all 
queries, we can plot the MRR as a function of 
database size as shown in Figure 12, which shows an 
estimated MRR as a function of database size using 
Note Interval, Melodic Contour, and HMM matchers. 
Note that all three matchers have similar MRR curves, 
and all three curves become very flat as the database 
size grows. This is encouraging because we would 
like a high MRR even in a much larger database. 

The function becomes quite flat as the database 
grows. Figure 13 shows various analytic functions 
fitted to the observations. As a baseline, the curve 
labeled “Random Guess” shows the performance 
where the search algorithm simply selects a target at 
random. As expected, the MRR for random guessing 
approaches zero quickly as the database size grows. 
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Figure 12: MRR as a function of the number of songs in the database, using subsets of 

Database 1. Each song represents an average of 10 themes. 
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Another model is that certain queries are of good 
quality and match unambiguously, no matter how 
large the database, while other queries are so poor that 
the matcher essentially returns a random guess. This 
model is labeled “Constant+Random,” and it is much 
flatter than the true MRR curve. Another possibility is 
1−log(N), labeled “1−Log,” but it can be seen that this 
model does not fit the observed data very well.  

Two models that fit the data quite well are the power 

law model, N
−p

, labeled “Power Law,” and the 

function c1/log(c2⋅N), labeled “1/Log.” In an earlier 
study using the fraction of searches that return the 
correct target at rank 1, we concluded that the “1/Log” 
function offered the best fit. However, after examining 
more data and using the MRR rather than Rank = 1 to 
measure performance, there is no clear difference 
between these functions. In any case, this exercise in 
curve-fitting is only a way of describing the observed 
data, and we cannot claim that either the 1/log or the 
power law function is “correct” in any mathematical 
sense. Nevertheless, it is encouraging that the 
performance scales reasonably well.  

Summary and Conclusions 
Query-by-Humming systems remain quite sensitive 

to errors in queries, and in our experience, real audio 
queries from human subjects are likely to be full of 
errors and difficult to transcribe. This presents a very 
challenging problem for melodic similarity 
algorithms. 

By studying many configurations of note-based 
string-alignment algorithms, we have determined that 

(1) these algorithms are quite competitive with the 
best techniques including melodic contour search and 
HMM-based searching, but (2) parameters and 
configuration are quite important. Previous work has 
both overestimated the performance of note-based 
string-alignment searching by using simple tasks and 
underestimated the performance by failing to use the 
best configuration.  

We re-implemented the CubyHum search algorithm 
and found that it performs poorly compared to a 
simpler but well-tuned note-based string-alignment 
algorithm. Since we did not attempt to replicate the 
entire CubyHum system including audio transcription, 
it is possible that there are system-level interactions 
and dependencies that we have not considered. Also, 
CubyHum was obviously developed and tuned on 
better queries and with hand-crafted targets, so it may 
not be meaningful to test it under a different set of 
assumptions. 

We also studied the use of n-grams for query-by-
humming. Overall, n-grams perform significantly 
worse than other melodic-similarity-based search 
schemes. The main difference is that n-grams (in our 
implementation) require an exact match, so the search 
is not enhanced by the presence of approximate 
matches. Also, intervals must be quantized to obtain 
discrete n-grams, further degrading the information. 

We considered the use of n-grams as a “front end” in 
a two-stage search in which a fast indexing algorithm 
based on n-grams narrows the search, and a high 
precision algorithm based on edit distance, contour 
matching, or HMMs performs the final selection. We 
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Figure 13: Various models of database scaling with observed data for MRR. 
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conclude that there is a significant trade-off between 
speed and precision. 

Of course, we could not explore all possible n-gram 
approaches, so it is always possible that n-gram search 
could be improved. (And this was our project’s 
experience with string-alignment-based searching.) 
Nevertheless, we believe our results form a good 
indication of what is possible with n-gram searches 
applied to “real world” queries of popular music from 
non-musicians. 

In conclusion, we have found various algorithms for 
QBH that perform well with “realistic” audio queries. 
Nevertheless, the overall performance of QBH 
systems is quite dependent upon the quality of queries. 
Users must recall and reproduce melodies at least 
approximately for any search method to succeed. 
Another constraint is that the most successful 
algorithms lack a fast indexing mechanism, so all have 
a runtime that is linear in the size of the database. The 
Note Interval search uses a simple and efficient string-
alignment approach and therefore seems most 
promising for applications. We hope that this 
comparative study using real audio queries will 
provide some useful insight into the overall problems 
and potential of query-by-humming search systems. 
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