
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

A Comparative Evaluation of Software Techniques to Hide Memory Latency

Lizy Kurian John and Vinod Reddy
Department of Computer Science and Engineering

University of South Florida
Tampa, FL 33620

Abstract
Software oriented techniques to hide memory la-

tency in superscalar and superpipe2ined machines include

loop unrolling, software pipelining, and software cache
prefetching. Issuing the data fetch request prior to ac-
tual need for data allows overlap of accessing with use-
ful computations. Loop unrolling and software pipelining

do not necessitate microarchitecture or instruction set ar-

chitecture changes, whereas software controlled prefetch-

tng does. While studies on the benefits of the indiuid-
ual techniques hawe been done, no study evaluates all of

these techniques within a consistent framework. This pa-

per attempts to remedy this by providing a comparative

evaluation of the features and benefits of the techniques.

Loop unrolling and static scheduling of loads is seen to
produce significant improvement in performance at lower

latencies. Software plpelining is observed to be better than

software controlled prefetching at lower latencies, but at

higher latencies, software prefetching outperforms soft-

ware pipelining. Aggressive prefetching beyond conditional

branches can detrimentally affect performance by increas-

ing the memory bandwidth requirements and bus trafic.

Keywords: Compiler Optimization, Data Prefetch-

ing, Loop Unrolling, Memory Latency, Software Cache

Prefetching, Software Pipelining, Static Scheduling.

1 Introduction

Processor speeds have increased tremendously in the past

few years, but memory systems have barely kept pace,

widening the speed disparity between processors and

memory systems. Several software and architectural tech-

niques have been proposed in the past to hide and/or

decrease memory access times by pcefetching data and

overlapping access delays with useful computations. Loop

unrolling and static scheduling within t,he large loop, soft-

ware pipelining [15] [5] [7], so ware controlled prefetching ft

[20] [8] [12] [2] [4] [la] [23], lock-up free caches and non-

blocking loads [13], hardware cache prefetching [lo] [3],

etc. are techniques aimed at overlapping accessing with

computations and hiding memory access delays. In this

paper, we consider three primarily software techniques to

hide latency (i) loop unrolling and static scheduling within

the unrolled loop (ii) software pipelining and (iii) software

cache prefetching.

Loop unrolling is a basic block enlargement technique

in which several copies of the original loop body are con-

catenated to form a large new loop body. Careful schedul-

Paul T. Hulina and Lee D. Coraor
Department of Computer Science and Engineering

The Pennsylvania State University

University Park, PA 16802

ing of load instructions within the new large basic block

often increases the time between the data request and data

consumption and allows latency of accessing to be over-

lapped with computations. Melvin and Patt [17] showed

that basic block enlargement and scheduling the memory

access instructions within the enlarged block can reduce

memory access delays in pipelined computers.

Software pipelining is a technique that can be used

to overlap loads, computations and stores of different it-

erations in program loops. Software pipelining has been

shown to be very effective for VLIW architectures [15] [5]

and architectures such as the IBM RS/SOOO [24] and the

Cydra [21] which provide hardware support for software

pipelining.

Software controlled prefetching is a technique in

which programs are analyzed at compile-time and spe-

cial prefetch instructions that load data into a cache (or

prefetch buffer or local memory) are inserted ahead of

the actual reference for data. The actual load instruc-

tions which follow the prefetch instructions find the data

in the cache or prefetch buffer or local memory, which are

faster than the main memory. Software cache prefetching

requires instruction set architecture (ISA) and microar-

chitectural changes, but it may still be considered as a

primarily software technique. In the past few years, there

has been extensive research in software cache prefetching

[2] [20] [12] [4]. Porterfield et al. [2] [20] presented the

software cache prefetching strategy, and showed that it

improves cache performance. They also observed that the

overhead of executing the prefetches, the increased data

traffic and unnecessary prefetches may nullify the benefits,

but noted that further optimizations are possible. Gornish

et. al. [8j presented a prefetch algorithm that prefetches

data into a fast local memory. Klaiber and Levy [12] illus-

trated the software prefetching technique for a MIPS [ll]

style RISC processor. They showed how loop unrolling

together with the multi-word cache block can be used to

reduce the number of prefetch instructions. Mowry, Lam

and Gupta [18] incorporate optimizations to avoid unnec-

essary prefetches and implement a selective prefetch al-

gorithm and compare indiscriminate prefetching with se-

lective prefetching. They show that a selective prefetch

algorithm can reduce the overhead associated with soft-

ware prefetching. For bus-based multiprocessors, software

prefetching may result in increasing the bus traffic and re-

ducing the benefits [23].

223
lOGO-3425/95$4.0001995IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

1.1 Objectives

Our primary objective in this paper is to characterize the

features and benefits of loop unrolling, software pipelin-

ing and software prefetching techniques in a systematic

and consistent manner. Although the different techniques

have been individually evaluated in the past, a compara-

tive evaluation portraying the relative merits and demer-

its of the different techniques in a consistent framework is

lacking. These techniques are not in fact mutually ex-

clusive; several of the techniques may be combined in

the same system. A quantitative evaluation of the in-

dividual and combined techniques in a consistent frame-

work, will enable the architect and the compiler designer

to make intelligent decisions during the system design prc+

cess. We study these techniques as they would apply to

simple RISC processors such as the MIPS. The latency

sensitivity of the different, techniques is studied in detail.

Software controlled prefetching requires changes in the

processor microarchitecture and instruction set architec-

ture (ISA) while software pipelining can be implemented

without any architectural changes. Klaiber and Levy [12]

mention that software controlled prefet,ching compares fa-

vorably with nonblocking LOADS into a large register set,

hut quantitative results supporting the statement were

not presented. We perform a quantitative comparison of

software pipelining and software controlled prefetching for

a broad range of latencies.

Loop unrolling requires no change in the processor ar-

chitecture or instruction semantics. In terms of compiler

complexity, it is simpler than software pipelining. It would

be interesting to see whet,her loop unrolling and schedul-

ing of loads in the bigger basic block can achieve a per-

formance close to the other techniques. In this paper, we

quantitatively analyze the performance of loop unrolling,

software pipelining and software prefetching. Since the

techniques a.re not mutually exclusive, software pipelining

is combined with loop unrolling, and software prefetching

is combined with principles of loop unrolling and software

pipelining. A quantitative evaluation of the different tech-

niques individually and in combinations, is presented.

1.2 Overview

The paper is organized into 4 sections. Section 2 describes

the architectural assumptions, the benchmarks and the

simulator used for the comparative study. In section 3,

we present a comprehensive comparison of the three tech-

niques. We compare the execution times with the different

techniques and also analyze the hardware and compiler

requirements, code size, run-time overhead etc. Section 4

offers concluding remarks.

2 Simulation Methodology

This study is m the context of pipelined RISC proces-

sors. We simulate a pipelined uniprocessor architecture

with the MIPS instruction set and instruction latencies.

The simulated processor supports nonblocking loads and a

lockup-free cache [13]. For software controlled prefetching,

a prefetclainstruction as in [la] is added to the instruction

set. One of the unused opcodes of the MIPS processor

is used to represent this instruction. Trace-driven simu-

lation with a cycle by cycle simulator is used to compare

the techniques.

The system bus is 32 bits wide. Hence in the case of

double precision data, two memory accesses are required

for each data element. In our experiments with double

precision data, we found that memory bandwidth was be-

coming a bottleneck at low latencies itself and the ex-

periments were not yielding any valid results. Since the

techniques being studied are latency hidiug techniques, in

order to see any differences, it is essential that bandwidth

does not become a bottleneck. Hence the results presented

are obtained from simulations with single precision float-

ing point data, rather than double precision. Single pre-

cision simulation on a 32-bit architecture, would apply

at least qualitatively to double precision computations on

64-bit architectures. regarding the number of memory ac-

cess instructions, memory bandwidth requirements, and

balance of memory references versus computations.

A four-way sequentially interleaved memory system is

assumed for the simulations. Each memory bank is 32 bits

wide. All memory bank conflicts during accesses are con-

sidered. A 1 Kbyte instruction cache and a 1 KByte data

cache are assumed to be present. Our benchmarks are

program loops and hence the instruction cache hit-ratio is

very high for most cache configurations. The cache sizes

are unrealistic for modern microprocessors, but they have

been intentionally kept small because our benchmarks are

small. The cache block size is 8 bytes because lower block

size keeps spurious effects from memory traffic to a min-

imum. (One cache block can hold two data elements; so

the 8 byte block with single precision data would be the

equivalent of a 16 byte block in the case of double pre-

cision data.) The caches are 4-way set associative, and

LRU replacement policy is employed. We did perform ex-

periments with different block sizes, different associativ-

ity, etc, and the observations concur to results presented

in previous cache studies, and hence we are presenting

only the results from one typical cache configuration. The

memory access time is varied between 10 processor cy-

cles and 90 processor cycles, so that the impact of la-

tency on the techniques could be studied. The data cache

is nonblocking with four Miss Status Holding Registers

(MSHRs).

We certainly appreciate the value of being able to in-

corporate the different techniques in a compiler and per-

form the experiments automatically as Mowry, Lam and

Gupta [18] did and use large benchmarks such as the

SPEC. But we faced the same problem as Rogers and Li

[22] did, and without a compiler that would apply these

optimizations, we were forced to intervene in the code

compilation process. We perform simulations with a set.

of 8 programs that consist of two signal processing al-

gorithms CONV and CORR, the SAXPY routine from

Linpacks, the IFLOOP which has a data dependent IF-

THEN-ELSE construct inside, three Lawrence Livermore

Loops, an array copy program ACP, etc. All benchmarks

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

involve sequential referencing of arrays and hence spatial

locality. The signal processing algorithms, CONV and

CORR, involve nested loops and exhibit significant tem-

poral locality in the data reference pattern. The only loop

which has an embedded data dependent control depen-

dency is the IFLOOP. This loop has an IF-THEN-ELSE in

every iteration, the IF testing a data dependent condition.

The different characteristics of these different benchmarks

should reveal the different features of t,he techniques being

studied.

Total program execution time is the ultimate measure

of performance and we use execution time and a speed up

factor based on execution time as the performance met-

rics. Mowry, Lam and Gupta [18] also used execution time

as the metric.

Traces are generated from the assembly output from

the DEC station compilers. The benchmark sources are

compiled with the highest level of optimization (-04), and

assembly code obtained. We incorporated the different

techniques with manual intervention at this stage. Ap-

pendix II illustrates the code sequences for various tech-

niques for the SAXPY routine with equal increments. De-

spite taking a lot of space, and despite the difference be-

tween some of the sequences being very minor, several

code sequences are illustrated in Appendix II, so t.hat

readers could examine them and verify that the study

used comparable quality implementat,ions of the different

techniques.

The baseline code is obtained from the MIPS compiler

output by considering just one body of the loop within

each iteration (in the optimized code). The baseline code

(illustrated in part (a) of Appendix II) is thus state-of-the-

art code, optimized in every respect except unrolling. ln

our experiments, we limit unrolling to degree one. Naive

unrolled code as obtained from the MIPS compilers is il-

lustrated in part (b) of Appendix II. It may be noted

that the MIPS compiler allocates different sets of regis-

ters for different iterations. Then we rearrange the loads

and stores in the code sequence to hide latency. Basically

all the loads are moved to the beginning of the loop and

all the stores to the end of the loop. The resulting code

is illustrated in part (c) of Appendix II.

The code for the software pipelining (illustrated in

part (d) of Appendix 11) is obtained by rearranging the

baseline code so that loads of iteration i + 1 and compu-

tations of iterat.ion z are grouped together. -4 prologue

and epilogue are also added. For this sequence, the basic

block size is the same as the baseline code. Principles of

loop unrolling and software pipelining are then combined

to yield code sequences in part (e) of Appendix II. Two

other methods for software pipelining are illustrated in

[14]. It may also be noted that we pipeline only the loads.

Stores could be buffered at the memory and the latency

hidden/alleviated.

The code sequence for software cache prefetching is

illustrated in part (f) of Appendix Il. Then all optimiza-

tions as discussed in [12] and [18] are applied, and the code

sequence illustrated in part (g) of Appendix II is obtained.

Loop unrolling is applied, and the overhead of prefetching

is reduced by avoiding unnecessary prefetches (prefetches

that would be cache hits). Principles of software pipelin-

ing are applied, and data for next iteration are prefetched

during the current iteration.

The example in Appendix II does not have any con-

ditional branches within the loop. When conditional

branches are embedded as in IFLOOP, issues regard-

ing anticipatory fetching beyond the conditional branch

should be addressed. We generate 3 sets of code with

no anticipatory fetches, anticipatory fetches along the IF-

path, and anticipatory fetches along both paths, to study

the effect of lifting loads above conditional branches.

3 Performance Comparison

In this section, we present a comprehensive comparison of

the various techniques, based on our simulation studies.

In section 3.1, the performance of the different techniques

is compared to baseline performance using execution time

and speedup metrics. The latency sensitivity of the exe-

cution time is discussed in section 3.2, and the sensitivity

of the speedups is presented in section 3.3. Appendix I

and Fig 3 in section 3.3 summarize the comparison. Sec-

tion 3.4 discusses the effect of aggressive prefetching be-

yond conmditional branches. In section 3.5, we compare

the performance of software pipelining in an architecture

with hardware register renaming to that in simple RISC

architectures such as the MIPS. Miscellaneous hardware

and software issues are discussed in section 3.fi.

3.1 Comparison of Execution Time and Speedup

We performed experiments with loop unrolling, software

pipelining (with and without unrolling), and software

prefetching (with and without unrolling), at latencies of

10, 20, 30, 60, and 90 processor cycles. The execution

time for each technique is presented in Fig 1, for mem-

ory latencies of 10, 30, and 90 processor cycles. Naive

unrolling as in code sequence (b) of Appendix slightly

reduces execution time due to reduction in number of

branches and loop incrementing instructions. More signif-

icant reduction in performance is obtained by rearranging

the loads and increasing the distance between data loads

and data use as in sequence (c). At lower latencies, un-

rolling and rescheduling produce benefits comparable to

software pipelining (sequence d) and software prefetching

(sequence f). Loop unrolling and further optimizations

as in code sequences (e) and (g) produce more signifi-

cant benefits from software pipelining and software con-

trolled prefetching. The IFLOOP is the only benchmark

where the issue of aggressive prefetching beyond condi-

tional branches arises. The results presented in Fig 1 are

without aggressive speculative loading (lifting loads above

data dependent conditional branches). Some results with

speculative loading are presented later in Fig 4.

Appendix I illustrates a comparison of the speed up

from the different techniques for latencies 10, 30 and 90

cycles. The speed up is calculated as the ratio of the exe-

cution time with the baseline code to the execution time

with the corresponding technique. The mean speedup pre-

231

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

1 ..- W plpdinhg I

MMKX)
la\ancv=3OC@%

:s:PY

Figure 1: Comparison of Execution Time

sented is the geometric mean of the speedup of the 8 pro-

grams.

At t = 10 cycles, naive unrolling results in a per-

formance improvement of roughly 11%. Careful static

scheduling within the unrolled loop increases the improve-

ment to 23%. At this latency, the performance of naive

software pipelining and software prefetching are not higher

than that of static scheduling with loop unrolling. At

lower latency, software pipelining combined with unrolling

is the best technique, and software prefetching with un-

rolling is the next best technique. At a latency of 10

cycles, software pipelining (unrolled) exhibits better per-

formance than software prefetching (unrolled), in 6 out

of the 8 programs. In three of the benchmarks, ACP,

1~11 and L3, software prefetching is better than software

pipelining even at lower latencies. At a latency of 30 cy-

cles, naive software pipelining and software prefetching

is better than unrolling and static scheduling in most of

the benchmarks. Software prefetching (unrolled) is better

than software pipelining (unrolled) in 5 of the 8 programs.

Software prefetching (unrolled) is the best technique at a

latency of 30 cycles and software pipelining (unrolled) is

the next. At latency of 90 cycles, improvement by loop un-

rolling to degree one becomes less significant than pipelin-

ing or prefetching of degree one. Of course it is possible

to increase the degree of unrolling and improve the per-

formance. But higher degrees of unrolling increases the

number of registers consumed and it may not be practi-

cal to incorporate several degrees of unrolling except in

small loops. So we do not perform higher degrees of un-

rolling. At latency of 90 cycles, unrolling and scheduling

yields 11% improvement, software pipelining yields 33%

and software prefetching gives 48% improvement.

We applied all optimizations as discussed in [18] [12].

In spite of it, at lower latencies, software pipelining ap-

pears better than software prefetching. But as the latency

reaches 90 cycles, 6 out of the 8 benchmarks show better

performance for software prefetching. Thus the simula-

tion results demonstrate that software pipelining is more

fruitful at lower latencies and software prefetching is bet-

ter suited for higher latencies.

3.2 Latency Sensitivity of Execution time

The techniques we are studying are meant to hide la-

tency and hence the performance after incorporating the

technique should be less sensitive to latency than original

code. Fig 2 illustrates execution time versus latency for

three selected benchmarks. (All the 8 benchmarks are not

presented due to lack of space and similarity in behavior

between the programs. Interested readers can fmd them

in [14].) In most of the benchmarks, software pipelin-

ing starts out better, but as latency increases, software

prefetching catches up or even outperforms. To be fair in

comparison, software pipelining without (with) unrolling

should be compared with software prefetching without

(with) unrolling. One may observe that in CONV, soft-

ware prefetching with unrolling exhibits perfect latency

insensitivity. Among all the techniques studied, software

232

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

0 20 40 60 a0 100
Memory Cycle Time

- ongral

-e-unrolling -
-e- unmll + reanange CONV
I---(*‘-‘ plpelmmg

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

prefetching (unrolled) exhibits lowest sensitivity to la-

tency in most of the benchmarks.

In medium or large loops, one or two iterations are suf-

ficient to hide lower latencies and hence software pipelin-

ing with no runtime overhead behaves better than soft-

ware prefetching at lower latencies. Software controlled

prefetching is a very interesting technique, but there is

run-time overhead associated with it. The issuing of each

prefetch instruction consumes an extra cycle. If the reg-

isters with the addresses cannot be preserved till the ac-

tual LOAD, the address calculation may have to be dupli-

cated. (During our trace generation, we always preserved

the addresses and avoided duplicate address generation,

and hence the effect of this overhead is not evident in our

results.) In a naive implementation, software prefetching

could easily yield a performance deterioration. Porterfield

[20] had obtained increase in execution time with soft-

ware prefetching. Among the results presented by Mowry

et al. [18], in the case of indiscriminate prefetching, 3

out of their 13 benchmark programs exhibited increase in

execution time. Among our 8 programs, for CONV, soft-

ware prefetching without unrolling deteriorates the per-

formance, but when unrolling and other optimizations are

applied, the performance improves.

I 20 40 60 a0

Memory Cycle Time

At low latencies, the overhead of executing extra

prefetch instructions can deteriorate the performance.

But as latency increases, the extra prefetch instructions

get executed for free and the overhead associated with

prefetching gets nullified. In software prefetching, it is

easy to increase the prefetch distance. Software pipelin-

ing is more restricted, since a register has to be associ-

ated with the preloaded data. Software prefet,ching does

not increase register lifetimes as software pipelining does.

Software prefetching has the capability to mask higher la-

tencies than software pipelining.

Loop unrolling has no risks or overheads associated

with it that, may nullify the benefits of the technique. If

sufficient unused registers to unroll the loop are available,

compilers may incorporate the technique safely, since loop

unrolling is a relatively risk-free approach. Loop unrolling

often reduces loop overhead such as branches and index-

ing, and improves performance. If possible optimizations

are not properly incorporated, the speed up in software

pipelining and software prefetching may become less than

unity, but loop unrolling will never result in less than unity

speed up. Unrolling alone without code rearrangement

also results in benefits due to reduction in branch instruc-

tions and loop overhead.
I I

0 20 40 60 a0 100
Memory Cycle Time

Figure 2: Execution Time vs Latency

3.3 Latency Sensitivity of Speed Up

Fig 3 illustrates the comparison for the geometric mean of

the speed up for the 8 benchmarks. Several important ob-

servations can be made from this figure. The performance

improvement for loop unrolling becomes less significant as

latency increases. At lower latencies, the performance of

unrolling and static scheduling is comparable to naive soft-

ware pipelining and software prefetching. At low laten-

ties, software pipelining is better than software prefetch-

233

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

V unrolli

unroll end reschedule

PipelhlW

--o- unroll and pipeline

‘.,-J--t prefelching

- unmll and prefetch

1.01 . , . (. , . , .

0 20 40 60 60 100

Memory latency

Figure 3: Mean Speed up vs Latency

ing. The difference between the two techniques narrows

down as latency increases and software prefetching out-

performs software pipelining. Loop unrolling and other

optimizations can significantly improve the performance

of software pipelining and software prefetching. This fig-

ure reiterates our conclusion that software pipelining is

suitable at lower latencies and software prefetching is more

effective at higher latencies. One may refer to Appendix

1 for exact values of speedup at latencies of 10, 30 and 90

cycles. As latency increases from 10 to 90 cycles, the im-

provement contributed by static scheduling with unrolling

reduces from 23% to ll%, that of software pipelining (with

unrolling) reduces from 51% to 33% and that of software

prefetching (with unrolling) increases from 40% to 48%.

3.4 Effect of lifting loads above conditional

branches

Our results in the previous sections employ no aggres-

sive anticipatory loading (or in other words, we do not

lift loads above data dependent conditional branches). In

Fig 4. we present results from software controlled prefetch-

ing with anticipatory or speculative loads for the IFLOOP

program, which has conditional branches embedded in the

loop. The execution time with speculative loading of only

the load in the THEN case, and speculative loading of the

loads in both the THEN and ELSE cues are compared

to the case with no speculative loads. In all of the cases

that we studied, speculative loading was seen to deterio-

rate performance from the no speculative load case. This

suggests that speculative loading and extra memory traffic

from superfluous loads are often detrimental. Rogers and

Li [22] explained algorithms to aid in lifting loads above

conditional branches, but our studies warn about the over-

0

Figure 4:

branches

m noprefelchbayondconditiil branches
1 veletchabngoneparJl
m p&tchalcngbothpeths

10 20 30 60 90

-v Nancy

Danger of lifting loads above conditional

head of superfluous fetches and extra memory bandwidth

requirement that it may create. Our results support the

approach of Gornish et al. [8] who incorporated an algo

rithm in their compiler, to suppress superfluous fetches.

We assumed equal probability for the IF and ELSE paths.

The results may have not been so pessimistic if there was

a higher probability for one of the paths, and prefetches

only along that path were performed. But even then, there

would be some wasted traffic, and increased bandwidth re-

quirements. Since memory bandwidth is a bottleneck in

most high performance architectures, we would not rec-

ommend such an approach. Aggressive prefetching will

be fruitful only in architectures with extra bandwidth.

The effect of superfluous fetches on the performance of

prefetching schemes was discussed by Mowry [.l9] also.

3.5 Compiler Issues

All the techniques studied in this paper require assistance

from the compiler. In loop unrolling, the compiler has

to unroll loops, manipulate indices accordingly, and rear-

range the instructions within the loop to increase the load

distances. Modern optimizing compilers perform loop op

timizations very efficiently. The compiler assistance re-

quired in software pipelining is more complex than that

for loop unrolling, since loads have to be moved across

iterations. Software controlled prefetching requires still

more sophisticated compiler intervention. The compiler

has to insert prefetch instructions in such a way to guar-

antee sufficient load distance to hide latency. At the same

time, the data should not be loaded very much earlier

than required which may result in replacement of the data

from the cache before it is actually used in computations.

The compiler should minimize the number of prefetch in-

structions by unrolling the loops and making use of cache

locality, and generating prefetches for only potential cache

misses. The compiler has to minimize or suppress antici-

patory (superfluous) prefetches.

234

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

4 Summary and Concluding Remarks

Loop unrolling, software pipelining and software prefetch-

ing techniques were quantitatively compared in this pa-

per. One major conclusion from the study is that at

low memory latencies, software pipelining without any

hardware support outperforms software cache prefetch-

ing which requires ISA and microarchitectural changes.

Software prefetching has the run-time overhead of issuing

extra prefetch instructions and this overhead may can-

cel the benefits of prefetching at low latencies. Software

prefetching can cause detrimental effects if the compiler is

not efficient in applying various optimizations. At higher

latencies, software prefetching can lead to better benefits

than software pipelining, provided bandwidth has not yet

become a bottleneck. Loop unrolling is a very powerful

technique, and it is essential to combine loop unrolling

with software pipelining and software prefetching in or-

der to obtain true benefits from those techniques. Loop

unrolling with static scheduling of loads in the unrolled

loop produces a speed up of 1.23 at latency of 10 cycles

and 1.11 at latency of 90 cycles. The improvement is

smaller than best implementations of software pipelining

or software prefetching, but loop unrolling never yields a

performance deterioration. As latency increases from 10

cycles to 90 cycles, t.he speedup from software pipelining

changes from 1.51 to 1.33, and that of software prefetching

increases from I .40 to 1.48.

Loop unrolling artd software pipelining can be success-

fully performed in systems with no cache also (assuming

the memory is pipelined or non-blocking), whereas soft-

ware prefetching requires a cache (or a fast local mem-

ory). Implicit prefetchiug and overlapping as in loop un-

rolling with load hoisting and software pipelining, are pos-

sible only in load/store architectures. Explicit prefetch-

ing, such as software controlled prefetching can be done

even in non load/store architectures. All the techniques

are particularly suited for iterative programs.

Another conclusion is that aggressive speculative load-

ing beyond conditional branches is often detrimental to

performance. In the IFLOOP benchmark, software con-

trolled prefetching with speculative loading was seen to

increase the execution time. Unless carefully designed,

any explicit prefetching scheme that lifts loads above con-

ditional branches, can nullify the benefits of prefetching

by the increase in superfluous fetches and extra mem-

ory traffic. The superfluous fetches increase the memory

bandwidth requirement. Memory bandwidth is already a

bottleneck in most high performance architectures, and

any scheme that aggravates the bottleneck problem can-

not be favored. Our studies support a conservative ap-

proach regarding speculative loads and prefetches. Per-

haps the t.hrust of future research should be on techniques

such as blocking [16] [18] which reduce bandwidth require-

ments rat,her than just smoothen requirements as in the

techniques studied.

We expect our results to be true for larger programs,

but detailed experiments with benchmarks such as the

SPEC are required to investigate this.

References

PI

PI

[31

[41

[51

[61

[71

PI

PI

WI

WI

PI

D. Bernstein and M. Rodeh, ‘Global instruction

scheduling for superscalar machines”, ACM SIG-

PLAN ‘91 Conference on Programming Language

Design and Implementation, pp. 241-255, June 1991.

D. Callahan, K. Kennedy and A. Porterfield, “Soft-

ware Prefetching”, Proceedings of the Fourth In-

ternational Conference on Architectural Support for

Programming Languages and Operating Systems”,

April 1991, pp. 40-52.

T-F Chen and J-L Baer, “Reducing Memory Latency

via Non-blocking and Prefetching Caches”, Proceed-

ings of the International Conference on Architectural

Support for Programming Languages and Operating

Systems”, October 1992, pp. 51-61.

W. Y. Chen, S. A. Mahlke, P. P. Chang, and H. W.

Hwu, “Data access microarchitectures for superscalar

proc:essors with compiler assisted data prefetching”,

Proceedings of MICRO-24, 1991.

P. P. Colwell, R. P. Nix, J. J. O’Donnell, D. B. Pap-

worth and P. K. Rodman, “A VLIW architecture for

a trace scheduling compiler”, Proceedings of the Sec-

ond International Conference on Architectural Sup-

port, for Programming Languages a.nd Operating Sys-

tems”, pages 180-192, October 1987.

DE&hip 21064-AA Microprocessor Hardware Refer-

ence Manual, Digital Equipment Corporation, 1992.

K. Ebcioglu, “A Compilation Technique for Software

Pipelining of Loops with Conditional Jumps”, IEEE

Micro-20, December 1987.

E. Gornish, E. Granston and A. Veidenbaum, “Com-

piler directed Data Prefetching in Multiprocessors

with Memory Hierarchies”, 1990 International Con-

ference on Supercomputing, pp. 354-368.

A. Gupta, J. Hennessy, K. Gharachorloo, T. Mowry

and W-D Weber, “Comparative Evaluation of La-

tency Reducing and Tolerating Techniques”, Proc. of

the 18th Annual International Symposium on Com-

puter Architecture, Toronto, Canada, May 1991,

pp.254-263

N. P. Jouppi, “Improving direct-mapped cache per-

formance by the addition of a small fully associative

cache and buffers”, 17th International Symposium on

Cornputer Architecture, 1990, pp. 364-373.

G. Kane, “MIPS RISC Architecture”, Prentice-Hall,

Englewood Cliffs, N.J., 1988.

A. C. Klaiber and H. M. Levy, “An architecture

for software-controlled data prefetching”, 18th Intl.

235

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 199.5

Symp. on Computer Architecture, May 1991, pp. 43-

53.

[13] D. Kroft, VLockup-free Instruction Fetch/Prefetch

Cache Organization”, Prof. of the 8th Annual Intl.

Symp. on Computer Architecture, pp. 81-87, June

1981.

[14] L. Kurian and V. Reddy, “A Comparative Evaluation

of Software Techniques to Hide Memory Latency”,

University of South Florida, Dept. of Computer Sci-

ence and Engineering, Technical Report, 199402.

[15] M. S. Lam, ‘Software pipelining: An effective

scheduling technique for VLIW machines”, ACM

SIGPLAN ‘88 conference on programming Language

Design and Implementation, pp. 318 - 328, 1988.

[16] M. S. Lam, E. E. Rothberg and M. E. Wolf, “The

Cache Performance and Optimizations of Blocked AI-

gorithms”, Proceedings of the Fourth International

Conference on Architectural Support for Program-

ming Languages and Operating Systems”, 1991, pp.

63 - 74.

[17] S. Melvin and Y. Patt, ‘Exploiting Fine-Grained

Parallelism Through a Combination of Hardware and

Software Techniques”, Proc. of the 18th Annual In-

ternational Symposium on Computer Architecture,

Toronto, Canada, May 1991, pp.287-296

[IS] T. C. Mowry, M. S. Lam and Anoop Gupta, “Design

and Evaluation of a Compiler Algorithm for Prefetch-

mg”, Proceedings of the International Conference on

Architectural Support for Programming Languages

and Operating Systems”, October 1992, pp. 62 - 73.

[19] T. Mowry, “Tolerating Latency Through Software-

Controlled Data Prefetching”, Stanford University

Technical Report, CSL-TR-94-628, June 1994.

[‘ZO) A. K. Porterfield. “Software Methods for Improve-

ment of Cache Performance on Supercomputer .1p

plications” , Ph. D. dissertation, RICE COMP TR

89-93, hfay 1989.

[?I] B.R. Rau et al. “The Cydra 5 departmental super-

computer: Design philosophies, decisions, and trade-

offs”, IEEE Computer, vol. 22, January 1989, pp.

12-35.

[22] A. Rogers and K. Li, “Software Support for Specu-

lative Loads”, Proceedings of the International Con-

ference on Architectural Support for Programming

Languages and Operating Systems”, October 1992,

pp. 38-50.

[23] D. M. TuIlsen and S. J. Eggers, “Limitations of Cache

Prefetching on a Bus-Based Multiprocessor”, Proc. of

the International Symposium on Computer Architec-

ture, May 1993, pp. 278-288.

[24] Warren Jr. H., “Instruction Scheduling for the IBM

RISC System/6000 processor”, IBM Journal of Re-

search and Development 34(l), Jan 1990, pp. 85 - 91.

APPENDIX I

Speedup from various techniques

Bench---- unroll 1 un+ soft un+
mark pipe

CONV-

pref pref

1.045 1.364 0.964 1.097

CORR 1.203 1.381 1.228 1.441 1.021 1.425

SAXPY 1.021 1.043 1.223 1.628 1.043 1.136

IFLOOP 1.169 1.243 1.231 1.566 1.210 1.451

ACP 1.093 1.206 1.130 1.400 1.399 1.587

Lll 1.112 1.297 1.220 1.496 1.438 1.441

L3 1.086 1.193 1.225 1.680 1.526 1.730

Ll 1 1.183 1 1.284 1 1.398 1 1.506 1.350 1.474

Mean 1 1.112 1 1.232 1 1.230 1 1.507 1.230 1.403

Bench-

mark

CONV

CORR

SAXPY

IFLOOP

ACP

Lll

L3

Ll

Mean

unroII

1.048

1.153

1.000

1.033

1.016

1.020

1.019

1.043

1.041

(a) 10 cycles

un+ I soft I un+ I soft

sch pipe pipe 1 pref

1.222 1.160 1.340 0.968

1.357 1.213 1.411 1.038

1.000 1.286 1.809 1.387

1.301 1.295 1.432 1.535

1.087 1.057 1.156 1.155

1.128 1.099 1.200 1.180

1.099 1.113 1.289 1.431

1.123 1.487 1.723 1.617

1.159 [1.207 (1.404 1 1.269

(b) 30 cycles

un+ soft

sch pipe

1.159 1.124

1.278 1.164

1.000 1.314

1.320 1.318

1.032 1.021

1.047 1.038

1.041 1.045

1.047 1.39

1.110 1.169

(c) 90 cycles

un+

pref

1.152

1.471

1.911

1.837

1.210

1.180

1.434

1.702

1.461

un+

pref

1.655

1.465

1.961

1.932

1.072

1.066

1.150

1.865

1.476

236

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

APPENDIX II

Code sequences for saxpy.equal program, with various techniques incorporated step-
by-step are illustrated in this Appendix.

$32: lw $15,-4008($3) ; load x(i) to Rl5

IW $14,-8008($3) ; load y(i) to R14

mu1 $24,$15,a ;a * x(i)

addu $25,$14,$24 ; y(i) + a*x(i)
SW $25,-8008(%3) ; save y(i)

addu $3,$3,4 ; update base register

bne $3,82,$32 ; loop back

(a) Baseline code

$32: lw

lw

mu1

addu

SW

lw

lw

mu1

addu

SW

addu

bne

$32: lw $15,-4008($3)

lw $9,-4004($3)

IW $14,-8008($3)

1W $8,-8004($3)

mu1 $24,$15,a
addu $25,$14,$24

mu1 $10,$9,a

acldu $11,$8,$10

SW $25,-8008(%3)

SW $ll,-8004($3)

addu $3,$3,8

bne $3,$2,$32

$32:

lw $15,-4008($3)

lw $14,-8008($3)

mu1 $24,$15,a

lw $15,-4004($3)

addu $25,$14,$24

lw $14,-8004($3)

SW $25,-8008($3)

addu $3,$3,4

bne $3,$2,$32

mu1 $24,$15,a

addu $25,$14,$24

SW $25,-8008($3)

$15,-4008($3)

$14,-8008($3)

$24,$15,a

$25,$14,$24

$25,-8008($3)

J9,-4004($3)

$8,-8004($3)

$lO,tS,a

$11,$8,$10

$ll,-8004($3)

$3,%3,8

$3,$2,$32

; load x(i) to RI5

; load y(i) to R14

; a * x(i)

; y(i) + a*x(i)
; save y(i)

; load x(i+l) to R9

; load y(i+l) to R8

; a * x(i+l)

; y(i+l) + a*x(i+l)
; save y(i+l)

; update base register

; loop back

(b) Loop unrolling alone (no code rearrangement)

; load x(i) to R15

; load x(i+l) to R9

; load y(i) to R14
; load y(i+l) to R8

; a * x(i)

; y(i) + a*x(i)

; a * x(i+l)

; y(i+l) + a*x(i+l)

; save y(i)

; save y(i+l)

; update base register

; loop back

(c) Loop unrolling and code rearrangement

; load x(0) to R15 - (This is in the prologue)

; load y(0) to R14 - (This is in the prologue)

; a * x(i)

; load x(i+l) to R15

; y(i) + a*x(i)
; load y(i+l) to R14

; save y(i)

; update base register

; loop back

; last a * x(i) will be in epilogue

; last y(i) + a*x(i) in epilogue

; save y(i), last store will be in epilogue

(cl) Software pipelining

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

$32:

lw

lw

IW

lw

mu1

lw

addu

lw

mu1

lw

addu

lw

SW

SW

addu

bne

mu1

mu1

addu

addu

SW

SW

532: fetch
fetch

IW

lw

mu1

addu

SW

addu

bne

$32: fetch

fetch

IW

LW

mu1

addu

SW

lw

1W

mu1
addu

SW

addu

bne

$17,-4008(53) ; load x(0) to R17 - prologue

57,-4004($3) ; load x(l) to R7 - prologue

$16,-8008(53) ; load y(0) to R16 - prologue

56,-8004($3) ; load y(l) to R6 - prologue

$24,$17,a ;a * x(i)

517,-4000(53) ; load x(i+2) to RI5

$25,$16,$24 ; y(i) + a*x(i)
516,-8000(53) ; load y(i+2) to R14

510,57,a ;a * x(i+l)

$7,-3996($3) ; load x(i+3) to R9

$11,56,510 ; y(i+l) + a*x(i+l)
$6,-7996($3) ; load y(i+3) to R8

525,-8008($3) ; save y(i)

$ll,-8004($3) ; save y(i+l)

53,53,8 ; update base register

$3,52,$32 ; loop back

$24,$17,a ;a * x(n-1) epilogue

510,$7,a ;a * x(n) epilogue

525,516,524 ; y(n-1) + a*x(n-1) epilogue

$11,$6,510 ; y(n) + a*x(n) epilogue
$25,-8008($3) ; save y(n-1)epilogue

511,-8004($3) ; save y(n)epilogue

(e) Software pipelining in (d) with unrolling

-4004($3) ; prefetch x(i+l) to cache

-8004($3) ; prefetch y(i+l) cache

$15,-4008($3) ; load x(i) to R15

$14,-8008($3) ; load y(i) to R14

$24,$15,a ; a * x(i)

525,514,524 ; y(i) + a*x(i)
525,-8008($3) ; save y(i)

53,$3,4 ; update base register

53,52,532 ; loop back

(f) Software controlled prefetching (no unrolling)

-4000(%3)

-8000($3)

515,-4008($3)

514,-8008(53)

524,515,a

525,514,524

$25,-8008($3)

59,-4004(53)

58,-8004(53)

$10,59,a

511,$8,510

511,-8004($3)

53,53,8

53,52,532

; prefetch x(i+2) to cache

; prefetch y(i+2) to cache

; load x(i) to R15

; load y(i) to RI4

;a * x(i)

; y(i) + a*x(i)
; save y(i)

; load x(i+l) to R9

; load y(i+l) to R8

;a * x(i+l)

; y(i+1) + a*x(i+l)
; save y(i+l)

; update base register

; loop back

(g) Software prefetching (unrolled and optimized)

238

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

