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Abstract 
Software oriented techniques to hide memory la- 

tency in superscalar and superpipe2ined machines include 

loop unrolling, software pipelining, and software cache 
prefetching. Issuing the data fetch request prior to ac- 
tual need for data allows overlap of accessing with use- 
ful computations. Loop unrolling and software pipelining 

do not necessitate microarchitecture or instruction set ar- 

chitecture changes, whereas software controlled prefetch- 

tng does. While studies on the benefits of the indiuid- 
ual techniques hawe been done, no study evaluates all of 

these techniques within a consistent framework. This pa- 

per attempts to remedy this by providing a comparative 

evaluation of the features and benefits of the techniques. 

Loop unrolling and static scheduling of loads is seen to 
produce significant improvement in performance at lower 

latencies. Software plpelining is observed to be better than 

software controlled prefetching at lower latencies, but at 

higher latencies, software prefetching outperforms soft- 

ware pipelining. Aggressive prefetching beyond conditional 

branches can detrimentally affect performance by increas- 

ing the memory bandwidth requirements and bus trafic. 

Keywords: Compiler Optimization, Data Prefetch- 

ing, Loop Unrolling, Memory Latency, Software Cache 

Prefetching, Software Pipelining, Static Scheduling. 

1 Introduction 

Processor speeds have increased tremendously in the past 

few years, but memory systems have barely kept pace, 

widening the speed disparity between processors and 

memory systems. Several software and architectural tech- 

niques have been proposed in the past to hide and/or 

decrease memory access times by pcefetching data and 

overlapping access delays with useful computations. Loop 

unrolling and static scheduling within t,he large loop, soft- 

ware pipelining [15] [5] [7], so ware controlled prefetching ft 

[20] [8] [12] [2] [4] [la] [23], lock-up free caches and non- 

blocking loads [13], hardware cache prefetching [lo] [3], 

etc. are techniques aimed at overlapping accessing with 

computations and hiding memory access delays. In this 

paper, we consider three primarily software techniques to 

hide latency (i) loop unrolling and static scheduling within 

the unrolled loop (ii) software pipelining and (iii) software 

cache prefetching. 

Loop unrolling is a basic block enlargement technique 

in which several copies of the original loop body are con- 

catenated to form a large new loop body. Careful schedul- 
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ing of load instructions within the new large basic block 

often increases the time between the data request and data 

consumption and allows latency of accessing to be over- 

lapped with computations. Melvin and Patt [17] showed 

that basic block enlargement and scheduling the memory 

access instructions within the enlarged block can reduce 

memory access delays in pipelined computers. 

Software pipelining is a technique that can be used 

to overlap loads, computations and stores of different it- 

erations in program loops. Software pipelining has been 

shown to be very effective for VLIW architectures [15] [5] 

and architectures such as the IBM RS/SOOO [24] and the 

Cydra [21] which provide hardware support for software 

pipelining. 

Software controlled prefetching is a technique in 

which programs are analyzed at compile-time and spe- 

cial prefetch instructions that load data into a cache (or 

prefetch buffer or local memory) are inserted ahead of 

the actual reference for data. The actual load instruc- 

tions which follow the prefetch instructions find the data 

in the cache or prefetch buffer or local memory, which are 

faster than the main memory. Software cache prefetching 

requires instruction set architecture (ISA) and microar- 

chitectural changes, but it may still be considered as a 

primarily software technique. In the past few years, there 

has been extensive research in software cache prefetching 

[2] [20] [12] [4]. Porterfield et al. [2] [20] presented the 

software cache prefetching strategy, and showed that it 

improves cache performance. They also observed that the 

overhead of executing the prefetches, the increased data 

traffic and unnecessary prefetches may nullify the benefits, 

but noted that further optimizations are possible. Gornish 

et. al. [8j presented a prefetch algorithm that prefetches 

data into a fast local memory. Klaiber and Levy [12] illus- 

trated the software prefetching technique for a MIPS [ll] 

style RISC processor. They showed how loop unrolling 

together with the multi-word cache block can be used to 

reduce the number of prefetch instructions. Mowry, Lam 

and Gupta [18] incorporate optimizations to avoid unnec- 

essary prefetches and implement a selective prefetch al- 

gorithm and compare indiscriminate prefetching with se- 

lective prefetching. They show that a selective prefetch 

algorithm can reduce the overhead associated with soft- 

ware prefetching. For bus-based multiprocessors, software 

prefetching may result in increasing the bus traffic and re- 

ducing the benefits [23]. 
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1.1 Objectives 

Our primary objective in this paper is to characterize the 

features and benefits of loop unrolling, software pipelin- 

ing and software prefetching techniques in a systematic 

and consistent manner. Although the different techniques 

have been individually evaluated in the past, a compara- 

tive evaluation portraying the relative merits and demer- 

its of the different techniques in a consistent framework is 

lacking. These techniques are not in fact mutually ex- 

clusive; several of the techniques may be combined in 

the same system. A quantitative evaluation of the in- 

dividual and combined techniques in a consistent frame- 

work, will enable the architect and the compiler designer 

to make intelligent decisions during the system design prc+ 

cess. We study these techniques as they would apply to 

simple RISC processors such as the MIPS. The latency 

sensitivity of the different, techniques is studied in detail. 

Software controlled prefetching requires changes in the 

processor microarchitecture and instruction set architec- 

ture (ISA) while software pipelining can be implemented 

without any architectural changes. Klaiber and Levy [12] 

mention that software controlled prefet,ching compares fa- 

vorably with nonblocking LOADS into a large register set, 

hut quantitative results supporting the statement were 

not presented. We perform a quantitative comparison of 

software pipelining and software controlled prefetching for 

a broad range of latencies. 

Loop unrolling requires no change in the processor ar- 

chitecture or instruction semantics. In terms of compiler 

complexity, it is simpler than software pipelining. It would 

be interesting to see whet,her loop unrolling and schedul- 

ing of loads in the bigger basic block can achieve a per- 

formance close to the other techniques. In this paper, we 

quantitatively analyze the performance of loop unrolling, 

software pipelining and software prefetching. Since the 

techniques a.re not mutually exclusive, software pipelining 

is combined with loop unrolling, and software prefetching 

is combined with principles of loop unrolling and software 

pipelining. A quantitative evaluation of the different tech- 

niques individually and in combinations, is presented. 

1.2 Overview 

The paper is organized into 4 sections. Section 2 describes 

the architectural assumptions, the benchmarks and the 

simulator used for the comparative study. In section 3, 

we present a comprehensive comparison of the three tech- 

niques. We compare the execution times with the different 

techniques and also analyze the hardware and compiler 

requirements, code size, run-time overhead etc. Section 4 

offers concluding remarks. 

2 Simulation Methodology 

This study is m the context of pipelined RISC proces- 

sors. We simulate a pipelined uniprocessor architecture 

with the MIPS instruction set and instruction latencies. 

The simulated processor supports nonblocking loads and a 

lockup-free cache [13]. For software controlled prefetching, 

a prefetclainstruction as in [la] is added to the instruction 

set. One of the unused opcodes of the MIPS processor 

is used to represent this instruction. Trace-driven simu- 

lation with a cycle by cycle simulator is used to compare 

the techniques. 

The system bus is 32 bits wide. Hence in the case of 

double precision data, two memory accesses are required 

for each data element. In our experiments with double 

precision data, we found that memory bandwidth was be- 

coming a bottleneck at low latencies itself and the ex- 

periments were not yielding any valid results. Since the 

techniques being studied are latency hidiug techniques, in 

order to see any differences, it is essential that bandwidth 

does not become a bottleneck. Hence the results presented 

are obtained from simulations with single precision float- 

ing point data, rather than double precision. Single pre- 

cision simulation on a 32-bit architecture, would apply 

at least qualitatively to double precision computations on 

64-bit architectures. regarding the number of memory ac- 

cess instructions, memory bandwidth requirements, and 

balance of memory references versus computations. 

A four-way sequentially interleaved memory system is 

assumed for the simulations. Each memory bank is 32 bits 

wide. All memory bank conflicts during accesses are con- 

sidered. A 1 Kbyte instruction cache and a 1 KByte data 

cache are assumed to be present. Our benchmarks are 

program loops and hence the instruction cache hit-ratio is 

very high for most cache configurations. The cache sizes 

are unrealistic for modern microprocessors, but they have 

been intentionally kept small because our benchmarks are 

small. The cache block size is 8 bytes because lower block 

size keeps spurious effects from memory traffic to a min- 

imum. (One cache block can hold two data elements; so 

the 8 byte block with single precision data would be the 

equivalent of a 16 byte block in the case of double pre- 

cision data.) The caches are 4-way set associative, and 

LRU replacement policy is employed. We did perform ex- 

periments with different block sizes, different associativ- 

ity, etc, and the observations concur to results presented 

in previous cache studies, and hence we are presenting 

only the results from one typical cache configuration. The 

memory access time is varied between 10 processor cy- 

cles and 90 processor cycles, so that the impact of la- 

tency on the techniques could be studied. The data cache 

is nonblocking with four Miss Status Holding Registers 

(MSHRs). 

We certainly appreciate the value of being able to in- 

corporate the different techniques in a compiler and per- 

form the experiments automatically as Mowry, Lam and 

Gupta [18] did and use large benchmarks such as the 

SPEC. But we faced the same problem as Rogers and Li 

[22] did, and without a compiler that would apply these 

optimizations, we were forced to intervene in the code 

compilation process. We perform simulations with a set. 

of 8 programs that consist of two signal processing al- 

gorithms CONV and CORR, the SAXPY routine from 

Linpacks, the IFLOOP which has a data dependent IF- 

THEN-ELSE construct inside, three Lawrence Livermore 

Loops, an array copy program ACP, etc. All benchmarks 
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involve sequential referencing of arrays and hence spatial 

locality. The signal processing algorithms, CONV and 

CORR, involve nested loops and exhibit significant tem- 

poral locality in the data reference pattern. The only loop 

which has an embedded data dependent control depen- 

dency is the IFLOOP. This loop has an IF-THEN-ELSE in 

every iteration, the IF testing a data dependent condition. 

The different characteristics of these different benchmarks 

should reveal the different features of t,he techniques being 

studied. 

Total program execution time is the ultimate measure 

of performance and we use execution time and a speed up 

factor based on execution time as the performance met- 

rics. Mowry, Lam and Gupta [18] also used execution time 

as the metric. 

Traces are generated from the assembly output from 

the DEC station compilers. The benchmark sources are 

compiled with the highest level of optimization (-04), and 

assembly code obtained. We incorporated the different 

techniques with manual intervention at this stage. Ap- 

pendix II illustrates the code sequences for various tech- 

niques for the SAXPY routine with equal increments. De- 

spite taking a lot of space, and despite the difference be- 

tween some of the sequences being very minor, several 

code sequences are illustrated in Appendix II, so t.hat 

readers could examine them and verify that the study 

used comparable quality implementat,ions of the different 

techniques. 

The baseline code is obtained from the MIPS compiler 

output by considering just one body of the loop within 

each iteration (in the optimized code). The baseline code 

(illustrated in part (a) of Appendix II) is thus state-of-the- 

art code, optimized in every respect except unrolling. ln 

our experiments, we limit unrolling to degree one. Naive 

unrolled code as obtained from the MIPS compilers is il- 

lustrated in part (b) of Appendix II. It may be noted 

that the MIPS compiler allocates different sets of regis- 

ters for different iterations. Then we rearrange the loads 

and stores in the code sequence to hide latency. Basically 

all the loads are moved to the beginning of the loop and 

all the stores to the end of the loop. The resulting code 

is illustrated in part (c) of Appendix II. 

The code for the software pipelining (illustrated in 

part (d) of Appendix 11) is obtained by rearranging the 

baseline code so that loads of iteration i + 1 and compu- 

tations of iterat.ion z are grouped together. -4 prologue 

and epilogue are also added. For this sequence, the basic 

block size is the same as the baseline code. Principles of 

loop unrolling and software pipelining are then combined 

to yield code sequences in part (e) of Appendix II. Two 

other methods for software pipelining are illustrated in 

[14]. It may also be noted that we pipeline only the loads. 

Stores could be buffered at the memory and the latency 

hidden/alleviated. 

The code sequence for software cache prefetching is 

illustrated in part (f) of Appendix Il. Then all optimiza- 

tions as discussed in [12] and [18] are applied, and the code 

sequence illustrated in part (g) of Appendix II is obtained. 

Loop unrolling is applied, and the overhead of prefetching 

is reduced by avoiding unnecessary prefetches (prefetches 

that would be cache hits). Principles of software pipelin- 

ing are applied, and data for next iteration are prefetched 

during the current iteration. 

The example in Appendix II does not have any con- 

ditional branches within the loop. When conditional 

branches are embedded as in IFLOOP, issues regard- 

ing anticipatory fetching beyond the conditional branch 

should be addressed. We generate 3 sets of code with 

no anticipatory fetches, anticipatory fetches along the IF- 

path, and anticipatory fetches along both paths, to study 

the effect of lifting loads above conditional branches. 

3 Performance Comparison 

In this section, we present a comprehensive comparison of 

the various techniques, based on our simulation studies. 

In section 3.1, the performance of the different techniques 

is compared to baseline performance using execution time 

and speedup metrics. The latency sensitivity of the exe- 

cution time is discussed in section 3.2, and the sensitivity 

of the speedups is presented in section 3.3. Appendix I 

and Fig 3 in section 3.3 summarize the comparison. Sec- 

tion 3.4 discusses the effect of aggressive prefetching be- 

yond conmditional branches. In section 3.5, we compare 

the performance of software pipelining in an architecture 

with hardware register renaming to that in simple RISC 

architectures such as the MIPS. Miscellaneous hardware 

and software issues are discussed in section 3.fi. 

3.1 Comparison of Execution Time and Speedup 

We performed experiments with loop unrolling, software 

pipelining (with and without unrolling), and software 

prefetching (with and without unrolling), at latencies of 

10, 20, 30, 60, and 90 processor cycles. The execution 

time for each technique is presented in Fig 1, for mem- 

ory latencies of 10, 30, and 90 processor cycles. Naive 

unrolling as in code sequence (b) of Appendix slightly 

reduces execution time due to reduction in number of 

branches and loop incrementing instructions. More signif- 

icant reduction in performance is obtained by rearranging 

the loads and increasing the distance between data loads 

and data use as in sequence (c). At lower latencies, un- 

rolling and rescheduling produce benefits comparable to 

software pipelining (sequence d) and software prefetching 

(sequence f). Loop unrolling and further optimizations 

as in code sequences (e) and (g) produce more signifi- 

cant benefits from software pipelining and software con- 

trolled prefetching. The IFLOOP is the only benchmark 

where the issue of aggressive prefetching beyond condi- 

tional branches arises. The results presented in Fig 1 are 

without aggressive speculative loading (lifting loads above 

data dependent conditional branches). Some results with 

speculative loading are presented later in Fig 4. 

Appendix I illustrates a comparison of the speed up 

from the different techniques for latencies 10, 30 and 90 

cycles. The speed up is calculated as the ratio of the exe- 

cution time with the baseline code to the execution time 

with the corresponding technique. The mean speedup pre- 
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Figure 1: Comparison of Execution Time 

sented is the geometric mean of the speedup of the 8 pro- 

grams. 

At t = 10 cycles, naive unrolling results in a per- 

formance improvement of roughly 11%. Careful static 

scheduling within the unrolled loop increases the improve- 

ment to 23%. At this latency, the performance of naive 

software pipelining and software prefetching are not higher 

than that of static scheduling with loop unrolling. At 

lower latency, software pipelining combined with unrolling 

is the best technique, and software prefetching with un- 

rolling is the next best technique. At a latency of 10 

cycles, software pipelining (unrolled) exhibits better per- 

formance than software prefetching (unrolled), in 6 out 

of the 8 programs. In three of the benchmarks, ACP, 

1~11 and L3, software prefetching is better than software 

pipelining even at lower latencies. At a latency of 30 cy- 

cles, naive software pipelining and software prefetching 

is better than unrolling and static scheduling in most of 

the benchmarks. Software prefetching (unrolled) is better 

than software pipelining (unrolled) in 5 of the 8 programs. 

Software prefetching (unrolled) is the best technique at a 

latency of 30 cycles and software pipelining (unrolled) is 

the next. At latency of 90 cycles, improvement by loop un- 

rolling to degree one becomes less significant than pipelin- 

ing or prefetching of degree one. Of course it is possible 

to increase the degree of unrolling and improve the per- 

formance. But higher degrees of unrolling increases the 

number of registers consumed and it may not be practi- 

cal to incorporate several degrees of unrolling except in 

small loops. So we do not perform higher degrees of un- 

rolling. At latency of 90 cycles, unrolling and scheduling 

yields 11% improvement, software pipelining yields 33% 

and software prefetching gives 48% improvement. 

We applied all optimizations as discussed in [18] [12]. 

In spite of it, at lower latencies, software pipelining ap- 

pears better than software prefetching. But as the latency 

reaches 90 cycles, 6 out of the 8 benchmarks show better 

performance for software prefetching. Thus the simula- 

tion results demonstrate that software pipelining is more 

fruitful at lower latencies and software prefetching is bet- 

ter suited for higher latencies. 

3.2 Latency Sensitivity of Execution time 

The techniques we are studying are meant to hide la- 

tency and hence the performance after incorporating the 

technique should be less sensitive to latency than original 

code. Fig 2 illustrates execution time versus latency for 

three selected benchmarks. (All the 8 benchmarks are not 

presented due to lack of space and similarity in behavior 

between the programs. Interested readers can fmd them 

in [14].) In most of the benchmarks, software pipelin- 

ing starts out better, but as latency increases, software 

prefetching catches up or even outperforms. To be fair in 

comparison, software pipelining without (with) unrolling 

should be compared with software prefetching without 

(with) unrolling. One may observe that in CONV, soft- 

ware prefetching with unrolling exhibits perfect latency 

insensitivity. Among all the techniques studied, software 
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prefetching (unrolled) exhibits lowest sensitivity to la- 

tency in most of the benchmarks. 

In medium or large loops, one or two iterations are suf- 

ficient to hide lower latencies and hence software pipelin- 

ing with no runtime overhead behaves better than soft- 

ware prefetching at lower latencies. Software controlled 

prefetching is a very interesting technique, but there is 

run-time overhead associated with it. The issuing of each 

prefetch instruction consumes an extra cycle. If the reg- 

isters with the addresses cannot be preserved till the ac- 

tual LOAD, the address calculation may have to be dupli- 

cated. (During our trace generation, we always preserved 

the addresses and avoided duplicate address generation, 

and hence the effect of this overhead is not evident in our 

results.) In a naive implementation, software prefetching 

could easily yield a performance deterioration. Porterfield 

[20] had obtained increase in execution time with soft- 

ware prefetching. Among the results presented by Mowry 

et al. [18], in the case of indiscriminate prefetching, 3 

out of their 13 benchmark programs exhibited increase in 

execution time. Among our 8 programs, for CONV, soft- 

ware prefetching without unrolling deteriorates the per- 

formance, but when unrolling and other optimizations are 

applied, the performance improves. 

I 20 40 60 a0 

Memory Cycle Time 

At low latencies, the overhead of executing extra 

prefetch instructions can deteriorate the performance. 

But as latency increases, the extra prefetch instructions 

get executed for free and the overhead associated with 

prefetching gets nullified. In software prefetching, it is 

easy to increase the prefetch distance. Software pipelin- 

ing is more restricted, since a register has to be associ- 

ated with the preloaded data. Software prefet,ching does 

not increase register lifetimes as software pipelining does. 

Software prefetching has the capability to mask higher la- 

tencies than software pipelining. 

Loop unrolling has no risks or overheads associated 

with it that, may nullify the benefits of the technique. If 

sufficient unused registers to unroll the loop are available, 

compilers may incorporate the technique safely, since loop 

unrolling is a relatively risk-free approach. Loop unrolling 

often reduces loop overhead such as branches and index- 

ing, and improves performance. If possible optimizations 

are not properly incorporated, the speed up in software 

pipelining and software prefetching may become less than 

unity, but loop unrolling will never result in less than unity 

speed up. Unrolling alone without code rearrangement 

also results in benefits due to reduction in branch instruc- 

tions and loop overhead. 
I I 

0 20 40 60 a0 100 
Memory Cycle Time 

Figure 2: Execution Time vs Latency 

3.3 Latency Sensitivity of Speed Up 

Fig 3 illustrates the comparison for the geometric mean of 

the speed up for the 8 benchmarks. Several important ob- 

servations can be made from this figure. The performance 

improvement for loop unrolling becomes less significant as 

latency increases. At lower latencies, the performance of 

unrolling and static scheduling is comparable to naive soft- 

ware pipelining and software prefetching. At low laten- 

ties, software pipelining is better than software prefetch- 
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Figure 3: Mean Speed up vs Latency 

ing. The difference between the two techniques narrows 

down as latency increases and software prefetching out- 

performs software pipelining. Loop unrolling and other 

optimizations can significantly improve the performance 

of software pipelining and software prefetching. This fig- 

ure reiterates our conclusion that software pipelining is 

suitable at lower latencies and software prefetching is more 

effective at higher latencies. One may refer to Appendix 

1 for exact values of speedup at latencies of 10, 30 and 90 

cycles. As latency increases from 10 to 90 cycles, the im- 

provement contributed by static scheduling with unrolling 

reduces from 23% to ll%, that of software pipelining (with 

unrolling) reduces from 51% to 33% and that of software 

prefetching (with unrolling) increases from 40% to 48%. 

3.4 Effect of lifting loads above conditional 

branches 

Our results in the previous sections employ no aggres- 

sive anticipatory loading (or in other words, we do not 

lift loads above data dependent conditional branches). In 

Fig 4. we present results from software controlled prefetch- 

ing with anticipatory or speculative loads for the IFLOOP 

program, which has conditional branches embedded in the 

loop. The execution time with speculative loading of only 

the load in the THEN case, and speculative loading of the 

loads in both the THEN and ELSE cues are compared 

to the case with no speculative loads. In all of the cases 

that we studied, speculative loading was seen to deterio- 

rate performance from the no speculative load case. This 

suggests that speculative loading and extra memory traffic 

from superfluous loads are often detrimental. Rogers and 

Li [22] explained algorithms to aid in lifting loads above 

conditional branches, but our studies warn about the over- 

0 

Figure 4: 
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Danger of lifting loads above conditional 

head of superfluous fetches and extra memory bandwidth 

requirement that it may create. Our results support the 

approach of Gornish et al. [8] who incorporated an algo 

rithm in their compiler, to suppress superfluous fetches. 

We assumed equal probability for the IF and ELSE paths. 

The results may have not been so pessimistic if there was 

a higher probability for one of the paths, and prefetches 

only along that path were performed. But even then, there 

would be some wasted traffic, and increased bandwidth re- 

quirements. Since memory bandwidth is a bottleneck in 

most high performance architectures, we would not rec- 

ommend such an approach. Aggressive prefetching will 

be fruitful only in architectures with extra bandwidth. 

The effect of superfluous fetches on the performance of 

prefetching schemes was discussed by Mowry [.l9] also. 

3.5 Compiler Issues 

All the techniques studied in this paper require assistance 

from the compiler. In loop unrolling, the compiler has 

to unroll loops, manipulate indices accordingly, and rear- 

range the instructions within the loop to increase the load 

distances. Modern optimizing compilers perform loop op 

timizations very efficiently. The compiler assistance re- 

quired in software pipelining is more complex than that 

for loop unrolling, since loads have to be moved across 

iterations. Software controlled prefetching requires still 

more sophisticated compiler intervention. The compiler 

has to insert prefetch instructions in such a way to guar- 

antee sufficient load distance to hide latency. At the same 

time, the data should not be loaded very much earlier 

than required which may result in replacement of the data 

from the cache before it is actually used in computations. 

The compiler should minimize the number of prefetch in- 

structions by unrolling the loops and making use of cache 

locality, and generating prefetches for only potential cache 

misses. The compiler has to minimize or suppress antici- 

patory (superfluous) prefetches. 
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4 Summary and Concluding Remarks 

Loop unrolling, software pipelining and software prefetch- 

ing techniques were quantitatively compared in this pa- 

per. One major conclusion from the study is that at 

low memory latencies, software pipelining without any 

hardware support outperforms software cache prefetch- 

ing which requires ISA and microarchitectural changes. 

Software prefetching has the run-time overhead of issuing 

extra prefetch instructions and this overhead may can- 

cel the benefits of prefetching at low latencies. Software 

prefetching can cause detrimental effects if the compiler is 

not efficient in applying various optimizations. At higher 

latencies, software prefetching can lead to better benefits 

than software pipelining, provided bandwidth has not yet 

become a bottleneck. Loop unrolling is a very powerful 

technique, and it is essential to combine loop unrolling 

with software pipelining and software prefetching in or- 

der to obtain true benefits from those techniques. Loop 

unrolling with static scheduling of loads in the unrolled 

loop produces a speed up of 1.23 at latency of 10 cycles 

and 1.11 at latency of 90 cycles. The improvement is 

smaller than best implementations of software pipelining 

or software prefetching, but loop unrolling never yields a 

performance deterioration. As latency increases from 10 

cycles to 90 cycles, t.he speedup from software pipelining 

changes from 1.51 to 1.33, and that of software prefetching 

increases from I .40 to 1.48. 

Loop unrolling artd software pipelining can be success- 

fully performed in systems with no cache also (assuming 

the memory is pipelined or non-blocking), whereas soft- 

ware prefetching requires a cache (or a fast local mem- 

ory). Implicit prefetchiug and overlapping as in loop un- 

rolling with load hoisting and software pipelining, are pos- 

sible only in load/store architectures. Explicit prefetch- 

ing, such as software controlled prefetching can be done 

even in non load/store architectures. All the techniques 

are particularly suited for iterative programs. 

Another conclusion is that aggressive speculative load- 

ing beyond conditional branches is often detrimental to 

performance. In the IFLOOP benchmark, software con- 

trolled prefetching with speculative loading was seen to 

increase the execution time. Unless carefully designed, 

any explicit prefetching scheme that lifts loads above con- 

ditional branches, can nullify the benefits of prefetching 

by the increase in superfluous fetches and extra mem- 

ory traffic. The superfluous fetches increase the memory 

bandwidth requirement. Memory bandwidth is already a 

bottleneck in most high performance architectures, and 

any scheme that aggravates the bottleneck problem can- 

not be favored. Our studies support a conservative ap- 

proach regarding speculative loads and prefetches. Per- 

haps the t.hrust of future research should be on techniques 

such as blocking [16] [18] which reduce bandwidth require- 

ments rat,her than just smoothen requirements as in the 

techniques studied. 

We expect our results to be true for larger programs, 

but detailed experiments with benchmarks such as the 

SPEC are required to investigate this. 
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APPENDIX I 

Speedup from various techniques 

Bench---- unroll 1 un+ soft un+ 
mark pipe 

CONV- 

pref pref 

1.045 1.364 0.964 1.097 

CORR 1.203 1.381 1.228 1.441 1.021 1.425 

SAXPY 1.021 1.043 1.223 1.628 1.043 1.136 

IFLOOP 1.169 1.243 1.231 1.566 1.210 1.451 

ACP 1.093 1.206 1.130 1.400 1.399 1.587 

Lll 1.112 1.297 1.220 1.496 1.438 1.441 

L3 1.086 1.193 1.225 1.680 1.526 1.730 

Ll 1 1.183 1 1.284 1 1.398 1 1.506 1.350 1.474 

Mean 1 1.112 1 1.232 1 1.230 1 1.507 1.230 1.403 

Bench- 

mark 

CONV 

CORR 

SAXPY 

IFLOOP 

ACP 

Lll 

L3 

Ll 

Mean 

unroII 

1.048 

1.153 

1.000 

1.033 

1.016 

1.020 

1.019 

1.043 

1.041 

(a) 10 cycles 

un+ I soft I un+ I soft 

sch pipe pipe 1 pref 

1.222 1.160 1.340 0.968 

1.357 1.213 1.411 1.038 

1.000 1.286 1.809 1.387 

1.301 1.295 1.432 1.535 

1.087 1.057 1.156 1.155 

1.128 1.099 1.200 1.180 

1.099 1.113 1.289 1.431 

1.123 1.487 1.723 1.617 

1.159 [ 1.207 ( 1.404 1 1.269 

(b) 30 cycles 

un+ soft 

sch pipe 

1.159 1.124 

1.278 1.164 

1.000 1.314 

1.320 1.318 

1.032 1.021 

1.047 1.038 

1.041 1.045 

1.047 1.39 

1.110 1.169 

(c) 90 cycles 

un+ 

pref 

1.152 

1.471 

1.911 

1.837 

1.210 

1.180 

1.434 

1.702 

1.461 

un+ 

pref 

1.655 

1.465 

1.961 

1.932 

1.072 

1.066 

1.150 

1.865 

1.476 
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APPENDIX II 

Code sequences for saxpy.equal program, with various techniques incorporated step- 
by-step are illustrated in this Appendix. 

$32: lw $15,-4008($3) ; load x(i) to Rl5 

IW $14,-8008($3) ; load y(i) to R14 

mu1 $24,$15,a ;a * x(i) 

addu $25,$14,$24 ; y(i) + a*x(i) 
SW $25,-8008(%3) ; save y(i) 

addu $3,$3,4 ; update base register 

bne $3,82,$32 ; loop back 

(a) Baseline code 

$32: lw 

lw 

mu1 

addu 

SW 

lw 

lw 

mu1 

addu 

SW 

addu 

bne 

$32: lw $15,-4008($3) 

lw $9,-4004($3) 

IW $14,-8008($3) 

1W $8,-8004($3) 

mu1 $24,$15,a 
addu $25,$14,$24 

mu1 $10,$9,a 

acldu $11,$8,$10 

SW $25,-8008(%3) 

SW $ll,-8004($3) 

addu $3,$3,8 

bne $3,$2,$32 

$32: 

lw $15,-4008($3) 

lw $14,-8008($3) 

mu1 $24,$15,a 

lw $15,-4004($3) 

addu $25,$14,$24 

lw $14,-8004($3) 

SW $25,-8008($3) 

addu $3,$3,4 

bne $3,$2,$32 

mu1 $24,$15,a 

addu $25,$14,$24 

SW $25,-8008($3) 

$15,-4008($3) 

$14,-8008($3) 

$24,$15,a 

$25,$14,$24 

$25,-8008($3) 

J9,-4004($3) 

$8,-8004($3) 

$lO,tS,a 

$11,$8,$10 

$ll,-8004($3) 

$3,%3,8 

$3,$2,$32 

; load x(i) to RI5 

; load y(i) to R14 

; a * x(i) 

; y(i) + a*x(i) 
; save y(i) 

; load x(i+l) to R9 

; load y(i+l) to R8 

; a * x(i+l) 

; y(i+l) + a*x(i+l) 
; save y(i+l) 

; update base register 

; loop back 

(b) Loop unrolling alone (no code rearrangement) 

; load x(i) to R15 

; load x(i+l) to R9 

; load y(i) to R14 
; load y(i+l) to R8 

; a * x(i) 

; y(i) + a*x(i) 

; a * x(i+l) 

; y(i+l) + a*x(i+l) 

; save y(i) 

; save y(i+l) 

; update base register 

; loop back 

(c) Loop unrolling and code rearrangement 

; load x(0) to R15 - (This is in the prologue) 

; load y(0) to R14 - (This is in the prologue) 

; a * x(i) 

; load x(i+l) to R15 

; y(i) + a*x(i) 
; load y(i+l) to R14 

; save y(i) 

; update base register 

; loop back 

; last a * x(i) will be in epilogue 

; last y(i) + a*x(i) in epilogue 

; save y(i), last store will be in epilogue 

(cl) Software pipelining 
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$32: 

lw 

lw 

IW 

lw 

mu1 

lw 

addu 

lw 

mu1 

lw 

addu 

lw 

SW 

SW 

addu 

bne 

mu1 

mu1 

addu 

addu 

SW 

SW 

532: fetch 
fetch 

IW 

lw 

mu1 

addu 

SW 

addu 

bne 

$32: fetch 

fetch 

IW 

LW 

mu1 

addu 

SW 

lw 

1W 

mu1 
addu 

SW 

addu 

bne 

$17,-4008(53) ; load x(0) to R17 - prologue 

57,-4004($3) ; load x(l) to R7 - prologue 

$16,-8008(53) ; load y(0) to R16 - prologue 

56,-8004($3) ; load y(l) to R6 - prologue 

$24,$17,a ;a * x(i) 

517,-4000(53) ; load x(i+2) to RI5 

$25,$16,$24 ; y(i) + a*x(i) 
516,-8000(53) ; load y(i+2) to R14 

510,57,a ;a * x(i+l) 

$7,-3996($3) ; load x(i+3) to R9 

$11,56,510 ; y(i+l) + a*x(i+l) 
$6,-7996($3) ; load y(i+3) to R8 

525,-8008($3) ; save y(i) 

$ll,-8004($3) ; save y(i+l) 

53,53,8 ; update base register 

$3,52,$32 ; loop back 

$24,$17,a ;a * x(n-1) epilogue 

510,$7,a ;a * x(n) epilogue 

525,516,524 ; y(n-1) + a*x(n-1) epilogue 

$11,$6,510 ; y(n) + a*x(n) epilogue 
$25,-8008($3) ; save y(n-1)epilogue 

511,-8004($3) ; save y(n)epilogue 

(e) Software pipelining in (d) with unrolling 

-4004($3) ; prefetch x(i+l) to cache 

-8004($3) ; prefetch y(i+l) cache 

$15,-4008($3) ; load x(i) to R15 

$14,-8008($3) ; load y(i) to R14 

$24,$15,a ; a * x(i) 

525,514,524 ; y(i) + a*x(i) 
525,-8008($3) ; save y(i) 

53,$3,4 ; update base register 

53,52,532 ; loop back 

(f) Software controlled prefetching (no unrolling) 

-4000(%3) 

-8000($3) 

515,-4008($3) 

514,-8008(53) 

524,515,a 

525,514,524 

$25,-8008($3) 

59,-4004(53) 

58,-8004( 53) 

$10,59,a 

511,$8,510 

511,-8004($3) 

53,53,8 

53,52,532 

; prefetch x(i+2) to cache 

; prefetch y(i+2) to cache 

; load x(i) to R15 

; load y(i) to RI4 

;a * x(i) 

; y(i) + a*x(i) 
; save y(i) 

; load x(i+l) to R9 

; load y(i+l) to R8 

;a * x(i+l) 

; y(i+1) + a*x(i+l) 
; save y(i+l) 

; update base register 

; loop back 

(g) Software prefetching (unrolled and optimized) 
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