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A Comparative Experimental Study of Media Access Protocols 

for Wireless Radio Networks 

CHRISTOPHER L. BARRETT' MARTIN DROZDA1t2 MADHAV V. MARATHE' 

May 24,2001 

Abstract 

We conduct a comparative experimental analysis of three well known media access protocols: 802.1 1, 

CSMA, and MACA for wireless radio networks. Both fixed and ad-hoc networks are considered. The 
experimental analysis was carried out using GloMoSim : a tool for simulating wireless networks. The 

main focus of experiments was to study how ( i )  the size of the network, (ii) number of open connections, 
(iii) the spatial location of individual connections, (iv) speed with which individual nodes move and (v) 
protocols higher up in the protocol stack (e,g. routing layer) affect the performance of the media access 

sublayer protocols. The performance of the protocols was measured w.r.t. three important parameters: 

(i) number of received packets, (ii) average latency of each packet, and (iii) throughput. The following 
general qualitative conclusions were obtained; some of the conclusions reinforce the earlier claims by 

other researchers. 

1. Although 802.11 performs better than the other two protocols with respect to fairness of trans- 
mission, packets dropped, and latency, its performance is found to (i) show a lot of variance with 
changing input parameters and (ii) the overall performance still leaves a lot of room for improve- 
ment. 

2. CSMA does not perform too well under the fairness criteria, however, was the best in terms of the 

latency criteria. 

3. MACA also shows fairness problems and has poor performance at high packet injection rates. 

4. Protocols in the higher level of the protocol stack affect the MAC layer performance. 

The main general implications of our work is two folds: 

1. No single protocol dominated the other protocols across various measures of eflciency. This mo- 
tivates the design of a new class of parameterized protocols that adapt to changes in the network 
connectivity and loads. We refer to these class of protocols as parameterized dynamically adaptive 
eflcientprotocols and as a first step suggest key design requirements for such a class of protocols. 

2. Petformance analysis of pmtocols at a given level in the protocol stack need to be studied not 
locally in isolation but as a part of the complete protocol stack. The results suggest that in order 
to improve the performance of a communication network, it will be important to study the entire 
protocol stuck as a single algorithmic construct; optimizing individuag layers in the 7 layer OS1 

stack will not yield performance improvements beyond a point. 
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'Work done while the author was a graduate research student in the Basic and Applied Simulation Science Group at Los Alamos 

supported by the Department of Energy under Contract W-7405-ENG-36. Email: barrett, drozda, maratheQlan1. gov. 

National laboratory. Affiliation: Slovak Academy of Sciences, Institute of Control Theory and Robotics. 



$1 Introduction and motivation 

Design of MAC layer protocols for wireless mobile networks has become an important area of research in 

recent years (See [BD+94, Ka90] and the references therein). An extreme form of wireless mobile networks 

are the ad-hoc networks - networks that do not rely on any fixed infrastructure, e.g., base stations. The 

upsurge in a variety of mobile computing devices such as laptops, PDAs, and other portables has caused 

an unprecedented interest in this form of communication. Early progress on multihop radio networks was 

funded by DARPA. This includes the PRNET (Packet Radio Network) [JT87], and SURAN (Survivable 

Adaptive Networks) [SW] projects. Interest in ad-hoc networks for mobile communications has also re- 
sulted in a special interest group for Mobile, Ad-hoc Networking within the Internet Engineering Task Force 

(IETF) [MC]. 

Network protocols in general need to fulfill a muItitude of design and functional requirements, including, 

( i )  High throughput: (i i)  Low average latency: (iii) Heterogeneous trafic (e.g. data, voice, and video): (iv) 

Preservation of packet order; and (v )  Support for priarity trafic. (See [Sags, RS96, Ra96, Pa97a, Ba981.) 

As ad-hoc networks lack fixed infrastructure in the form of base stations, fulfilling the above stated functional 

requirements becomes all the more difficult. Many MAC layer protocols have been proposed and designed 

to meet one/many of these criteria; the research area continues to be very active. 

There are two basic issues that distinguish traditional LANs with Wireless LANs w.r,t. media access 

control protocols. The first is the well kn hidden terminal problem. In this situation two data transmission 

sources try to communicate with a common node. Moreover, assume that the sources are not within radio 

range of each other. As a result, either source is oblivious of the fact that the other is trying to transmit 

data to the common node. This results in packet collisions or one of the sources backing-aff after sensing 

a busy carrier. Despite clever back-off mechanisms the situation either ends up with a l oLd  collisions 

and hence poor throughput or inequitable resource allocation to one of the connections, leaving the other 

connection starved. A related problem is the exposed terminal problem. Here a station A listening finds that 

the medium is busy and hence refrains from sending. But it is quite possible that the station C to which it 

wants to send the signal is far away from the currently transmitting station B and thus can C can easily hear 

the transmission of A. Additionally, D which is hearing B is also far from A and thus receives the signal 

without much noise. The second basic issue is that while transmitting, the transceiver cannot simultaneously 

listen and hence makes collision detection and avoidance much more difficult. This has been referred to as 

the mute-deaf-time problem; most protocols do not address the exposed terminal problem at all and hence 

are inherently inefficient from the resource utilization standpoint. 

A cornmonly known group of MAC protocols is based on the carrier sense multiple access (CSMA) 

paradigm. The idea behind this paradigm is to reserve transmission channel at the originator (source) by car- 

rier sensing. Until recently CSMA based protocols supported only single channel communication, recently, 

multiple channel extensions have been proposed [NzI=a99). Many protocols have been proposed to avoid the 

hidden terminal problems. Two notable examples are the MACA [KaW] and MACAW [BD+94] protocols. 

MACA introduced a reservation system achieved with exchange of an RTSKTS (Request To Sendclear 

To Send) pair of control packets. MACAW also recognizes the importance of congestion, and exchange of 

knowledge about congestion level among entities participating in communication. An advanced back-off 

mechanism was proposed to spread information about congestion. Furthermore, the basic RTSKTSDATA 

reservation schema has become an RTS/CTS/DS/DATA/ACK schema with significantly improved perfor- 

mance. In these protocols message originators reserve reception area at the sink by exchange of RTSKTS 

control messages. This is in contrast to CSMA where reservation was done at originators. This powerful 
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’ method has a drawback of introducing small control packets into the network that later collide with other 

data, control, or routing packets, IEEE 802.11 MAC standard [OF] was designed with a reservation sys- 

tem similar to MACA or MACAW in mind. 802.11 has also improved fairness characteristics, however, 

in [LNB98] authors point out deficiencies in the fairness of this protocol, as well. 

Because of the limited bandwidth of wireless channels message complexity of both MAC layer and net- 

work layer (routing) protocols needs to be kept low. Informally speaking, we define the message complexity 

of a protocol as the ratio of the number of data packets successfully transmitted to the total number of packets 

actually sent (including control packets, duplicates etc.). Latency is defined to be the average time it takes 

for a packet to reach its destination. Note that as defined, the definition does not distinguish between the 

type of packets received. Thus it is conceivable that a connection might be deemed to have good latency but 

might not deliver too many new packets. Thus a good protocol should have the following characteristics: (i) 

high throughput as measured by the total number of good packets received in a unit time and (ii) fairness. 

Intuitively speaking, high throughput implies low message complexity and low latency. The interplay be- 

tween message complexity and latency with dynamically changing network connectivity, and traffic load is 

the main focus of the study described in this document. Additionally, we study the effect of (i) spatial loca- 

tions of sources and sinks, (ii) injection rates of packets, and (iii) type of network on quality of service. We 

have also studied the impact of mobility on performance of MAC layer protocols. We chose the following 

MAC layer protocols to test: 802.11, CSMA, and MACA. All simulations w done in GloMoSim, a tool 

specialized in wireless networks simulation. 

2 Summary of Results and Implications 

We experimentally evaluate the performance of three well known MAC protocols in wireless radio networks. 

Both static and ad-hoc radio networks are considered. The goal is to see how (i) the network topology, (ii) 

the traffic injection,rate, (iii) the spatial location of the source destination pairs, (iv) the effect of mobility 

(in case of ad hoc networks), all affect the performance of the protocols. Moreover, we want to do this in 

settings where the results are interpretable; as a result to the extent possible, -we have chosen very simple 

instances to egectively argue about an issue. 

8 

2.1 Scenario Specific Results 

Each distinct spatial source destination pair location is referred to as a scenario in this paper. We consider 

eight basic scenarios in the current draft. The first four scenarios are shown schematically in Figure 1. 

The results for each of these four scenarios are briefly discussed below; the results for the remaining four 

scenarios are to be found in subsequent sections. 

1. The first scenario was to verify performance of MAC layer protocols under hidden terminal situation. 

Results show that CSMA inequitably assigned resources to the two connections on short time scales. 

On the other hand CSMA performed quite well in terms of latency and in fact the lowest latency among 

all the three protocols for this case. MACA had a very high latency as well as inequitable resource 

assignment. 802.11 had worse latency than CSMA but was better than MACA. On the other hand, it 

allowed the most equitable access to the media and had the best throughput. 

2. In the second scenario we tried to test the MAC layer protocols on performance in crossing traffic. 

What we have found out is that in this case CSMA does slightly better under lower injection rate 
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than in the previous case, however, with increasing injection rate fairness becomes a problem again. 

Performance of MACA was satisfiable under low injection rate, but plummeted under high injection 

rate. 802.1 1 did okay under this test - even latency for this protocol was very low. 

3. The third scenario was chosen to test our hypothesis that CSMA should perform well if the packet 

flow paths of the two connections are disjoint causing no perceivable interference. Our results show 

that this is indeed the case. 

4. The fourth scenario can be thought as a mix of Scenario 1 and 3 and thus intuitively one would expect 

performance that is somewhere between the performance of the two scenarios. 

A qualitative explanation of many of the results can be given. For instance, CSMA has low overhead 

since it does not have the RTS/CTS control mechanism: this makes collisions more likely but on the other 

hand allows for lower latency (at least for the connections that are given access) and adequate throughput 

for the connections that are scheduled. 802.11 has RTS/CTS mechanism; the overhead that such a control 

mechanism causes for small packets is evident from the degradation of 802.11 for small packet sizes. MACA 

appears to be probably the worst overall: it has high latency, inequitable resource allocation. 

Three basic quality of service metrics were considered in our experiments: (i) Throughput, (ii) Latency 

and (iii) Packet Loss. From the experiments, it can be seen that CSMA has the best performance in terms of 

latency while 802.11 is best in terms of throughput and packet loss characteristics. 

Fairness: All the three protocols assigned resources in an inequitable fashion although 802.1 1 appears to 

be the best among the three protocols. The current experiments were not designed to stud 

fairness problem - we hope to incorporate this in subsequent studies. 

2.2 Protocol Interaction 

Another important goal of the experimental analysis is to see the interaction of the different layers in the pro- 

tocol stack and its effect on the network performance. While intuitively it is clear that different levels in the 

protocol stack should affect each other in most cases; to the best of our knowledge a thorough understanding 

of this interaction is lacking. The only related reference in this direction that we are aware of is the work 

of Balakrishanan et. al. [BS+97, KKBOO]. The authors were specifically considering TCP/IP protoocol and 

have devised an elegant snoop protocol that conceptually sits between the transport layer and the network 

layer to overcome this problem. In [KKBOO] also point out how short term fairness of the MAC can affect 

the TCP/IP performance which in turn can affect the overall performance of the communication system. 

Here, we study the interaction between the routing layer and the MAC layer. The results show the 

paths chosen by routing protocol can significantly affect the MAC layer protocol especially with regards to 

inequitable assignment of channel resources. Combined with the results of [KKBOO], the results show that 

discussion about the performance of a MAC layer cannot be usually carried out without putting it in context 

of the other protocols in the stack. Specifically, we show that the performance of CSMA depends on what 

paths are chosen by the routing protocols ta  send packets. Intuitively, it is obvious that if the the virtual paths 

corresponding to two connections intersect then they should yield different dynamics than when the paths do 

not. This is exactly what happens; moreover, it is hard to predict exactly the paths the routing protocols are 

going to take given the randomized local nature. As a result all the MAC protocols exhibit varying levels of 

performance. 
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2.3 Qualitative Conclusions 

The work presented here has two important conclusions: 

1. No single protocol dominated the otherprotocols across various measures of eficiency. This motivates 

the design of a new class of parameterized protocols that adapt to changes in the network connectivity 

and loads. We refer to these class of protocols as parameterized adaptive e$cient protocols and as a 

first step suggest key design requirements for such a class of protocols. 

2. The protocol stack needs to be treated as a monolithic algorithmic construct ifwe wish to impmve the 

petfomance ofthe communication network Optimizing individual layers might be only possible to a 

certain point and beyond that might cause completely unintuitive side effects. 

3 Experimental Setup: Static case 

In the next several experiments described in the following, we tried to obtain empirical results on the perfor- 

mance of three well known MAC layer protocols namely, 802.11, CSMA, and MACA. 

We studied the performance of the three protocols under eight different scenarios. Each scenario was 

designed to test a distinct hypothesis. The eight scenarios are shown in Figures 1 and 6, and are described 

below. 

1. Scenario 1: Hidden terminal Scenario. The first scenario is a hidden terminal type of scenario. We 

have distinct sources for the two connections, however, the sinks are the same. Motivation for this 

scenario was to test capture-of-the-receiver avoidance capabilities of the three MAC layer protocols. 

2. Scenario 2: Crossing Traffic Scenario, The second scenario represents a case when sources and sinks 

are different but the traffic is crossing. Motivation for this scenario was to test quality of the three MAC 

layer protocols for crossing traffic. In case of use of a congestion unaware routing protocol, crossing 

traffic can lead to increased dropping of packets. 

3. Scenario 3: Independent paths scenario. The third scenario represents distinct sources and sinks, 

but the paths are disjoint, Le., there should be a minimum of interacting traffic. Motivation for this 

scenario was to have a base case with mutual minimum interference. 

4. Scenario 4: Closely positioned sources and sinks. In the fourth scenario we show a case where 

sources are distinct, but sinks, though, distinct are closely positioned on the grid. Motivation for this 

scenario was to test the three protocols for quality under high congestion on the receiver side. 

5. Scenario 5: Multiple Shortest Paths. The fifth scenario depicts a situation in which if the routing 

protocol chooses the shortest path there would be no interference between connection 1 and 2. Should 

the routing protocol choose a Iess than optimal routing interference between connections will arise. 

6. Scenario 6 Long Term Fairness. The scenario is designed to study how the protocols treat various 

connections w.r.t. access to channel resources. The current experiment is designed for studying long 

term fairness; short term fairness is interesting and will be studied subsequently. 

7. Scenario 7: EtTect of Number of connections on Quality of Service. The experiment was designed 

to see how the quality of service is affected with increased number of connections. In this case the 
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I graph is kept constant. A similar study is done by increasing the graph size; due to lack of space the 

results are reported in a complete version of this document. 

8. Scenario 8: Effect of Mobility. The final experiment studies the effect of mobility on the protocol 

performance. For this we moved the transceivers at various speeds from a starting configuration and 

observed the latency and throughput of the ensuing system. 

Figure 1: The first figure schematically illustrates the connectivity of the graph. For clarity only the edges 
incident on the node (0,O) are shown. The dotted arc shows the transceiver's radio range. The next two 
figures show a schematic of the four sce os used in the experimental analysis. Each scenario consists of 
two connections. The connections are s tically illustrated by drawing an arrow from the source to its 
destination. Different line types imply different scenarios. Each figure shows the source and sink position 

for two scenarios. The reason for drawing arrows instead of merely marking the positions 
idea of the paths the packets are likely to take when going m a source to the destination. 

' 
We now describe the details of the parakneters used in these scenarios: 

1. Network Characteristics: In each scenario we have kept the following parameter constant: (i) 

number of nodes 49, (ii) Network Topology: network is schematicall shown in Figure 1. 

The transceivers were placed on a '6 x 6 grid; by scaling we assume that the coordinates of 

transceivers are (z, y) 0 5 5, y 5 6. Each transceiver is equipped with an omnidirectional antenna. 

The antenna range is 2.5 units. Thus a transceiver positioned at (0,O) is adjacent to transceivers 

(1,0),(2,0), (0,1),(0,2),(1,1),(1,2),  ( 2 , l ) .  Giventhe symmetry, this implies amaximum degree 

of seven for any node. This meant that maximum possible connectivity was 20. The minimum node 

degree is 7 and is that of corner nodes, In Figure 1 we have drawn partial circles around the comer 

transceivers to schematically show this. (iii) Number of connections: 2, (iv) Routing protocol : 

AODV. 

2. There was no movement of nodes. Nodes were positioned on a square area of 600x600 meters. 

3. The initial packet size was 512 bytes, the initial number of packets was l,O00, and the initial injection 

interval was 0.1s. We have reduced the packet size by a factor of 2 and increased the number of 

packets by a factor of 2 every time the injection interval was reduced by a factor of 2. For example, if 

the injection interval was halved to 0.05s then the new packet size was 256 bytes and the new number 

of packets was 2,000. This allowed us to keep the injection at input nodes constant in terms of bits per 

second. 

4. The bandwidth for each channel was set to 1Mbit. The propagation pathloss model was two-ray, The 

transmission radius for a transceiver was 250 meters (corresponds to 2.5 units). 



5. For any vertical connection at Ieast two hops were required for a packet to reach its sink, for any 

diagonal connection at least three hops were necessary to reach its sink; the minimum path length in 

terms of number of edges is 3 for vertical connections, and 4 for diagonal connections. By vertical 

connection we mean those running up-down, and by diagonal connection we mean those running from 

right upper comer to lower left corner, or from upper left comer to lower right corner as it is shown in 

Figure 1. 

6. To keep the simulation time 100 seconds, and the total size of packets in traffic constant, we halved 

the size of packets with each doubling of packet injection interval, 

7. Hardware used in all cases was a Linux PC with 512MB of RAM memory, and Pentium III 500MHz 

microprocessor. 

Independent and Dependent variables The independent (input) variable for a given scenario, connection 

and protocol triple was the injection in€erval for packets. The following three pieces of information were 

collected: (i) Average end to end delay for each packet as measured in seconds, (ii) Total number of packets 

received, (iii) Throughput in bitdsecond. 

4 ResultsandA 

We now summarize:the 

We have summarized t 

the same data as a function of varying injection rate. There is one graph per connection. 

a1 results for each of the four scenarios,dis 

f running the experiments in form of g 

in the preceding section. 

graphs show basically 

4.1 Scenario 1 - hidden terminal 

Results3 for this ario are presented in Figure 2 The broad conclusions for Scenario 1 are: 

1. Performance of 802.11 is fairly okay at low injection rates. CSMA and MACA do not perform very 

well; the main proble s that of fairness, In particular, connection one has better reception at the 

common sink; for all tical purposes, connection 2 never gets a turn to'transmit. The result con- 

firms the well established hidden terminal problem of CSMA protocol. Ifi contrast, 802.1 1 treats the 

packet streams from both the connections fairly; the throughput and delays are very similar across 

connections. 

2. On the other hand average end-to-end delay of CSMA is better 802.11 and MACA in some cases. This 

is mostly due to lower message complexity of MACA and 802.1 1 protocols. 

3. MACA's performs deteriorates rapidly with increased injection rate. We had problems &o run Glo- 

MoSim with high injection rate for CSMA. We could not find a logical reason to explain this. 

jNote that we have used logscale for y axis in all figures. 
41n some cases the numlxr of packets that a MAC layer protocol transmitted was zero. This translates as infinite latency for 

packet delivery. This fact is shown as vertical line in our graphs. 
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Figure 2: Scenario 1: Hidden terminal scenario. Two parameters are plotted for each connection: latency 
and number of packets received. The first two figures are for latency and the third and fourth are for number 

of packets received. On x-axis we plot the injection rates. 

4.2 Scenario 2 - distinct sources and sinks with crossing traffic 

Results for Scenario 2 are presented in Figure 3. The main rationale for studying this scenario along with 

Scenario 1 was that the hidden terminal effect is likely to occur at an intermediate destination. The broad 

conclusions for Scenario 2 are: 

1. In contrast to Scenario 1, here 802.1 1 performs quite poorly at high injection rate: both in terms of 

latency and throughput. On the other hand CSMA does quite well at least for low injection rates. 

2. MACA had problems allocating channel resources equitably. CSMA and 802.11 appear to behave 

similarly for this criteria. 

3. On the other hand, CSMA outpe d 802.11 and MACA in terms of latency., Latency versus injec- 

tion rate does noE show any clear trend, except in the case of MACA for which latency progressively 

increases with injection rate. In contrast, for 802.11 latency actually decreased with increased injection 

rate. Similar situation in fact also occurs in Scenario 1, 

One possible explanation for the results is that the data paths chosen by the routing protocol did not 

intersect. 

I O  
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Figure 3: Scenario 2: Crossing Traffic Scenario. As in previous figure, x-axis plots injection rate and y-axis 
plots latency (first two plots) and number of packets received (the next two plots). 

4.3 Scenario 3 - distinct sources and sinks, disjoint paths 

Results for this scenario are presented in Figure 4. Intuitively, this scenario would be expected to yield the 

best results for protocol with least control packet overhead. The conclusions for this scenario are: 

1. In this experiment we can see that 802.11 does very well in terms of fairness and handling of high 

injection rate. 
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2, 

3. 

Fairness still appears to be a problem for CSMA. Given that the paths share minimal number of nodes, 

the results appear somewhat surprising. On the other hand, CSMA was able to keep near maximum 

throughput for one connection. 

Performance of MACA became poor with increased injection rate. With increased injection rate the 

performance of MACA in terms of latency becomes intolerable. 
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Figure 4: Scenario 3: Independent paths scenario. The description of E and y-axis is similar to the previous 

figures. 

4.4 Scenario 4 - Distinct Sources, Closely Positioned Sinks 

Results for this scenario are presented in Figure 5. 

Figure 5: Scenario 4: Closely positioned sources and sinks. The description of z and y-axis is similar to the 
previous figures. 

In this case 802.1 1 performs well for lower injection rates. 

Latency for CSMA is very low. With increased injection rate the protocoI trends to drop a quantity of 

packets for one of the connections. 

0 Latency for MACA increased with the injection rate. Performance of MACA plummeted in terms of 

dropped packets with increased injection rate. 

4.5 Scenario 5 - Multiple Short Paths and Effect of Routing Layer 

Recall that in this scenario, our objective was to show the effect of the routing layer on MAC layer. In 

order to do this, the end points of the two connections were placed in such a way that if the routing protocol 

chooses the shortest path there would be no interference between connection 1 and 2. If the routing protocol 

chooses a less than optimal routing interference between connections will arise. Parameters of the network 

for this experiment were slightly different from those in the previous scenarios. 
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* 
Here is a short summary. We used the same number of nodes 49 to produce a grid of 7x7 nodes. The 

nodes, however, were positioned closer at a distance of 50 meters from each other gaining a physical size 

of the grid of 300x300 meters. This fact is depicted in Figure 6. Note that transmission radii from nodes 

in the very left column are just short to achieve direct communication with nodes in the very right column, 

and vice-versa. We have only used CSMA as the underlying MAC layer protocol. We have only used 

injection interval of 0.1s; the number of packets then was 1,OOO and the packet size was 512 bytes. All 

other parameters were the same. We use AODV as the routing protocol, the channel bandwidth was lMb, 

the propagation pathloss model was two-ray, the transmission radius of a transceiver was 250 meters, the 

simulation time was lOOs, and the hardware used was identical. 

In this scenario we tried to capture only qualitative results as opposed of quantitative results of the 

previous four scenarios. The setup was as follows. We have two connections: one going from the upper 

left corner to the lower left comer, and the other one going from the right upper comer going to the lower 

right corner. From this and the network setup it is obvious that if the routing protocol finds the shortest 

paths between the sources and sinks there will be no interference between the two connections. Vice-versa 

if the routing protocol finds a less than optimal path for routing packets between sources and sinks than 

interference will result. For example, if the routing protocols does not find the shortest path from the upper 

left corner to the lower left corner, Le., it will use some nodes not belonging to the very left column than 

interference with the other connection will results. 

We have observed several modes of operation. One of them happened when the routing protocol found 

the shortest path for the connections. In case, the number of received packets at sinks was l,OOO, Le., 

100%. This fact is depicted in Figure 6 b s in thick squares. These nodes were the actual nodes used 

for routing the packets for respective connections. In the second case the routing protocol did not find the 

shortest path for one of the connections. The actual node that was used to route packets is in thick circle 

in Figure 6. This fact caused interference between the two connections and resulted in delivering only one 

packet for the connection for which the routing was aot optimal. The number of received packets forthe 

other connection was l,OOO, Le., all. 

This scenario resulted in four basic modes of operation which we summarize in Table 1. We ran the 

scenario 15 times, each time with a different seed. We counted the different modes as follows: 

I 

0 We counted 1,000 received packets for connection I, and 0 received packets for connection 2 the same 

as 0 for connection 1 and 1,OOO €or connection 2, i.e., in geaeral, we regarded symmetric results to be 

the same. 

0 If the number of packets received for a connection was e.g. 995 we counted it as l,OOO, Le., in general, 

we discarded small fluctuations and regarded such results a8 identical. 

500:500 

Table 1: Scenario 5,  modes of operatian - summary. 
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From Table 1 we can see that the routing protocol (AODV) managed to find the shortest path only in 

one case, and that resulted in 100% of packets receivsed for both connections. 

The main conclusion we can draw from this scenario is that routing layer can influence overall perfor- 

mance of MAC layer. In our case, had the routing protocol found the shortest path, the two connection would 

not interfere. We showed to what extent can the suboptimal routing path change the overall throughput. The 

throughput for connection one varied from 100% to almost 0%. Admittedly, the situation used tu illustrate is 

very simple but designed on purpose to illustrate the basic interaction. 

An important implication of this result and the associated results in [BS+97] on the design of snoop 

protocols suggest that optimizing the performance of the communication network by optimizing the perfor- 

mance of individual layers is not likely to work beyond a certain point. We need to treat the entire stack as a 

single algorithmic construct in order to improve the performance beyond a certain point. Specifically, opti- 

mizing a particular layer might improve the performance of that layer locally but might produce laon-intuitive 

side effects that will degrade the overall system performance. The issue is likely to become moze important 

in ad hoc networks where the topology is changing constantly and hence it is not even easy to discern what 

shortest paths mean. 

Figure 6: Figures used in two experiments - (i) effect of routing protocols (Scenario 5 )  and (ii) fairness of 
resource assignment (Scenario 6). The first figure shows the possible paths used by the protocol. The second 
figure shows the four connections studied for equitable resource assignment study. 

4.6 Scenario 6 - Long Term Fairness 

We designed a simple experiment to study the equitability of resources assignment by the three MAC proto- 

cols. Figures 7 and 8 shows 2 (for high injection rate) and 10 (for low injection rate) independenl: runs (with 

independent random seeds) and its r e sub  for the three protocols. The following qualitative conclusions can 

be obtained 

1. 

2. 

3. 

All the protocols do an inequitabb assignment of channel resources for high injection rates. We have 

deliberately refrained from calling this unfair: what does it mean to be fair is not obviousband has been 

subject of a extensive research in the past in Economics and Social Science. 

For low injection rates 802.1 1 assigned resources equitably. On the other hand CSMA and MACA had 

a wide variation. 

At least two notions of equitable resource allocations can be formulated: one in which we see how 

the protocol does in a particular run and one in which measure the relative resources assigmed to each 

'We have run this experiment also with DSR, In this case the routing performance was worse then that of ACIDY We have 
observed three modes of operation. 
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connections over a given set of runs. Using the other measure CSMA and MACA appear to have a 

more equitable resource assignment. 

4. Many researchers have in the past designed specific algorithms and argued (heuristically or formally) 

about the fairness of protocols. We believe that the topic deserves more attention. For instance 

[VBG99] propose distributed fair scheduling algorithm. The essential idea is to assign resources to 

each flow in proportion to the amount that is backlogged for that particular flow. In [NK+99], the au- 

thors have discussed per-node versus per-flow fairness. We merely point out that, each such proposed 

mechanism can have subtle side effects; the goal is merely point out undertaking a more in-depth 

study? 

Figure 7: Scenario 6: Long term fairness. Equitability of resource assignment. A, B, C and D are the four 

connections. The line in the center is the grand mean. Thus the plat shows one relative way of comparing 
how equitable the resource assignment was for the protocols. The results are for high injection rates. The 
first figure is for 802.11, the second one is for CSMA and the last is for MACA. Only two runs ace plotted 
for claety. 

/ \  . 

Figure 8: Scenario 6: Long term fairness. Equitability of resource assignment. 10 runs and low injection 
rates. 

6A very simple example will make the point, Consider for instance an adversary, who wishes to slow down anetwork without any 
goal of transmitting useful information. Furthermore, imagine the adversary to have control over the protocol stack. The adversary 
can easily compromise the network's good throughput by not implementing a voluntary back off scheme and thus flooding the 

intermediate nodes, If per flow fairness is implemented this will end up giving unusually high resources to this connections making 
the other connections have low throughput. 
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* 4.7 Scenario 7 - Increasing Number of Connections and Quality of Service 

In this experiment, we studied influence of increasing number of connections on quality of service. Quality 

of service was captured in terms of latency and number of packets received. 

Number of connections was 2, 4, and 6. First, we ran the experiment with two base connections and 

gathered information on these. Then we added two other connections, but we gathered information only on 

the base connections. At the end, we added again two connections, bringing the number of connections to 

six, we ran the experiment and we gathered information on the two base connections. Results are depicted 

in Figure 9. 

Figure 9: Scenario 7: Effect of Number of connections on Quality of Service. %o basic parameters are 
plotted: Latency and Packets received. The z-axis denotes the number of connections and the y-axis shows 
the latency/packets received. 

4.8 gcenario 8 - Effect of Mobility on Performance of MAC layer protocols 

In this experiment we tried to obtain some knowledge on dependence between the speed with which nodes 

are moving and performance of MAC layer protocols. We have uniformly increased the speed from 0 d s  to 

40 d s .  In the beginning of each simulation we positioned nodes onto a grid of lox 10 nodes. Then we used 

the random-waypoint movement protocol to simulate mobility7. We have tested this scenario with 802.11, 

CSMA and MACA. Interval of packet injection was 0.1 second, packet size was 512 bytes, there were two 

connections active at each time, number of packets injected by each connection was 1,000. The physical 

size of the underlying area was 1 , 0 0 0 ~  1,OOO meters. The routing protocol used was AODV. The results are 

shown in Figure 10. We can see that 802.11 does very well in terms of both latency and packets received. 

MACA does slightly better than CSMA, however, in both cases the performance is not good. 
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