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ABSTRACT Medical datasets are usually imbalanced, where negative cases severely outnumber posit ive 

cases. Therefore, it is essential to deal with this data skew problem when training machine learning 

algorithms. This study uses two representative lung cancer datasets, PLCO and  NLST, with  imbalance 

ratios (the proportion of samples in the majority class to those in the minority class) of 24.7 and 25.0, 

respectively, to predict lung cancer incidence. This research uses the performance of 23 clas s  imbalance 

methods (resampling and hybrid systems) with three classical classifiers (logistic regression, random forest, 

and LinearSVC) to identify the best imbalance techniques suitable for medical datasets. Resampling 

includes ten under-sampling methods (RUS, Etc.), seven over-sampling methods (SMOTE, Etc.), and  two  

integrated sampling methods (SMOTEENN, SMOTE-Tomek). Hybrid systems include (Balanced Bagging, 

Etc.). The results show that class imbalance learning can improve the classification ability  o f the model. 

Compared with other imbalanced techniques, under-sampling techniques have the highest standard 

deviation (SD), and over-sampling techniques have the lowest SD. Over-sampling is a stable method, and  

the AUC in the model is generally higher than in other ways. Using ROS, the random forest performs  the 

best predictive ability and is more suitable for the lung cancer datasets used in this study. 
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I. INTRODUCTION  

In a class-imbalanced dataset, one of its classes has 

a significantly lower number of examples than the other 

[1]. There are challenges inherent in learning such class 

imbalanced data. The skewed distribution of the train ing 

examples makes standard learning classifiers biased, 

favouring the majority class and cannot detect rare 

instances [2, 3]. Rare minority samples may be treated 

as noise, and noise may be incorrectly identified as 

minority samples [4, 5]. In the medical field, this type 

of imbalance problem often exists. The number of normal 

samples in the dataset is often more than that of 
abnormal samples, and the gap between the two is 

relatively large [6]. Researchers have developed various 

class imbalance methods and performance evaluation 

metrics to address these challenges, briefly  d is cussed in  

Section II-A and Section II-B, respectively. The most 

commonly used abbreviations are presented in Table I. To  

investigate class imbalance methods, we implemented them 

on two real-world class imbalanced datasets: (i) the 

Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer 

Screening Trial dataset and (ii) the National Lung 

Screening Trial (NLST) dataset. PLCO and NLST are 

high-profile datasets in the field of lung cancer, and  many 
researchers have done some research on them [7, 8]. Both  

datasets contain anonymised clinical information from trial 

participants, including whether they have confirmed  lung 

cancer or not. In these lung cancer datasets, the ratio of 

most samples (normal people) to a few samples (lung 

cancer patients) is around 25. Therefore, they all belong to  

the class imbalance dataset, which can explore the class 

imbalance methods. 
TABLE I 

List of acronyms 
ADASYN Adaptive Synthetic 

AUC Area under curve  

BB Balanced Bagging 

BRF Balanced Random Forest 

CC Cluster Centroids 

CNN Condensed Nearest Neighbour 

ENN Edited Nearest Neighbors 

FN False Negative 

FP False Positive 

IHT Instance Hardness Threshold 

k-NN k-Nearest Neighbors 

NCR Neighbourhood Cleaning Rule 

NLST National Lung Screening Trial 

NM Near Miss 

OSS One-Sided Selection 

PLCO the Prostate, Lung, Colorectal, and Ovarian 

ROS Random Over-sampling 

RUS Random Under-Sampling 

SD Standard Deviation  

SMOTE Synthetic Minority Over-sampling Technique 

SMOTE-
NC 

Synthetic Minority Over-sampling Technique - Nominal 
Continuous 

ROC Receiver Operating Characteristic  

RUSBoost Random Under-Sampling Boost 

SVM Support Vector Machine 

TL Tomek Links 

TN True Negative 

TP True Positive 

II. CLASS SKEWNESS IN DATA  

Class skewness is a well-known problem in machine 
learning [9]. Suppose the distribution of the class in the 

data is imbalanced. In that case, the machine learning 

model will tilt towards the samples in the majority class 

and cannot give enough attention to the samples in the 

minority class. It will cause the model's output to be biased 

towards the majority class [10, 11]. The accuracy of the 

classifier is unreliable due to the lack of consideration o f 

minority classes. In the current field of machine learn ing , 

the class skewness in data has caused many scholars to pay 

attention to class-imbalanced learning [12, 13]. 

A. Types of Imbalanced M ethods 

In the Biomedical Sciences, class imbalance methods 
have already been used in many applications, such as gene 

expression [14], medical diagnosis [15] and medical side 

effects [16]. Class imbalanced data methods can be 

classified into three categories: (i) data-level methods, (ii) 

algorithm-level methods and (iii) hybrid methods [17]. 
1) DATA-LEVEL METHODS 

Data-level methods involve procedures applied in the 
training data to make the class distribution more balanced 

by reducing the number of samples in more classes or 
increasing the number of samples in minority classes [18]. 
At present, the data-level method is mainly in the data p re -

processing stage, using resampling to redistribute the 
training data of different classes in the data space [19, 20]. 
This kind of method can change the dataset structure as 

much as possible to balance the imbalanced class. Some 
studies have shown that the resampling method can 
improve the model's ability to a certain extent by 

resampling the data samples to adjust the analog 
distribution of the samples [21, 22]. In the data-level 

method, resampling and the work of the classifier do not 
affect each other, which is also one of its advantages [23]. 
Resampling procedures can be further organised into (i) 

under-sampling, (ii) over-sampling and (iii) hybrid methods 
[24]. In the following, we briefly describe these methods. 
In Under-sampling methods, samples from the majority 

class are discarded until the number of samples in each 
class are nearly equal while preserving valuable 

information for learning [25, 26]. However, it is inevitable 
that when under-sampling the dataset, some s amples that  
are meaningful to the training model may be ignored [27, 

28]. After all, different under-sampling methods have 
different filtering principles. Under-sampling methods 
include: 

1) Random Under-Sampling (RUS): RUS is the earliest 

under-sampling technique developed; it discards 

random samples from the majority class [29]. 
2) All k-Nearest Neighbors (All k-NN): For all values  

f r o m 1 u n t i l  given value of k , this method 
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performs k-NN to each sample. If the majority of its 
neighbours classify an instance incorrectly, that 

instance is discarded [30]. 

3) Cluster Centroids: This method performs k-means and 

replaces the majority class samples with their 
respective cluster centroids to reduce the number o f 

samples [31]. 

4) Edited Nearest Neighbors (ENN): Each instance is 
tested using k-NN with the rest of the samples in  th is  

method. Those incorrectly classified will be discarded, 
and the remaining samples will form the edited dataset 

[32]. 
5) Instance Hardness Threshold (IHT): This under-

sampling method first trains a classifier to determine  

hard instances or those with a high probability of being 

misclassified, then removes them [33]. 

6) Near Miss: This technique selects majority samples 

close to some minority samples; that is, their average 

distances to the three closest minority samples are 
smallest [34]. 

7) Neighbourhood Cleaning Rule (NCR): This method 

considers three nearest neighbours of each instance in  

the dataset. If a sample belongs to the majority  clas s 

and is misclassified by its three nearest neighbours, it  

is removed from the dataset. Also, if a sample belongs 
to the minority class sample and is misclassified by its  

three nearest neighbours, then the majority class 

samples among its neighbours are removed [35]. 

8) One-Sided Selection (OSS): First, minority class 

samples and misclassified majority samples are 

selected by 1-NN. Then a majority of class samples in  
the Tomek Links are removed [36].  

9) Repeated ENN: This method performs ENN 

repeatedly until the edited training set becomes  

unaffected by further elimination [37]. 

10) Tomek Links (TL): Two instances a and b are Tomek 

Links if they belong to different classes and are one 

another’s nearest neighbour. Thus, Tomek Links  are  

boundary or noisy instances, and the sample from the  

majority class is removed [38]. 

11) Condensed Nearest Neighbour (CNN): Use the nearest 

neighbour algorithm to iterate, and use under-sampling 

to put the majority class sample and all the minority 

class samples together into a set C. The remaining part 

uses 1-NN to judge whether it can be classified 

correctly, and the wrongly classified samples are pu t 

into set C. Repeat the above process to determine 

whether the majority class of samples can be retained 
[39].  

In over-sampling methods, new samples are created based 

on samples from the minority class to reach a more 

balanced class distribution of samples while strengthening  

class boundaries [40, 41]. However, over-sampling may 

lead to overfitting because it duplicates o r s ynthesis es a 

minority of samples [42]. As the number of samples 

increases, the training time also increases [43]. Over-

sampling methods include: 

1) Random Over-sampling (ROS): ROS is the 

earliest over-sampling technique developed, which copies 

random minority class samples to achieve a more balanced 

class distribution of samples [44]. 

2) Adaptive Synthetic (ADASYN): This method 

uses a weighted distribution of the minority class s amples 
based on their difficulty learning. More synthetic samples 

are generated for minority samples harder to learn than the 

easier ones [45]. 

3) Synthetic Minority Over-sampling Technique 
(SMOTE): Synthetic samples are generated by interpolating 

k Nearest Neighbors (kNN) of each of the minority 

samples [46]. 
4) Synthetic Minority Over-sampling Technique - 

Nominal Continuous (SMOTE-NC): This is a generalis ed 
version of SMOTE that accommodates bo th con tinuous 

and nominal data [46]. 

5) Borderline SMOTE: This method performs 
SMOTE on borderline samples, which are ins tances that  

are often misclassified by their nearest neighbours [47]. 

6) Support Vector Machine (SVM) SMOTE: This 
method oversamples minority samples along the borderline 

and uses an SVM classifier for predicting new instances 
[48]. 
KMeans SMOTE: This method uses the combination o f 

KMeans clustering and SMOTE method to form K clusters 
through clustering and then uses over-sampling to  retain  
clusters that contain many minority samples. These clusters 

will be allocated to synthetic samples and then put into 
clusters with insufficient samples in the minority class. 

Finally, SMOTE balances the proportion of categories in 
each cluster [49, 50]. 
The hybrid method is a combination of under-sampling and 

over-sampling. Under-sampling and over-sampling have 
unavoidable disadvantages: under-sampling may  d is card 
useful information, while over-sampling may lead to 

overfitting. To break through these limitations, a technique 
combining under-sampling and over-sampling has been 

proposed. These include (i) SMOTE-ENN [44], which 
combines SMOTE for over-sampling and ENN for under-
sampling, and (ii) SMOTE-Tomek [44], which uses 

SMOTE for over-sampling and Tomek links for under-
sampling. The purpose of using these two methods is to 
balance the training dataset and remove the noisy points at  

the wrong side of the decision boundary, to find better 
clusters and create models with good generalisation ability. 

 
2) ALGORITHM-LEV EL METHODS 

Algorithm-level methods are techniques wherein (i) 
standard machine learning classifiers  are modified and 

associated with a weight or cost variable, or (ii) the 

classifier itself is unaffected by the skew distribution [51]. 

Many scholars have published relevant research results 

discussing the class-imbalanced problem at the algorithm 
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level [52-54]. 

3) HYBRID SYSTEMS  

Hybrid systems involve a combination of sampling 

techniques and algorithmic methods [55]. They  us e data-

level methods to process data externally and adjust the 

distribution of categories in the sample. Then algorithms  

are used internally to modify the learning process [56]. In  

this way, the model will not skew the majority class too 

much during classification [9]. The common ensemble 

methods are as follows: 

1) Balanced Bagging: This method implements bagging 

and uses RUS to make the dataset balanced. It 
resamples each subset of the data before using each 

integrated estimator. Therefore, its advantage over s ci-

kit- learn is that it uses two additional parameters that 

control the behaviour of the random sampler: sampling  

strategy and replace [57]. 

2) Balanced Random Forest: This method first draws 

bootstrap samples from the minority class, then 

randomly draws with replacement the same number o f 

instances from the majority class, creating a balanced 

sample from which each tree is drawn. The majority 

vote determines the prediction [58]. 

3) Easy Ensemble: In this method, classifiers are t rained 

on balanced subsets using AdaBoost, then the output o f 

each classifier is combined, creating an ensemble 

classifier [59]. 

4) Random Under-Sampling Boost (RUSBoost): This 

method makes sampling and boosting combined and 

performs RUS in each round of boosting [60]. 

5) Balance Cascade: This method is a double in tegration 

algorithm combining bagging and boosting. The 
iterative method is used to extract a partial subset from 

the majority class and combine it with the minority 

class to form a base learner, eliminating the majority 

class samples that can be correctly classified during 

training. This method pays more attention  to  s amples 

that are easily misclassified [59]. 

Although both easy ensemble and balanced cascade are 
called exploratory under-sampling, each time, it ext racts  a 

subset from the majority class to learn the classifier. But 
since they mainly use AdaBoost to train each bag, it is 
classified as ensemble methods [9, 28].   

Various ensemble-based resampling techniques , i.e., 
Balanced Bagging [57], Balanced Random Forest [58, 61], 

Easy Ensemble [59], RUSBoost [60], and Balance Cascade 
[59], are widely known. Random balance, SMOTEBoost, 
and RUS- Boost are identical due to random balance. The 

randomness and repetition of ensemble methods rely on 
random balance because each classifier utilizes the random 
ratio during sample training with different class 

proportions. SMOTE and RUS balance the samples 
concerning a minority as well as a majority class. The 

hybrid method of SMOTE and RUS provided better 
performance than other state-of-the-art combined ensemble 

methods such as SMOTEBoost and RUSBoost [62, 63].  
The combination of UnderBagging and OverBagging 

termed as UnderOverBagging based on resampling bagging 
algorithm has proposed by Qian et al., [64] that 
oversampled the minority class and undersampled the 

majority class. The resampling ratio is calculated through 
the ratio of the minimum class size and the maximum clas s  

size.   
KNN, naïve Bayes, and neural networks are widely 
employed as base learners both as homogeneous and 

heterogeneous ensembles. Previous researches s how that  
the performance of heterogeneous ensembles is highly 
efficient. Another method developed by Liu and Zhou 

named as easy ensemble [59] for data resampling using 
ensemble methods. Easy ensemble keeps the undersampling 

method's efficiency higher and reduces the risk of ignoring  
potentially useful information in majority class samples. It  
has been observed that using an ensemble as a base 

classifier is more effective for imbalance classification than 
using a single classifier. Balance Cascade tries to use 
guided rather than random deletion of majority class 

samples. In contrast to Easy Ensemble, it works in a 
supervised manner. Since Balance Cascade removes 

correctly classified majority class examples in each 
iteration, it should be more efficient on highly imbalanced 
data sets.  

Marcelino et al. [65] demonstrated that ensemble learners 
might be affected by the dataset size, an important result 
since collecting additional data may be costly or infeasib le 

in some cases. Thus, since dataset size may affect 
classification performance, it is important to examine novel 

approaches to this problem. Johnson and Khoshgoftaar [66] 
examined the effects of datasets size and balance levels on  
the classification performance of various ensemble 

methods. They concluded that the average AUC value 
increases within each level of class imbalance as the dataset 
size increases. Similarly, within each dataset size, the 

average AUC value increases as the minority d ist ribution 
increases. In general, ensemble learning methods perform 

better than any single base learner, tend to be less 
susceptible to overfitting, and can reduce the b ias during 
data resampling.  

RUS [29] is a computationally cheap baseline method 

that naturally extends to the multi-class case and brings no  

distortion to class distribution. It is risky because it deletes 

random samples without checking their potential 

significance or relevance. TL [38] is a method of border 
and noise-cleaning. The algorithm is easily extendable to  

the multi-class case. Still, its computational complexity  is  

higher because it is needed to find the nearest neighbors o f 

each point in the data set. Also, the number of found links  

is limited because the nearest neighbors will b reak many  

candidate pairs from the same class. CNN [39] utilized the 

one nearest neighbors algorithm to choose which majority  

sample can be removed. The issue with this method is that  

it is sensitive to noise by preserving noisy s amples. OSS 

https://link.springer.com/article/10.1186/s40537-019-0192-5#auth-Justin_M_-Johnson
https://link.springer.com/article/10.1186/s40537-019-0192-5#auth-Taghi_M_-Khoshgoftaar
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[36] adds the use of TomekLinks to CNN to remove links  

that are considered noisy. NCR [35] combines C-NN and  

OSS to remove more noise samples.  NM [34] is a binary 

undersampling algorithm that uses average distances 

between a given point and the nearest or farthest poin ts o f 

an opposite class. It undersamples only the largest  major 
class because of intrinsic constraints of the binary 

NearMiss algorithm. NearMiss technique highly distorts a 

distribution of the major class, also NearMiss -4 has no 

meaning in the multi-class case.  

ROS [44] is a baseline method in which we oversample 

all minor classes with a random selection of po in ts up to  

the number of points in the largest major class. However, it 

can get many instances with the same points , which  may  

not be good for some learning algorithms. ADASYN [45] 

oversampling algorithm for the multi-class case creates 

points adaptively to minor classes distributions. The 

algorithm is not computationally efficient because it 

computes the nearest neighbors twice, firstly for the whole 

data to find many points to generate.  SMOTE [46, 67] is  a 
widely used multi-class case algorithm. SMOTE has some 

drawbacks: firstly, its computational complexity is 

quadratic in the size of the minor class because of the k-

nearest neighbors search. Secondly, selecting target points 

from the nearest neighbors creates a serious distort ion  o f 

the minor class distribution. Some points will never be 

selected as targets; new points are generated as edges o f a 

graph but not in the middle of the distribution.  Borderline-

SMOTE algorithm [47, 68] creates new points as linear 

combinations of the borderline minor class points. We 

have found some drawbacks of the algorithm: 1) low 
computational efficiency because of k-nearest neighbors to 

the minor class from the whole data set, 2) a substantial 

distortion of the minor classes distributions, even more 

than with pure SMOTE. SMOTE-SVM [48, 69] instead 

focuses on creating samples on the decision borders of 

minority and majority classes created by the SVM 

classifier. 

B. Performance Evaluation Metric for Imbalanced Data 
The performance of a classifier is commonly determined 
through a confusion matrix shown in Table II, where True 

Positive (TP) is the number of correctly classified posit ive 
instances, False Negative (FN) is the number of positive in- 

stances incorrectly classified to be negative, and False 
Positive (FP) is the number of negative instances 
incorrectly predicted as positive. In contrast, True Negative 

(TN) is the number of correctly predicted negative instances 
[70-72]. From the confusion matrix, many standard 
evaluations metrics can be derived [73, 74]. The most 

commonly used metric is accuracy, given by Eq. 1. 

 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (1) 

 
TABLE II 

CONFUSION MATRIX 

 Predicted 

Data Class Positive Negative 

Actual 

Positive TP FN 

Negative FP TN 

However, most studies on imbalanced class data po int  
out that accuracy may not be an appropriate metric in 

imbalanced datasets [75]. This is because, in most 

applications, the minority class is often more important, 

requiring methods with improved recognition rates [76, 

77], and errors (FN and FP) have varying degrees of 

consequence. For instance, in cancer diagnosis, one is 

more interested in correctly detecting the minority (i.e., 

positive) cases to effectively diagnose and treat the patient. 

Incorrectly diagnosing a person as cancer-posit ive could  

entail additional, unnecessary costs for further medical 

tests. On the other hand, incorrectly classifying a person as 
cancer-negative could delay necessary treatment and cost  

the person’s life. 
We describe an alternative performance evaluation 

metric, the area under the Receiver Operating 

Characteristic curve. The Receiver Operating 

Characteristic (ROC) curve plots  the True Positive Rate 

(TPR = TP/(TP + FN)) on the y- axis against the False 

Positive Rate (FPR = FP/(TN + FP)) on the x-axis at 

various threshold values [78-80]. The area under the 
ROC curve (AUC) identifies the classifier’s ability  to 

distinguish between classes and compares ROC curves 

[81, 82]. 

C. Application of Class Imbalance M ethods to Cancer 
Datasets 

Concerning cancer, a comprehensive review of data-

level methods for diagnosing various types of cancer was  

performed in the research of Sara et al. [13]. Compared 

with other types of cancer, there is less study on class 

imbalance methods for lung cancer. Few researches als o 

classified the Lung nodules [83, 84], chest-related diseases 

[85, 86], identification of thoracic diseases [87], 

forecasting of COVID-19 [84, 88, 89]. 

III.  DATA DESCRIPTION 

In this study, we utilise two different lung cancer 
datasets: (i) the Prostate, Lung, Colorectal, and Ovarian 
(PLCO) Cancer Screening Trial and (ii) the National Lung  

Screening Trial (NLST). As shown in Figure 1, these 
two datasets are imbalanced in class, and they will be 

explained below. 
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Fig. 1. PLCO and NLST Lung Cancer Data 

A. PLCO dataset 

The PLCO dataset collects anonymised information of 

men and women age 55 to 74 years, including their responses 

to baseline and supplementary questionnaires, smoking 

status, screening test results, diagnostic and treatment 

procedures [90]. The initial data consists of 154,897 

participants, and after performing data cleaning discussed in  
Section IV-A.1 and Section IV-A.3, the number of 

participants was reduced to 80,672. Among them, 3,137 or 

about 3.89%, have confirmed lung cancer, while the rest have 

no confirmed lung cancer. We took a subset containing age, 

Body Mass Index (BMI) value and category, x-ray  h is to ry, 

education, smoking status, number of years smoking, pack-

years, number of years since quitting smoking, family history 

of lung cancer, history of bronchitis and emphysema and 
confirmed lung cancer. These variables were identified in the 

PLCO model developed to predict lung cancer risk [91]. 

B. NLST dataset 
The NLST dataset collects participant information to 

compare Low Dose Computed Tomography (LDCT) with  
chest radiography in lung cancer screening. The data 

contained information from 53,452 participants. There are 
2,058 participants with confirmed lung cancer or about 
3.85% of them. 

In this dataset, we created a subset containing variables 
similar to the first PLCO subset, namely, age, weight, 

height, x-ray history, education, smoking status, number of 
years smoking, pack-years, age when participant quit 
smoking, history of lung cancer of brother, child, father, 

mother and sister, history of bronchitis and emphysema and 
confirmed lung cancer. 

  
                                                                              Fig. 2. Procedure Flow 
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IV. METHOD 

This research is to explore the method of a class-
imbalanced dataset in biomedical data. The confirmed lung 

cancer cases in the PLCO and NLST datasets make up 
3.89% and 3.85% of the respective populations. Th is  low 
proportion of positive cases indicate that the class 

distribution is imbalanced. Therefore, class imbalance 
techniques are applicable to predict the p resence o f lung  

cancer. This research uses three classifiers as baseline 
models according to the type of class-imbalanced method to 
be explored. It performs the following two types: (i) 

perform sampling techniques and build classification 
models, or (ii) perform ensemble methods. The specific 
workflow is shown in Figure 2, and this section will explain 

the methods used in the research.  

A. Data Pre-processing 

Data pre-processing includes addressing the issue of 

missing values and adjusting the features of the datasets. 
The part about scaling numerical data and one-hot 

encoding of categories features will be discussed later. 
 
1) HANDLING MISSING VALUES FOR THE PLCO 
DATASET 

Initial data from the PLCO Lung dataset consists of 
154,897 participants. We excluded 4,953 participants with  

no indicated cigarette smoking status cig  s tat. W henever 
this information was unknown, other variables such as the 

number of years smoking, pack-years and years since 
quitting smoking were also unknown. One would not 
reasonably clean these data without information on whether 

one is a current, former or never smoker. Variables 
containing a mixture of categorical and numerical data were 
cleaned. For instance, the number of years s ince quit t ing  

smoking variable cig stop contained the number of years for 
some former smokers, zero for current smokers, but had no 

response for some former smokers and non-smokers. The 
latter is reflected as NaN and had to be cleaned up. For non-
smokers, we set this to be equal to the individual’s age (i.e., 
we assume non-smokers to have ceased smoking since their 
birth). For those with unknown X-ray history, we set the 
value to 3, corresponding to the category value that 

indicates the participant “does not know” the answer. For 
current smokers with an unknown number of years smoking 

and pack-years, we set their respective cig years and pack-
years with the median values for current smokers. Likewise, 
for former smokers with unknown number of years 

smoking, pack-years and years since quitting, we s et  their 
respective cig years, pack-years and cig stop with the 
median value for former smokers. For those with an 

unknown family history of lung cancer, we set the value to  
8, indicating a new category value. For the rest of the 

variables where we could not reasonably assume values fo r 
the cleanup, we used SimpleImputer from scikit-learn  [92, 
93]. To handle missing values of the numerical BMI 

variable, we used the median strategy. In contrast, for 

categorical variable represented by numbers, namely, 
education, history of bronchitis and emphysema, we us ed 

the most frequent strategy. 
We also made a function to map the BMI value BMI curr. 
We have just imputed to their corresponding categories 

BMI cure as per World Health Organization (WHO) 
standard categorisation of BMI. Further, we created a new 

subset of the cleaned dataset containing our desired features 
(age, BMI category, x-ray history, education, smoking 
status, number of years smoking, pack-years, number of 

years since quitting smoking, family history of lung cancer, 
history of bronchitis and emphysema), and the target 
variable (confirmed lung cancer). 
2) HANDLING MISSING VALUES FOR THE NLST 
DATASET 

We converted the columns' data type to numeric since they 
were all initially cast as a string. For the missing height and 
weight values, we used imputation with the median 

strategy. We computed the BMI value from the heigh t and 
weight values and mapped the result to the BMI category 

using the same mapper we used in PLCO. Current smokers  
have missing entries for their age when they quit smoking, 
so we set them to their age. We imputed their median 

values for former smokers with missing entries for their age 
when they quit smoking. We then computed the 
corresponding cig stop value by taking the difference of the 

participant’s age, and age quit to align it with the definition  
in PLCO data. Lung cancer history of family members in 

NLST are indicated in separate fields for brother, child, 
father, mother and sister. For the missing ent ries in  these 
fields, we used imputation with the most frequent strategy . 

We then collapsed these features in a single co lumn, lung 
FH, by taking their resulting logical OR. For the missing 
history of bronchitis and emphysema, we used imputat ion  

with the most frequent strategy. We also introduced the 
binary target variable confirmed lung with a value of 1 if 

the participant has confirmed lung cancer and 0 otherwis e, 
based on the variable conflict. It simplifies our s tudy to a 
binary classification problem. 

Further, we created a new subset of the cleaned NLST 
dataset containing our desired features (age, BMI category, 
x-ray history, education, smoking status, number o f years 

smoking, pack-years, number of years since quitting 
smoking, family history of lung cancer, history of 

bronchitis and emphysema), and the target variable 
(confirmed lung cancer), using the same order and exact 
column names as the PLCO dataset. 
3) MAKE PLCO AND NLST DATASET CONSISTENT 

In this section, the two datasets after preliminary clean ing 
are further processed, and it is expected that the 
characteristics of the two datasets are consistent. We 

removed the PLCO non-smokers from the dataset because 
the NLST excludes non-smokers from their screening 
selection criteria. We also changed the PLCO’s former 
smokers cig stat with a value of 2 to 0 to align with NLST’s  
former smoker's cigsmok value of 0. NLST’s categories 8, 
95, 98 and 99 did not correspond to any of PLCO’s 
education categories for the education feature. We 
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calculated the mode for NLST’s education variable 
EDUCAT, which was 3, and used this value instead for the 

mentioned categories. Family history of lung cancer in 
PLCO had categories 8 and 9, which did not correspond to 
NLST’s corresponding categories. We used the PLCO’s 
mode for lung fh, which was 0, for these categories. For x-
ray history, to align with NLST’s binary 0-1 values, we 

collapsed PLCO’s” Yes, Once” and”Yes, More Than Once” 
(with values 1 and 2, respectively) into the same value of 1. 
Also, for those who answered”Do not Know” (with the 
value of 3), we assumed that if they were not sure o f their 
x-ray history, the results would not have been available, s o 
we set those at 0. Finally, we renamed NLST’s feature 

names to follow those of PLCO’s for easier reference.  W e 
identified the following variables as categorical: BMI curr, 

bronchit f, cig stat, EDUCAT, emphys f, lung FH, Xray 
history, while the following variables are numerical: age, 
cig stop, cig years and pack years. 

B. Split dataset 

The researcher used Stratified KFold (K=5) to s p lit  the 

dataset, dividing the entire development set into five 

disjoint subsets while still maintaining the sample category 
ratio. This method uses four-fifths of the dataset  fo r each  

split. As the training set, the remaining one-fifth is used as 

the test set. Each split can be regarded as the ith time (i = 1, 

…, 5), and AUC is calculated on the ith test set [94]. It  is  

worth noting that the test set obtained each time will be 
placed aside, and it will not participate in any stage of 

scaling or recoding and model building. Since the over-

sampling method will copy or synthesise some minority 

samples, the data obtained in this way cannot represent the 
original dataset, so the test set should be far from the 

training process. 

C. Scaling and Encoding data  

Scaling data and re-encoding should be applied  before 

sampling because some sampling methods are related to  

the distance between the data. For example, All-KNN is 
based on the Euclidean distance of the data, and the 

magnitude of the excessive difference will affect the 

sampling effect. The methods of scaling and encoding 

will be explained in detail. 

1) FEATURE SCALING FOR NUMERIC DATA   

As part of data pre-processing, we transformed the 

numeric data to a range of [0,1] using Eq. 2.  𝑋′ = (𝑥 − min(𝑥))/(max(𝑥) − min(𝑥))(2) 
 

2) ONE-HOT ENCODING FOR CATEGORICAL DATA   

We performed one-hot encoding for categorical data. Each  
categorical feature with n categories is converted to n 

binary (0-1) features [95, 96]. 

D. Class-Imbalanced M ethods 
The class-imbalanced learning methods used in this 

research mainly include data-level methods and hybrid 

systems (this research mainly explores the imbalance 
technologies in the Imblearn library). We mainly use 

resampling techniques for data-level methods, including 
under-sampling, over-sampling, and hybrid sampling 
methods. Under-sampling methods: Random Under 

Sampling (RUS), All k-Nearest Neighbors (All k-NN), 
Cluster Centroids (CC), Edited Nearest Neighbors (ENN), 

Instance Hardness Threshold (IHT), Near Miss (NM), 
Neighbourhood Cleaning Rule (NCR), One-Sided Selection 
(OSS), Repeated ENN (RENN), Tomek Links (TL).In this 

study, due to the huge dataset, Condense Nearest 
Neighbors(CNN) is an al- algorithm based on 1-NN, which  
requires much time to run. Therefore, CNN is not discussed 

in this article. Over-sampling methods: Random Over 
Sampling (ROS), Adaptive Synthetic (ADASYN), 

Synthetic Minority Over-sampling Technique (SMOTE), 
SMOTE-Nominal Continuous (SMOTE-NC), Borderline 
SMOTE, Support Vector Machine (SVM) SMOTE, 

KMeans SMOTE. Hybrid sampling methods: SMOTE-
ENN, SMOTE-Tomek. Those data-level methods are 
combined with classifiers to predict lung cancer cases.  For 

Hybrid systems, we trained them with the inherent 
classifier. They are Balanced Bagging, Balanced Random 

Forest, Easy Ensemble, and Random Under-Sampling 
Boost (RUSBoost). The Balance Cascade algorithm has 
been continuously adjusted by the Imblearn library in recent 

years and was finally abandoned in version 0.6.0, so this 
article will not discuss this method. 

E. Building Classifiers 

This study uses three classic classifiers as the baseline 
model to find the most suitable class-imbalanced technique 
for the dataset based on this standard: (i) Logistic 

Regression (LR), (ii) Random Forest (RF), and (iii) Linear 
Support Vector Classification (Linear SVC). 

F. Evaluation 
1) EVALUATE SAMPLING – IMBALANCE RATIO 

The imbalance ratio (IR) is an essential parameter in 
imbalanced learning. It measures the proportional 
relationship between the majority class and the minority 
class in the experiment [97]. The formula is given by Eq. 3: 

 𝐼𝑅 = 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦/𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦 (3) 
Most of the data-level methods used in  the res earch 

are by resampling the majority class or minority class in the 

original dataset, thereby increasing the minority class 

samples or reducing majority class samples. Sampling  will 

cause the imbalance ratio of the dataset to  change. As IR 

becomes larger, the disparity in sample size between the 

majority class and the minority class becomes more 

significant [98, 99]. The dataset at this time is imbalanced . 

When the IR value is closer to 1, the dataset tends to be 

more balanced. Therefore, this  paper will use IR to 
evaluate sampling techniques. 

2) EVALUATE MODEL – AUC 

This study selected widely-used AUC as the metric to 
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evaluate the ability of each classifier to distinguish 

between confirmed and no confirmed lung cancer cas es. 
After ith attempts, we can get the mean AUC of ith training 

on the ith test set. To make the experimental resu lts more 

accurate and reliable, this study repeated the above process 

five times and calculated the final mean AUC to  meas ure 

the model's predictive ability. In addition, this study will 
compare the experimental results in the PLCO and NLST 

datasets and discuss the methods of dealing with class-

imbalanced data. 

V. RESULTS 

This section will list the imbalance ratio provided by the 
resampling technique and then show the prediction resu lts 

of the imbalance technique model, which can help analyse 
the effect of the imbalance technique comprehensively. We 
have used the area under the curve (AUC) for the 

evaluation of proposed methods. The AUC performs best  
when the dataset is imbalanced [100, 101]. Our s tudy  had 
16 imbalance datasets , so various studies [57, 102, 103] 

employed the AUC curve as a performance evaluation 
measure.    

A. Results for PLCO dataset 

The class-imbalanced PLCO dataset has an imbalanced 

ratio of 24.7. Through resampling technology, the class 

proportion of the dataset has changed. Table III lis t s  the 

class distribution in the training set after each sampling. 

 
TABLE III 

CLASS D I ST RI BU T IO N FO R DA TA -LEVEL MET HO DS 

_ -PLCO 
Method Imbalance 

Ratio 
Majority 
Samples 

Minority 
Samples 

Baseline 24.72 62028.00 2509.60 
RUS 1.00 2509.60 2509.60 
AllKNN 21.70 54451.40 2509.60 

CC 1.00 2509.60 2509.60 

ENN 22.31 55987.00 2509.60 

IHT 10.54 26440.20 2509.60 

NM 1.00 2509.60 2509.60 
NCR 22.28 55902.80 2509.60 

OSS 24.35 61108.80 2509.60 

RENN 20.11 50472.40 2509.60 

TL 24.39 61197.80 2509.60 

ROS 1.00 62028.00 62028.00 

ADASYN 1.00 62028.00 61878.00 
SMOTE 1.00 62028.00 62028.00 

SMOTENC 1.00 62028.00 62028.00 

BSMOTE 1.00 62028.00 62028.00 

SVMSMOTE 1.74 62028.00 35636.60 

KmeansSMOTE 1.00 62028.00 62031.24 
SMOTEENN 0.80 46909.44 58881.80 

SMOTETomek 1.00 61849.88 61849.88 

Since the sampling occurs in the training set, the 

baseline of the dataset is the number of samples in the 

training set (four-fifths of the whole dataset, which is 

64537.6). It can be seen from the result that under-

sampling changes the majority of samples, over-sampling  

only processes the minority samples, and the hybrid 
method changes both categories. All sampling methods 

reduce the IR value, and the IR values of over-sampling 

and hybrid sampling are close to 1, which means that 

they achieve the class-balanced of the dataset as much as 

possible. 

Applying various under-sampling methods for the PLCO 

dataset, we show the resulting AUCs for three different 
classifiers in Table IV. Each classifier had another best 

under-sampling method. Logistic regression using RUS 

and Linear SVC had higher scores, 0.7124 and 0.7126, 

respectively. However, the random forest model using 

Repeated ENN got the highest mean AUC of 0.8968 in the 

model using the under-sampling method. 
TABLE IV 

AUC RESULTS FOR UNDER-SAMPLING METHODS - 
PLCO 

Method Logistic 
Regression

(AUC) 

Random 
Forest(AUC) 

Linear 
SVC(AUC) 

Baseline 0.5001 0.8532 0.5000 

RUS 0.7124 0.8120 0.7126 

AllKNN 0.5041 0.8926 0.5000 

CC 0.6616 0.6809 0.6615 

ENN 0.5022 0.8804 0.5000 
IHT 0.6755 0.8590 0.6643 

NM 0.4745 0.5035 0.4699 

NCR 0.5020 0.8783 0.5000 

OSS 0.5001 0.8543 0.5000 

RENN 0.5016 0.8968 0.5000 

TL 0.5001 0.8542 0.5000 

For over-sampling methods, ROS had the best 

performance among the three classifiers. These are shown 

in Table V. The random forest had the highest mean 

AUC of 0.8994 among them. 
TABLE V 

AUC RESULTS  FOR  OVER-SAMPLING  METHODS  - 
PLCO 

Method Logistic 
Regression
(AUC) 

Random 
Forest 
(AUC) 

Linear SVC 
(AUC) 

Baseline 0.5001 0.8532 0.5000 
ROS 0.7129 0.8994 0.7130 

ADASYN 0.7124 0.8706 0.7124 
SMOTE 0.7109 0.8693 0.7113 
SMOTENC 0.7027 0.8835 0.7032 
BSMOTE 0.7086 0.8703 0.7085 
SVMSMOTE 0.6773 0.8677 0.6747 
KmeansSMOTE 0.6758 0.8642 0.6675 

 

For Hybrid Methods shown in Table VI, SMOTEENN 

achieved a higher mean AUC in logistic regression and 
Linear SVC. Nevertheless, using SMOTETomek with 
logistic regression had a higher mean AUC of 0.8684. 

TABLE VI 

AUC RESULTS FOR HYBRID METHODS - 
PLCO 

Method Logistic 
Regression
(AUC) 

Random 
Forest (AUC) 

Linear 
SVC (AUC) 

Baseline 0.5001 0.8532 0.5000 
SMOTEENN 0.7134 0.8583 0.7126 

SMOTETomek 0.7107 0.8684 0.7116 

For ensemble methods shown in Table VII, balanced 

bagging achieved the highest mean AUC, followed by 
balanced random forest. 
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TABLE VII 

AUC RESULTS FOR  ENSEMBLE  METHODS  - 
PLCO 

Method AUC 

Balanced Bagging (BB) 0.8403 

Balanced Random Forest (BRF) 0.8143 
EasyEnsemble 0.7188 

RUSBoost 0.7159 

 
The researchers measured all resampling methods in the 

random forest model with the highest baseline value. In 
Figure 3, yellow represents the baseline, green  represents 

the under-sampling methods, orange represents the over-
sampling methods, and blue represents the hybrid methods. 
The baseline AUC value in PLCO is 0.8532; it can be s een 

that the lowest value that appears in Near Mis s  is  0.5035, 
the highest value appears in ROS, and its AUC value is 

0.8994. Observing the bar chart shows that the AUC 
displayed by the under-sampling method has more 

significant fluctuations than other methods. Through 
calculation, the standard deviation (SD) of under-sampling 
in PLCO is 0.1251, and the SD value of over-sampling is 

0.0123. There are only two hybrid methods, so their SD is  
not calculated. Also, we separately calculated the standard  

deviation of ensemble methods (because this method  is  a 
separate classifier) as 0.0643. The result is between over-
sampling and under-sampling. It shows that over-sampling 

is more stable than other imbalanced learning, and under-
sampling is the most unstable. Among all the class 
imbalance techniques tested in the PLCO dataset, random 

forest using ROS performs best. 

 

 

Fig. 3. Comparison of Sampling Method on Random forest in PLCO 

A. Results for NLST dataset 
The NLST dataset is also an extremely imbalanced dataset , 

with an imbalance rate of 25.2. The imbalance rate of the 
dataset obtained by the sampling method is shown in Table 

VIII. We can see similar results to the PLCO dataset. Over-
sampling and hybrid sampling make the IR adjus tment  o f 
the dataset approximately 1. The sample size in the training 

set shows that the number of samples is reduced after using 
the under-sampling technique. In contrast, the total number 
of samples is higher than the original dataset after using 

other methods. 
TABLE VIII 

CLASS  DISTRIBUTION  FOR  DATA-LEVEL  METHODS  - NLST 
Method Imbalance 

Ratio 
Majority 
Samples 

Minority 
Samples 

Baseline 25.22 62056.00 2460.80 

RUS 1.00 2460.80 2460.80 
AllKNN 23.48 57784.80 2460.80 

CC 1.00 2460.80 2460.80 
ENN 23.76 58457.00 2460.80 
IHT 13.98 34400.12 2460.80 
NM 1.00 2460.80 2460.80 

NCR 23.69 58288.00 2460.80 
OSS 25.10 61776.24 2460.80 

RENN 22.37 55055.80 2460.80 
TL 25.14 61865.40 2460.80 

ADASYN 1.00 62056.00 62037.80 

ROS 1.00 62056.00 62056.00 

SMOTE 1.00 62056.00 62056.00 
SMOTENC 1.00 62056.00 62056.00 
BSMOTE 1.00 62056.00 62056.00 

SVMSMOTE 1.00 62056.00 62056.00 
KmeansSMOTE 1.00 62056.00 62059.12 

SMOTEENN 0.91 54162.72 59207.16 
SMOTETomek 1.00 62007.36 62007.36 
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Table IX shows the resulting AUCs upon applying various 
under-sampling methods in conjunction with three different 

classifiers for the NLST dataset. Each classifier had another 
best under-sampling method. However, for Logistic 
regression and linear SVC, the difference between the best 

performing AUC is very small, and their sampling methods 
are both RUS. Besides, the performance of Random Fores t 

using Repeated ENN is much better than other models in  
under-sampling methods. 

We show the AUC results for the over-sampling 

methods in Table X. Logistic regression is similar to the 

best over-sampling method of Linear SVC. Random forest  

with ROS achieved the highest mean AUC of 0.8960. 

For hybrid methods shown in Table XI, SMOTETomek 

achieved a higher mean AUC than SMOTEENN for all 

three classifiers in the NLST dataset. 
TABLE IX 

AUC RESULTS  FOR  UNDER-SAMPLING  METHODS  - NLST 
Method Logistic 

Regression(AU
C) 

Random 
Forest(A
UC) 

Linear 
SVC(AUC) 

Baseline 0.5000 0.8502 0.5000 
RUS 0.6528 0.8323 0.6543 

AllKNN 0.5000 0.8812 0.5000 

CC 0.5907 0.6737 0.5889 

ENN 0.5000 0.8799 0.5000 

IHT 0.5088 0.8860 0.5000 
NM 0.5084 0.5477 0.5191 

NCR 0.5000 0.8702 0.5000 

OSS 0.5000 0.8500 0.5000 

RENN 0.5000 0.8930 0.5000 

TL 0.5000 0.8501 0.5000 

TABLE X 

AUC RESULTS  FOR  OVER-SAMPLING  METHODS  - NLST 
Method Logistic 

Regression(AUC) 
Random 
Forest(AUC) 

Linear 
SVC(AUC) 

Baseline 
ROS 
ADASYN 

SMOTE 
SMOTENC 
BSMOTE 
SVMSMOTE 
KmeansSMOTE 

0.5000 
0.6553 
0.6526 

0.6543 
0.6544 
0.6562 

0.6378 
0.5829 

0.8502 
0.8960 

0.8802 

0.8799 
0.8774 
0.8790 
0.8783 
0.8654 

0.5000 
0.6539 
0.6531 

0.6544 

0.6543 
0.5000 
0.6378 
0.5967 

 
TABLE XI 

AUC RESULTS  FOR  HYBRID METHODS - 
NLST 

Method Logistic 
Regression 
(AUC) 

Random 
Forest 
(AUC) 

Linear 
SVC(AUC) 

Baseline 0.5000 0.8502 0.5000 
SMOTEENN 0.6549 0.8588 0.6543 

SMOTETomek 0.6550 0.8800 0.6550 

AUCs of ensemble methods performed in the NLST 

dataset are shown in Table XII. Balanced bagging 
achieved the highest mean AUC, followed by 

balanced random forest. 

 

 

 
TABLE XII 

AUC RESULTS FOR METHODS - NLST 
Method AUC 

Balanced Bagging (BB) 0.8588 

Balanced Random Forest(BRF) 0.8476 
Easy Ensemble 0.6606 

RUSBoost 0.6567 

 
Similarly, like the PLCO dataset, we measure the 

performance of the sampling method in the random fores t , 

as shown in the figure. It can be seen that the AUC value o f 

the under-sampling Near Miss is the lowest, and  the AUC 

value of the over-sampling ROS is the highest. By 

calculating the AUC standard deviation of various sampling 

methods in the NLST dataset, the SD value of under-

sampling is 0.1140, and the SD value of over-sampling is 

0.0089. In addition, the standard deviation of hybrid 

systems is 0.1124, which is between over-sampling and 
under-sampling. Combining the standard deviation 

performance and the AUC in each method, under-sampling 

fluctuates wildly compared to over-sampling, which is more 

stable. 

In general, AUCs obtained in the NLST dataset have been 
lower than the AUCs obtained in the PLCO dataset, 
indicating an inherent difference in the data. 

VI. DISCUSSION 

In this section, we will discuss the application o f clas s-

imbalanced technology in this study in two aspects. One is to  

discuss different class-imbalanced techniques, and the o ther 

is to combine the performance of the two datasets to analyse         

the results. 

A. The Effects of Imbalanced Learning 
Each classifier is combined with different imbalance 
techniques in this study, including data-level over-

sampling, under-sampling, hybrid method, and methods. 
Among the three baseline classifiers, the mean value of the 
random forest is much higher than logistic regression and 

Linear SVC, and random forest models provide the highest 
mean value of AUC with different sampling techniques. It  

shows that the random forest classifier is suitable for these 
imbalanced medical data used in this study. It is worth 
noting that although the baseline AUC values o f log is tic 

regression and Linear SVC are as low as 0.5, the AUC 
values of most models have been significantly improved 
through the use of class imbalance techniques. It shows that 

the class imbalance technique helps to enhance the ab ility  
of model classification. Besides, most of the average AUC 

in over-sampling methods is higher than other sampling 
methods. The results show that the over-sampling  way  is  
suitable for the imbalanced medical data used in this study . 

The following will discuss the class imbalance learn ing in  
two aspects: the class ratio (IR value) of the samples 
generated from resampling and the stability of the class 

imbalance techniques. 
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Fig. 4. Comparison of Sampling Method on Random forest in NLST 

It is worth noting that although the baseline AUC values o f 
logistic regression and Linear SVC are as low as 0.5, the 
AUC values of most models have been significantly 

improved through the use of class imbalance techniques. It  
shows that the class imbalance technique helps to enhance 

the ability of model classification. Besides, most of the 
average AUC in over-sampling methods is higher than 
other sampling methods. The results show that  the over -

sampling way is suitable for the imbalanced medical data 
used in this study. The following will discuss the class 
imbalance learning in two aspects: the class ratio (IR value) 

of the samples generated from resampling and the stability  
of the class imbalance techniques. 

To explore the relationship between the imbalance method 
and the model’s AUC, we use IR to measure the ability  o f 
resampling technology to adjust the class distribution. From 

the sampling results, under-sampling discards part o f the 
majority samples, over-sampling duplicates or synthesis es 
minority samples, and the composite method samples all 

classes. However, in this study's extremely imbalanced 
dataset, the performance of under-sampling is not excellent, 

and the IR of most under-sampling methods is  very  h igh.  
Because under-sampling needs to discard many majority 
class samples to balance with the minority class, this is 

likely to lose valuable information. When observing the 
over-sampling and hybrid methods that perform well after 
combining with the classifier, the researchers found that the 

minority class samples were significantly increased. The 
samples were more than the original dataset, and their IR 

values were all-around 1. Therefore, it can be considered 
that the resampling method can adjust the class distribution 
of the sample to make the IR of the dataset close to 1, 

which is beneficial to improve the predictive ability  o f the 
model. Besides, the researchers also used the standard 
deviation to assess the stability of the imbalanced learn ing  

technique. Since the performance of the random forest 
classifier is better than other baseline classifiers, the 
researchers exemplified the AUC value of the resampling 

model used in the random forest. By calculating the 
standard deviation (SD value) within each type of 

resampling method, the SD value of methods (hybrid 
systems) is also calculated separately. We get the h ighest  
SD value of under-sampling (In PLCO: 0.1251; In NLST: 

0.1140) and the lower SD value of over-sampling (In 
PLCO: 0.0123; In NLST: 0.0089).  
It shows that different methods may have very different 

results when under-sampling is used, and using d ifferent  
over-sampling methods may get relatively similar res u lts . 

The standard deviation of over-sampling is much  s maller 
than under-sampling, indicating that the over-sampling 
method is stable. Therefore, if the resampling method is 

used to process extremely imbalanced datasets like this 
research, over-sampling is recommended. Because the over-
sampling method is relatively stable, it will not produce 

significant results due to selecting different methods. 

B. Evaluation of Imbalanced Learning Techniques 
Applied to the Two Datasets 

After comparing the performance of different imbalance 

methods in the two datasets, similar results can be obtained: 
under-sampling pre-processing the two datasets, RUS has  
shown good logistic regression and linear SVC 

performance. The combination of Repeated ENN and 
random forest both got the highest average AUC in under-

sampling. In the example of using the over-sampling 
technique, the random forest combined with ROS 
performed best among all models in both datasets. For 

ensemble methods, a balanced bagging classifier performed 
well for both datasets. 
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Fig. 5. Comparison of Best Performing Sampling Methods Against Classifier Baseline on PLCO 

 
 

Fig. 6. Comparison of Best Performing Sampling Methods Against Classifier Baseline on NLST 

 
In Figure 5 and Figure 6, we summarise the best performing 

sampling methods for each classifier on the two  datasets 
and compare them with the baseline AUC (i.e., no sampling 
performed). After each classifier is processed by the 

sampling method in the table, the AUC of the model has 
been significantly increased. Except for Linear SVC, the 

best sampling methods for the other two classifiers are 
ROS, and the performance of ROS in Linear SVC is similar 

to the best results. Therefore, the random forest model 
using ROS is more suitable for processing such imbalanced 

medical datasets and achieving the highest AUC. The Near 
Miss of the under-sampling method obtained results lower 
than the AUC value of the corresponding baseline classifier 

in both datasets. It performed the worst among all 
resampling techniques. Therefore, the AUC values obtained 

by Near Miss on the three classifiers are all the lowest, and 
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it can be considered that it is not suitable fo r the datasets 
with an imbalance rate of about 25 used in this study. 

Conversely, the random forest model that uses ROS as a 
whole is more suitable for the highly imbalanced lung 
cancer dataset used in the research and can achieve the 

highest AUC. The difference is that SMOTETomek 
performs very well in the NLST dataset in hybrid methods. 

The average performance of SMOTEENN in the PLCO 
dataset is slightly higher than that in the NLST datas et . It  
shows that there are still some potential differences between 

the two datasets. 
It may be worthwhile to include algorithm-level methods to 
complete the suite of class imbalance techniques and 

evaluate their predictive performance. However, the costs 
and weights assigned to the algorithm-level methods mus t  

be as close as possible to realistic values. 

VII. CONCLUSION 

In this study, we have investigated class imbalance 
techniques, including data-level and hybrid systems, to 

predict the presence of lung cancer. Two medical datasets 
related to lung cancer (PLCO and NLST) with imbalance 
ratios of 24.7 and 25.2 are used in this research. The 

imbalanced learning method is used to solve the problem of 
a skewed majority in prediction. This research discusses 23 

imbalanced learning methods, including ten under-sampling 
techniques, seven over-sampling techniques, two-hybrid  
resampling methods, and four hybrid systems. The class 

imbalance technology adjusts the majority or minority 
samples by discarding the majority samples, copying or 
synthesising the minority samples to balance the categories 

in the dataset. In addition, three classic classifiers (log ist ic 
regression, random forest, linear SVC) combined with 

resampling techniques were used to train the dataset . The 
prediction results obtained using the classifier training pre -
processing data (except for null values, etc.) are us ed as  a 

baseline for comparison with models built using imbalance 
techniques. The method used to evaluate the sampling 
technique is the imbalance ratio, and the index used to 

assess the classification ability of the model is AUC. 

Further, the standard deviation was used to measure the 
stability of class imbalance techniques. This  s tudy s hows 

that using the class-imbalance technique has higher 
performance than the baseline model. Class imbalance 
technology helps to improve the prediction performance of 

the model. The data-level technology adjusts the IR of the 
dataset to be close to 1 through resampling. Among the 

imbalanced learning methods studied in this paper, the 
over-sampling technique performed best, and the IR value 
of the over-sampling dataset was about 1. Most of the 

models that use over-sampling have higher AUC values 
than other models. The over-sampling method has h igher 
stability than other methods, and the under-sampling 

method has the worst stability. Also, the random forest with 
random over-sampling is the best predictive model, and it is 

more suitable for the PLCO and NLST datasets related to  
lung cancer. Using ROS technology to process these two 
datasets in the random forest model can achieve the highest 

AUC value. 
Conversely, the random forest using Near Miss is even  far 
below the baseline value. Therefore, the combination of 

ROS technology and the random forest is worthy of 
promotion. However, there are still some small gaps within  

different datasets, and compound systems and over-
sampling can be suggested to deal with extremely 
imbalanced biomedical datasets similar to those in the 

research. The contribution of this research is to prove that  
the class imbalance techniques can be used to diagnose lung 
cancer. The over-sampling technique is bet ter than o ther 

imbalanced learning methods. Finally, the researchers 
proposed a model combining ROS and random forest to 

screen for lung cancer so that more people can receive 
timely treatment and reduce the loss caused by 
misdiagnosis. In future research, the new class imbalance 

technology is worthy of application and exploration . 
Combining more diverse classifiers and imbalance 
techniques to achieve higher model prediction capabilit ies  

is also worth looking forward. Furthermore, a deep 
learning-based model, i.e., GNN, AlexNet, ResNet etc., can 

also be deployed for the imbalance dataset problem. 
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