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                 The CISNET Breast Cancer program is a National Cancer 
Institute – sponsored collaboration composed of seven research 
groups that have modeled the impact of screening and 
 adjuvant treatment on trends in breast cancer incidence and 
mortality over the period 1975 – 2000 (base case). This 
 collaboration created a unique opportunity to make direct 
comparison of results from different models of population-
based cancer screening produced in response to the same 
question. Comparing results in all but the most cursory way 
necessitates comparison of the models themselves. Previous 
chapters have discussed the models individual in detail. This 
chapter will aid the reader in understanding key areas 
of  difference between the models. A focused analysis of dif-
ferences and similarities between the models is presented 
with special attention paid to areas deemed most likely to 
contribute substantially to the results of the target analysis. 
[J Natl Cancer Inst Monogr 2006;36:96 – 105] 

 The CISNET Breast Cancer program is a National Cancer 
 Institute – sponsored collaboration composed of seven research 
groups that have modeled the impact of screening and adjuvant 
treatment on trends in breast cancer incidence and mortality over 
the period 1975 – 2000. The group modeled the target population 
under several scenarios, some hypothetical. These scenarios were 
as follows: no screening and no adjuvant therapy, screening only, 
chemotherapy only, tamoxifen only, adjuvant treatment only (no 
screening), and screening and adjuvant treatment. This collabora-
tion created a unique opportunity to make direct comparison of 
results from different models of population-based cancer screen-
ing. Comparing model results inevitably leads to comparing mod-
els themselves. Because the models in the CISNET collaborative 
were developed independently, there are many differences as well 
as similarities in the implicit and explicit building blocks inherent 
in each model. This paper is a focused analysis on aspects of the 
models that are most important to the results examined in the pri-
mary, (base case) analysis, which quantifi es the impact of adjuvant 
therapy and screening mammography on breast cancer mortality 
 ( 1 ) , and on aspects that are deemed most informative in describing 
the diversity of approaches used. Challenges in documenting and 
comparing disparate modeling efforts and the tools used to mitigate 
these challenges in the CISNET program are discussed briefl y. 

  M ETHODS  

 As each of these models was applied to the base case question 
and respective results were compared, it became necessary to de-
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velop tools to aid in the higher-level metacomparison of the mod-
els themselves. To facilitate development of comparative model 
documentation, a template-based system was devised to capture 
the salient parts of each model. 

 To manage the model documentation process and facilitate 
comparison of those documents, an Internet-based documenta-
tion software tool was developed to support the CISNET pro-
gram modelers. This Model Profi ling Framework provides both 
templated and free-form document types for the description of 
model components. The process of developing models of real-
world phenomenon is, by nature, iterative (see  “ Discussion ” ). 

 Documentation of these models is also iterative as new under-
standing requires modifi cation of both the model and the docu-
ments used to describe it. Also, it is diffi cult at the outset to 
determine where the most detailed documentation will be needed 
to determine the root of key differences in model results. To this 
end, the Model Profi ling Framework was designed to allow mod-
ifi cation of documentation, introduction of new templates, and 
even modifi cation of existing templates as needed. 

 Each group participating in this collaboration provided doc-
umentation for their models in a series of subdocuments based 
on common templates. These subdocuments are designed to be 
largely independent from each other and naturally fall into a 
 detail-based hierarchy starting at a general level and becoming 
more specifi c. The Model Profi le is defi ned as the set of these 
subdocuments. The various subdocuments answer a specifi c set 
of questions outlined in the template for each particular docu-
ment. The Model Profi le, the collection of these documents, is 
designed to be read in a nonlinear fashion according to the 
 priorities of the reader. When gathered together, the Profi les 
from various groups may be compared at the subdocument 
level either via a Web-based interface or via a static PDF 
 document. Individual and joint model profi les are available for 
download  ( 2 ) .  
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  B ASIC  M ODEL  D IFFERENCES AND  S IMILARITIES  

 Before comparing specifi c model components, we identify at 
high-level differences of the environment in which these models 
were developed. As with any scientifi c endeavor, the primary 
aims and guiding principles are critically important factors in de-
termining the research course. We focus on particular model de-
tails in a later section. Modeling group abbreviations used in this 
paper are provided in  Table 1 .     

 Though independently developed, the CISNET breast models 
shared some common features. Six of the seven groups model the 
natural history of breast cancer. Typically, the simulated natural 
history includes a time from birth to start of the preclinical screen-
detectable period followed by clinical diagnosis, after which fol-
lows survival that ends with either breast cancer death or death 
from other causes. If applied during the preclinical phase, screen-
ing could infl uence the timing and characteristics of disease at 
diagnosis (usually via a shift in stage). This in turn could affect 
survival so that the patient lives past the point of death under 
clinical diagnosis and can infl uence the cause of death if cancer-
specifi c survival under screening is extended past the age at 
other-cause death. In most models, treatment infl uences survival 
from time of diagnosis, albeit in different ways. Despite these 
broad similarities, the underlying assumptions and data used to 
inform the models varied considerably between models in ways 
that can affect the sometimes subtle population trends under 
analysis. 

  Model Building Philosophies 

 This collaboration are used multipurpose models. That is, the 
authors of the models envisioned purposes for their model that 
lay outside the particular question posed by the base case. 

 For CISNET collaboration, these models were adapted to an-
swer the common  “ base case ”  question:  “ What is the Impact of 
Adjuvant Therapy and Screening Mammography on U.S. Breast 
Cancer Mortality: 1975 – 2000? ”  Which is to say, the models were 
capable of considering the target population under several sce-
narios, some hypothetical. These scenarios are as follows: no 
screening and no adjuvant therapy, screening only, chemotherapy 
only, tamoxifen only, adjuvant treatment only (no screening), and 
screening and adjuvant treatment. 

 Although the models were capable of addressing the CISNET 
base case question, there existed a good deal of heterogeneity in 

the primary purpose of the various models, which in turn leads to 
differences in modeling approaches.  Table 1  provides summaries 
of the base purposes for which the various models were built as 
well as a reference to the chapter in this monograph where the 
corresponding model is described in detail.  Table 2  outlines some 
key high-level differences between the models. Although the 
guiding philosophies are listed, these philosophies were often 
shared to some degree among all the models. To model is to 
choose, and each group started with a certain set of values that in 
aggregate amounted to model philosophies, which in turn infl u-
enced the modeling choices. These core values were driven 
largely by the target application(s) of the model but also by avail-
able data, epidemiological principles, assumptions held, pragma-
tism during model building, and future plans for the model. There 
is a certain amount of pragmatic overlap that occurs during the 
model building process that makes it impossible to assign a blan-
ket philosophy to any particular modeling effort to the exclusion 
of all others; however, knowing the general philosophical ap-
proach taken in each effort can aid in understanding model de-
sign. Models designated as having a  “ Comprehensive ”  primary 
philosophy in  Table 2  took a systems engineering approach and 
attempted to capture at least some of the underlying, physically 
meaningful components of the system being modeled. In these 
models, the model inputs are interpretable with regard to the 
 phenomenon being studied, e.g., exam sensitivity, stage shift, 
and sojourn time. Sometimes these parameters are not (ethically) 
observable (e.g., thresholds for tumor detection, tumor growth 
rates) but are estimated via a calibration step where model 

  Table 1.       Overview of primary purpose  

Model * Purpose Ref

E To analyze and explain results of cancer screening trials, to predict and compare the (cost-) effectiveness of different screening policies, and to 
 monitor the results of population screening programs

 ( 3 ) 

S To quantify the impact of screening mammography and adjuvant therapy on breast cancer mortality trends from 1975 to 2000 and evaluate the 
 impact of new screening tests and treatment strategies on future trends

 ( 4 ) 

M To provide estimates (and their associated uncertainties) of the relative contributions of screening mammography, tamoxifen use, and improvements 
 in chemotherapy to the observed decrease in U.S. breast cancer mortality since 1990

 ( 5 ) 

D To predict national mortality trends, predict the outcome of early detection clinical trials, evaluate service programs, and investigate different 
 screening schedules to compare mortality benefi t

 ( 6 ) 

G To examine the benefi ts (and costs) of cancer control interventions in differing age and race/ethnic groups  ( 7 ) 
R To design explanatory and predictive tools for quantitative description of the effects of breast cancer screening for various screening strategies  ( 8 ) 
W To generate a realistic virtual Wisconsin cancer registry of incident breast cancers for women residing in Wisconsin from 1975 to 2000 and to 

 simultaneously replicate age-specifi c breast cancer mortality in this population during the same period; also to explore ramifi cations of alternative 
 programs of screening and treatment for breast cancer

 ( 9 ) 

  *  Model group abbreviations: D (Dana-Farber Cancer Center), E (Erasmus University Rotterdam), G (Georgetown University Medical Center), M (University of 
Texas M. D. Anderson Cancer Center), S (Stanford University), R (University of Rochester), W (University of Wisconsin – Madison).  

  Table 2.       Overview of characteristics  

Model * Guiding building philosophy Type

E Comprehensive Simulation
S Comprehensive Hybrid  †  
M Observation focused Simulation
D Comprehensive Analytic
G Observation focused Simulation
R Observation focused/comprehensive Hybrid  †  
W Comprehensive Simulation

  *  Model group abbreviations: D (Dana-Farber Cancer Center), E (Erasmus Uni-
versity Rotterdam), G (Georgetown University Medical Center), M (University 
of Texas M. D. Anderson Cancer Center), S (Stanford University), R (University 
of Rochester), W (University of Wisconsin – Madison).  

   †   Hybrid models use both analytic and simulation components.  
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outputs are compared against empirical data such as clinical inci-
dence and unknown parameters are adjusted (within certain 
constraints) such that the model reproduces observed results. 
Those labeled as  “ Observation Focused ”  typically trade compre-
hensiveness for a more data-driven approach that incorporates 
fewer assumptions about underlying mechanisms of tumor 
growth or how screening works. The  “ observation focused/
comprehensive ”  philosophy seeks to maximize the fl exibility and 
complexity of the model under the constraint of its identifi ably. 
This approach represents a further restriction on modeling unob-
servables in that calibration is applied to parameters only if there 
are biological grounds to believe that the parameter in question 
may differ between the data used to build the model and the situ-
ation being simulated. For example, risk factors and sensitivity of 
screening procedures may conceivably vary between countries/
datasets and may be calibrated, whereas growth rates would be 
considered a more fundamental biological parameter that should 
not be calibrated.     

 Again, the generalized guiding philosophies were not mutu-
ally exclusive in practice.  

  Techniques and Philosophies in Calibration and Validation 

 Almost by defi nition, model building involves combining em-
pirical evidence with assumptions about underlying processes. 
Assumptions may be necessary for simplifi cation or be based 
on processes that are not directly observable. During the model 
 development process, empirical data can play several different 
roles. First, model parameters might be estimated from these 
data. Second, model structures that support less well-understood 
aspects of the model’s domain might be modifi ed on the basis 
of empirical evidence. Third, deeper unobservable or unknown 
model parameters might be estimated by comparing model 
results against data not already used in the model building 
process. Finally, the model’s predictive ability might be tested by 
having it simulate a situation for which previously unused 
empirical data are available. These varied uses of data during the 
model building process necessitated a set of working defi nitions 
as follows: 

  Estimation.  Parameter estimation is the process whereby 
parameters that inform the larger model are estimated from 
observed data and various analytical techniques to produce a re-
sult that will be consumed by the model as an input. Parameter 
estimation is done  independently  of the larger model under con-
struction, although basic statistical model assumptions are used 
in the estimation process. A related activity, calibration (see be-
low), is not independent of the model under construction. 

  Calibration.  Calibration is the process whereby unknown pa-
rameters are estimated using the model itself (versus some other 
form of estimation outside the model). Typically this is done via 
minimization of the residuals between model results and empiri-
cal data collected in a situation the model is set up to replicate. 

  Verifi cation.  The verifi cation process is a form of software 
acceptance testing in which it is determined whether the imple-
mented model is a faithful representation of the conceptual 
model. This process answers the question:  “ Does the model re-
spond as expected in simplistic boundary conditions such as zero 
incidence, no other-cause mortality, no benefi t from screening or 
treatment, and other (typically contrived) sets of input parameters 
where expected model results may be stipulated before results 
are generated? ”  

  Validation.  Validation is an evaluation of the model per-
formed by measurement of the model’s ability (without further 
adjustment) to replicate observed results in a given scenario. 
Some groups further refi ne this activity by defi ning two variants: 
 internal  and  external  validation. Internal validation is similar to 
verifi cation in that it tests the model’s ability to reproduce datas-
ets used (at least in part) in its construction, perhaps using a por-
tion of the building datasets and testing the ability of the model 
to predict the remainder. External validation tests the model’s 
ability to reproduce observed results not used in its construction 
and in general. Various criteria may be set up to accept or reject a 
model on the basis of its ability to validate. In short, validation 
challenges the model assumptions, particularly those assump-
tions that are most important for future extrapolations where 
 observed data is not available. 

 Data used in model verifi cation are typically contrived to un-
cover subtle problems with the model and to minimize the effort 
needed to predict correct responses from the model. For example, 
the model may be run with no screening, or no death from cancer 
or no treatment. Results from these strictly hypothetical scenarios 
are relatively easy to predict separate from the model and so the 
model’s basic integrity can be assessed without much effort in 
these extreme cases. Datasets used in calibration and validation 
come from varied sources: results from randomized controlled 
trials, autopsy studies, observational studies, population based 
surveillance prior to intervention, and population-based inci-
dence and mortality trends. There is almost always a shortage of 
data suitable for use in calibrating or validating a model. Collect-
ing such data is both expensive and time consuming and model-
ing efforts must proceed, almost by defi nition, in the face of 
imperfection in the underlying data. As a result, careful decisions 
must be made to ensure that adequate, independent data remain 
for validation after calibration is complete. Philosophies on these 
issues varied between the groups. Results from specifi c valida-
tions for the models may be found in the group-specifi c chapters 
in this monograph  ( 3  –  9 ) . 

 The goals of the breast cancer base case analysis generated 
some interesting philosophical debates on the issue of appropriate 
validation and calibration targets. The aim of the base case analy-
sis is to  partition  the impact of screening and therapy on observed 
population-based mortality trends. The mortality itself is not the 
primary target, but rather the apportioning of the mortality trends 
between two attributable causes. As such, it may be reasonable to 
use overall mortality as a target during the calibration phase of 
model construction, thus assuring that observed mortality would 
be reproduced by the model a priori. However, given the com-
plexity of the underlying factors infl uencing mortality trends, it 
may be unreasonable for any model to predict observed mortality 
exactly. Indeed, given factors such as risk factor dynamics in the 
population, changes in prevention, changes in diagnostic tech-
nologies, and coding changes, one should not expect a model to 
reproduce observed population mortality exactly without account-
ing for these additional factors. These problems may be mitigated 
by the addition of an  “ other factors ”  term in the calibration pro-
cess, which would represent these factors not modeled explicitly. 
However, care must be taken here as well since overall mortality 
is closely associated with the outcomes of interest, namely, the 
contributions of screening and therapy to said mortality trends. As 
such, there is a risk of one causal agent (screening or treatment or 
 “ other ” ) being arbitrarily favored over another during the calibra-
tion phase. Also, since mortality is an outcome at the extreme end 
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of the cancer screening modeling process, calibration to it may 
amount to a confounding interplay between misspecifi cation 
(misrepresented or missing model components) and unidentifi -
ability (multiple parameter sets fi t equally well) in the model, and 
care must be taken to limit the number of parameters and compo-
nents under consideration in any calibration process and to ade-
quately explore all calibrated parameter values that fi t equally 
well. Given these factors and the various philosophies described 
earlier, it is not surprising that the various modeling groups split 
into several categories with respect to calibration. 

 The modeling efforts in the CISNET breast program may be 
roughly partitioned into three philosophies of calibration termed 
here as  “ high, ”   “ medium, ”  and  “ low, ”  where the terms indicate the 
propensity for the modeling effort to adjust model inputs to match 
observed overall mortality. Model M used a high degree of calibra-
tion to the overall mortality trends, whereas W used high-degree 
calibration to incidence trends including breast cancer in situ. In 
both efforts, prior parameter distributions are defi ned by available 
data or expert opinion and the model is run with a parameter set 
chosen at random from the parameter space defi ned by the prior 
parameter distributions. Parameter sets are accepted or rejected on 
the basis of their conformity to observed mortality (M) or inci-
dence (W) trends. Thus, through a process of Bayesian updating, 
posterior distributions of parameters are determined. Provided the 
prior distributions of parameters and the internal structures of these 
models can replicate the observed results, this process will, by 
 design, produce results that closely match the observed mortality 
trends. Here the posterior parameter distributions are the product 
of interest, not the goodness of fi t to observed mortality. 

 The R model is categorized as  “ medium ”  with respect to cali-
bration. In this effort, observed mortality trends were used as 
calibration targets to perform small adjustments to unknown pa-
rameters. In particular, Canadian screening trial data were used 
to build the analytic model and calibration to distribution of tu-
mor size at diagnosis was used to adjust mammography operat-
ing characteristics to account for differences in practice between 
Canada and the United States. Calibration was also used to adjust 
scaling and change-point parameters for treatment effects. 

 The other models, S, G, E, and D, take a  “ low ”  approach to 
mortality calibration in that they calibrate to endpoints other than 
mortality (S, G, E) — or they do no calibration at all (D). 

 It is important to keep these different calibration approaches 
in mind when looking at results from these models  ( 10 , 11 )  as 
they will have an impact on the overall fi t to observed various 
outcomes. It is not clear how these approaches to calibration to 
the mortality endpoint may infl uence the base case analysis 
results, namely, the contribution of screening and treatment to 
mortality trends.  

  Model Inputs 

 While not exactly components of the models themselves, 
inputs in a given model can have a strong infl uence on the model 
structure, capabilities and results. 

  Common available input data.  Several common inputs were 
developed and made available for use in performing the base 
case analysis. These inputs were developed in collaboration with 
NCI staff and the various modeling teams in CISNET. These in-
puts represent the raw materials for the base case analysis and are 
based on empirical data collected from various sources. Chapters 
2 – 5 in this monograph describe these inputs in detail  ( 12  –  15 ) . 

Not all models used all the available inputs, and approaches to 
input usage varied across the different modeling teams (Table 3). 
For example, some groups used some of the common inputs as 
targets for calibration processes in which deeper, unobservable 
model parameters were estimated. In this way, the base case in-
puts were used to derive other related model parameters so that 
the model would replicate the provided base case input. 

  Additional inputs.  In addition to these base case inputs, sev-
eral groups used alternative inputs to accommodate certain pa-
rameter estimation needs. Group E used the Swedish Two County 
breast cancer screening trial data to estimate certain deep model 
parameters needed for the fatal diameter aspect of that model 
 ( 18 ) . Also, the R group used data from the Canadian National 
Breast Screening Studies  ( 20 )  to estimate tumor growth rates, 
screen sensitivity, and other cohort-specifi c parameters, some-
times adjusting for differences in population. Please refer to the 
individual model description chapters in this monograph for a 
complete list of inputs used in each case.   

  M ODEL  D ETAILS  

 As noted, the philosophical approaches to model building 
 varied among the participating groups. However, the nature of 
the common base case analysis dictated, to some extent, that a 
certain set of core components be present in each of the models. 
We now turn our attention to these more detailed aspects of the 
modeling process. 

  Population Modeling Issues 

 One of the challenges inherent in modeling a dynamic popula-
tion over a fi xed period is that simulated time may in fact be con-
siderably longer than the period of interest. Although the target 

  Table 3.       Base case input usage by model*  

Model

Input D E G M S R W

Dissemination of 
 adjuvant therapy

U U U U U N U

Dissemination of 
 mammography

E U U U U U U

Other-cause mortality N U U U U N U
Secular trends in 
 underlying risk of 
 BC incidence

U C U N U C C

Prescreening 
 estimates of BC 
 survival

U E U U U N A

Prescreening stage 
 distribution at 
 diagnosis

A E U A E N C

Adjuvant treatment 
 effectiveness

U C U A U N E

Prescreen BC 
 mortality

N A N N N C U

Observed SEER 
 incidence rates 
 1975 – 1999

E E C U C E C

  *N = Not used; U = uses in form provided to all groups (standard CISNET 
 input); C = calibrates to the CISNET input (it is an output, and other inputs are 
calibrated to reproduce the provided input); E = standard CISNET input is used 
to estimate model parameters; A = alternative data used; BC = breast cancer; 
SEER = Surveillance, Epidemiology, and End Results.  
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period of observation for the base case analysis is 1975 – 2000, in 
many modeling approaches it is necessary to generate simulated 
events prior to and after this window of time. For models that 
simulate individuals from birth, it may be necessary to simulate of 
birth cohorts from about 1890 (85-year-olds in 1975) to 1970 (30-
year-olds in 2000). Also, for most microsimulation approaches, 
cancer incidence must be generated both before and after the pe-
riod of interest. For example, simulation results prior to 1975 must 
be generated to obtain the correct prevalence in 1975. And for 
models that use approaches to natural history that start with clini-
cal incidence and work backward to onset (G, S), simulation must 
continue after 2000 to generate screen-detectable, preclinical dis-
ease in the last years of the interval and thus avoid a lead time –
 driven tapering of incidence in the years near the end of the period 
of interest. These differences in approach to population genera-
tion have a sizable impact on implementation and performance 
issues; however, due to age adjustment in the fi nal results it is 
unlikely that they had substantial impact on the results.  

  Incidence 

 For incidence, the models may be partitioned into two sets. 
Those that calibrated to some form of observed incidence, E, S, 
G, R, and W, and those that did not, M and D. Those that did 
calibrate to incidence may be further divided into those that cali-
brated Surveillance, Epidemiology, and End Results (SEER) in-
cidence over the years 1975 – 2000 (S, G, R, and W) and those 
that used alternative incidence measures (E). See  Table 4  for a 
breakdown of these differences. In general, incidence calibrators 
did their calibrations to estimate parameters driving unobserv-
able aspects of their natural history models.          

  Natural History and Survival 

 Of the seven models in the CISNET breast program, all but 
one (M) incorporated a natural history component in which tran-
sitions through disease states were generated and tracked on the 
basis of assumptions, data, and expert opinion surrounding the 
natural progression of breast cancer. The models that are based 
on assumptions of the natural history can be compared in the way 
that they handle sojourn time, the mechanism of screen detection, 
 tumor characteristics at diagnosis, survival following clinical 
 detection, and survival after screen detection. 

  Sojourn time of preclinical disease.  The models assume a 
sojourn time, which is the time before clinical diagnosis of breast 
cancer during which the cancer can be detected by screening. 
Some models (D and G) assume that this period consists of sev-
eral discrete disease states from which sojourn times are gener-
ated as an exponential dwelling time distribution. Other models 
assume a continuous tumor growth function during the preclini-
cal period (E, R, S, and W) and use either a threshold distribution 
for screen-detection (E and S) or sensitivity of the screening test 
is a function of tumor size (R and W). Due to the differences in 
methods of modeling and the interaction with assumptions on 
screening sensitivity including detection thresholds, sojourn 
times of the different models are not directly comparable. See 
 Table 3  of chapter 14 for a detailed list of approaches to preclini-
cal duration  ( 11 ) . 

  Mechanism of screen detection.  Early detection can only 
 occur when screening takes place during the preclinical sojourn 
time. In some models screen detection is determined solely by a 
threshold (usually size based) of screen detectability (E, S), 
whereas in others there is still an element of chance involved (D, 
G, W, R) at the time of the screening test. From the moment of 
early detection, the disease can take a different course from that 
taken if there were no screening; in particular, the time of breast 
cancer death can change, and if cancer death occurs at a time 
 after the predetermined time of other-cause death, the cause of 
death can also change, thus affecting disease mortality rates in 
the simulated population. See  Table 2  in chapter 14  ( 11 ) . 

  Tumor characteristics at detection.  At time of diagnosis the 
cancer has several characteristics that determine the patient’s 
subsequent therapy and breast cancer survival. The specifi c char-
acteristics are different among the models. In all models, except 
E, the tumor is characterized by the women’s age and stage. Sur-
vival can also depend on calendar year (D), tumor size (E, R, S), 
and discrete fatal diameter status (E). Four of the models (G, E, 
W, M) included ductal carcinoma in situ (DCIS) disease, while 
avoiding modeling this phenomenon explicitly by incorporating 
DCIS with very localized disease with very good prognosis. On 
balance, it seems these approaches made little consistent impact 
on mortality [see discussion in chapter 15  ( 10 ) ]. Handling of in 
situ disease will, however, probably have a much larger impact in 
cost-effectiveness analyses performed with these models. 

 Only one group (M) does not model a preclinical natural his-
tory of any kind. Instead, it simulated diagnosed cancers with 

  Table 4.       Approaches to calibration to overall mortality*  

Model Calibration level Inputs calibrated Calibration dataset

D Low (none) †  —  — 
G Low Sojourn time, operating characteristics of screening SEER incidence, stage distribution
E Low Tumor diameter at diagnosis, Fatal diameter parameters 1975 SEER incidence, Two County Study, 1975 SEER 

 survival, historical survival treatment effect
S Low Mean growth rate, median detection threshold SEER incidence
R Medium Natural history, operating characteristics of screening, 

 scale and change point for treatment effects
SEER incidence
SEER mortality

M High All priors SEER mortality
Screening and treatment effects

W High Natural history, operating characteristics of screening SEER incidence
   SEER mortality

  *  Model group abbreviations: D (Dana-Farber Cancer Center), E (Erasmus University Rotterdam), G (Georgetown University Medical Center), M (University of 
Texas M. D. Anderson Cancer Center), S (Stanford University), R (University of Rochester), W (University of Wisconsin – Madison). SEER = Surveillance, Epidemiol-
ogy, and End Results;  —  = none.  

  †  The D group did shift their overall mortality (post simulation) result to match 1975 U.S. mortality, which has no effect on estimates of mortality reduction from 1975.  

D
ow

nloaded from
 https://academ

ic.oup.com
/jncim

ono/article/2006/36/96/917317 by U
.S. D

epartm
ent of Justice user on 17 August 2022



Journal of the National Cancer Institute Monographs, No. 36, 2006 101

their characteristics at time of diagnosis and survival according 
to what is known about the dissemination of screening, tumor 
characteristics of screen-detected and clinically detected cancer 
patients and their survival, and dissemination of adjuvant therapy 
and its infl uence on survival. This model produces populations of 
women with breast cancer, including characteristics at diagnosis 
and survival that vary in composition and mortality according to 
uncertainty of parameters’ estimates as represented by prior prob-
ability distributions. As described earlier, if the model’s results 
under a particular set of parameters drawn from the priors are 
suffi ciently close to observed mortality, then those parameter val-
ues will be included in the estimated posterior distribution. These 
generated posterior distributions include a joint distribution of 
the contributions of the various interventions to reduction in 
breast cancer mortality, which informs the primary result of the 
base case analysis: the relative contribution of each intervention 
to reduction in mortality.  

  Screening Dissemination 

 Except group D, all the groups used the same screening dis-
semination generation process  ( 15 , 23 ).  Dana-Farber used the pa-
rameters of the screening dissemination generation program rather 
than the output from it. This group partitioned screeners into three 
types of screening intervals (1 year, 2 year, and 5 year), whereas 
the screening dissemination program used by the other groups 
would introduce variability in the screening patterns within women 
(with an affi nity to a general screening behavior or annual, bien-
nial, and irregular). On balance, these differences in approach 
caused the Dana-Farber model to generate shorter times between 
subsequent screening exams and thus simulate more screening. 
This higher rate of screening, combined with Breast Cancer Sur-
veillance Consortium – based screened stage distributions that were 
unique to this model, explain much of the overall higher benefi t 
associated with screening reported by the Dana-Farber group.  

  Survival Benefi t Attribution 

  Survival after clinical detection.  Most models simulated a 
survival distribution from time of diagnosis that is based on ob-
served survival without screening, i.e., survival in the 1970s. This 
survival can be improved because of application of adjuvant ther-
apy. Model E determines the time of breast cancer death by a sur-
vival distribution from the time the tumor reaches a fatal diameter 
threshold (Weibull distributed) before diagnosis, instead of from 
time of diagnosis. Thus, here screen detection has no effect unless 
it occurs prior to the time the tumor reaches the fatal diameter. 
Model W assigns an age of death for noncured patients after pro-
gression to late-stage disease by using SEER survival curves from 
clinically detected late-stage disease in the prescreening era. 

  Survival after screen detection.  Early detection can lead to 
detection in an earlier stage, which according to the basic as-
sumptions of many of the models, will lead to better prognosis 
and possibly longer disease-specifi c survival. Generating a breast 
cancer survival curve for a screen-detected case is challenging 
because it is expected that in addition to a potential survival ben-
efi t, there is a lead time and length bias component in survival 
when disease is screen detected. The approach taken to deal with 
these issues varies depending on model structure and modeling 
philosophy. This aspect of the models is of critical importance 
and comparison is often confounded by different approaches and 

subtle defi nition differences inherent in independent model build-
ing. For example, some groups model individual life histories in 
which the simulated individuals are placed both in intervention 
and control arms and events in either case are tracked and com-
pared. Thus a perfectly matched experiment is simulated and in-
dividual lead times are known. Other models simulate population 
strata in which a distribution of lead times may be determined, 
whereas individual lead times cannot. In these two cases, ap-
proaches to dealing with lead time bias in survival reporting can 
be different because of what is known in each case. 

 Length biased sampling (LBS) is a statistical sampling phe-
nomenon that arises in screening wherein disease with longer 
preclinical periods tend to be detected more readily than those 
with shorter sojourn times. This is a naturally occurring sampling 
phenomenon that may contribute (in part) to the stage shift seen 
in screen-detected cases. The implications of LBS on screening 
outcomes are not well known. One possible hypothesis is that 
LBS causes screening to detect more indolent disease that, even 
if clinically detected, would not contribute to mortality  ( 24 ) . If 
this were true, one would expect interval cancers to have, on bal-
ance, worse prognosis and higher mortality, and screen-detected 
cancers would enjoy better survival and mortality even when ad-
justing for lead time and controlling for age and stage. Although 
all the CISNET models simulate LBS, they do so in different 
ways and to various degrees with respect to the less well under-
stood implications that LBS may have on outcomes. 

 Within the CISNET models, the approach taken to modeling 
LBS was infl uenced by the mechanics of the models in several 
ways. Some groups modeled individual life histories in which the 
simulated individuals are placed both in a situation with screen-
ing (intervention simulation) and the counterfactual situation 
without screening (control simulation); tumor characteristics 
such as growth rate are the same in both situations. Thus, in the 
simulation there exists a perfect match between control and inter-
vention simulations, which we term  “ parallel universes. ”  These 
models overlay a screening program on the natural history of dis-
ease and automatically address the fi rst effect of length biased 
sampling, namely, screening tends to detect slower-growing tu-
mors with longer preclinical dwell times. However, this tendency 
alone does not necessarily imply that slower-growing tumors 
would have better prognosis in both the screening and control 
simulations, as has been hypothesized. 

 Erasmus provides a good example of directly modeling LBS 
by using the  “ parallel universe ”  approach mentioned above. In the 
Erasmus model, if a tumor was detected before it reaches a 
Weibull-distributed fatal diameter, it would be cured and if de-
tected at a larger size a cancer survival time would be assigned to 
that individual. In this model, the tumor growth rate was posi-
tively correlated with the diameter that a tumor would be clini-
cally detected so that slower growing tumors would tend to be 
clinically detected at a smaller size than faster-growing tumors 
(i.e., more likely to be detected before metastasis). Both the Stanford 
and Rochester models have this property as well. Erasmus takes 
the further step of accommodating the hypothesis that screening 
detects disease with better prognosis apart from the benefi t of 
stage shift. In the Erasmus model, cancer survival (if applicable) 
was negatively correlated to tumor growth rate. Screening prefer-
entially detects slower-growing tumors, and this set of tumors also 
had a better prognosis in both the screening and the no-screening 
scenarios since they had a better chance of being detected before 
metastasis and longer survival if they did metastasize. 
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 Wisconsin captured LBS indirectly. They include a portion 
of tumors that had a limited malignant potential as a means to 
address the necessary reservoir of smaller breast cancers that 
 remained undetected until the 1980s with population mammog-
raphy screening. Limited malignant potential tumors were detected 
both clinically and through screening, although they were usually 
detected through screening since they achieved a maximum di-
ameter of 1 cm. By assuming that these tumors had limited ma-
lignant potential, the model assured that they would not contribute 
to mortality in either the screened or unscreened case. 

 Stanford, Rochester, and Georgetown also use the parallel-
 universe approach. In these models, screening also will prefer-
entially detect slower-growing tumors. Also, Stanford and 
Georgetown guarantee that individuals cannot die during their 
lead time, which gives a small survival benefi t apart from stage 
shift alone. For Stanford and Rochester, screen-detected tumors 
have a better prognosis than clinically detected tumors overall 
and within stage since both models assign survival as a function 
of size at detection, which is linked to growth rate. Screen- detected 
tumors have a better stage distribution and smaller size within 
stage. The Georgetown model assigns survival by stage and not 
size, giving a better overall survival to screen-detected cases, 
which will have a better stage distribution, but no survival benefi t 
within stage. However, these three models do not link growth 
rates to survival directly so that there is no link giving slower-
growing tumors better survival outside the benefi t of stage shift. 

 The Dana-Farber model is population based in that it mathe-
matically models a population with and without screening. The 
Dana-Farber model explicitly incorporates the sampling phe-
nomenon in its equations by using the actual distribution of the 
lead time. The distribution of the lead time is the key variable in 
the length-biased phenomenon. The DF model assumes that any 
gain from early detection is a result of a favorable change in the 
stage distribution because of diagnosing the disease earlier be-

fore it transits to more advances stages. As such, they take the 
position that any increased survival observed in screen-detected 
cases is the result of a stage shift. The DF model adjusts for the 
lead time in the eventual survival of screen-detected cases where 
the survival time is relative to the point in time when the disease 
would have been diagnosed clinically. This adjustment also de-
pends on the distribution of the lead time. 

 The University of Texas M. D. Anderson Cancer Center 
model, also population based, does not include a natural history 
model and as such does not differentiate between length bias and 
the benefi ts of early detection. They include the possibility of 
length bias by incorporating  “ beyond stage shift ”  parameters that 
govern the benefi t of screening beyond what would be expected 
from stage shift alone  ( 5 ) . 

 The details of each model’s approach to survival from screen-
detected disease were described previously  ( 3  –  9 ) . In most mod-
els, the subsequent stage shift (if present) primarily determines 
an improvement of survival (D, G, R, S, M). Other groups (E, W) 
model treatment effectiveness as a cure/no-cure process depend-
ing on certain characteristics of the cancer at diagnosis (size, age, 
estrogen receptor [ER] status) and (possibly) treatment standards 
at the time of diagnosis. Stage shift – driven models attribute a 
generally more favorable survival distribution to screen-detected 
cases when screen detection causes the cancer to be detected in 
an earlier stage. Generally, the survival distribution applied for a 
particular screen-detected case is estimated from survival as ob-
served in a population-based cancer registry prior to dissemina-
tion of screening. The survival used typically depends on some 
combination of age, stage, ER status, and size of tumor. This con-
ditioning, combined with the fact that screen detection precedes 
clinical detection, generally yields better survival with screen de-
tection than with clinical detection for the same woman. Survival 
is further adjusted by treatment effects if treatment was deemed 
to be in use at the simulated time of diagnosis. Some models 

  Fig. 1.     Relationships and interactions inherent 
in the modeling process.    
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 apply the screened survival distribution from the time of screen 
detection. To prevent death from breast cancer during the lead 
time, some models apply the survival distribution of screen-de-
tected cases from the time at which diagnosis would have taken 
place in a situation without screening — in effect, adding the lead 
time (D, G), and other models revert to the original time of death 
of the situation without screening in individual cases where the 
survival distribution from screen detection would give a time of 
death during the lead-time (R). Group R used SEER data to 
model the effect of treatment as the change in survival over time 
controlling for age, tumor size, and clinical stage. Thus,  treatment 
for Group R includes not only adjuvant therapy but also better 
surgical and radiation procedures and improved patient care. 
Group M also allowed for improvements in breast cancer sur-
vival because of other improvements in detection and treatment 
beyond the interventions considered in the base case question.   

  D ISCUSSION  

  Challenges Inherent in Model Comparison 

  Ambiguities in language.  Simulation modeling at this inter-
disciplinary, collaborative level in the health sciences is a rela-
tively nascent endeavor — one that lacks a well-defi ned vocabulary 
and a set of common design patterns. These shortcomings, com-
bined with the interdisciplinary makeup of this collaboration 
with more than a dozen different fi elds represented, made it nec-
essary to spend a great deal of time interacting to develop a com-
mon understanding of key concepts. At the center of this effort 
was the need to reasonably standardize the vocabulary used in 
the dialog between collaborators. At times standardization was 
impossible because of fundamental differences in approach to 
modeling. When this occurred, the discussion served to  “ red fl ag ”  
such terms, and every effort was then made to clarify and give 
context to the term in question. Some examples of ambiguities 
that needed to be resolved follow. 

  Model.  The term  “ model ”  may refer to something as simple 
as a linear regression on two variables or to something as com-
plex as a 50 000-line software program with hundreds of inputs 
running on a cluster of computers. Moreover, models may be 
composed with other models, yielding hybrids made up of both 
closed-form analytic models and software-based models. The 
CISNET collaboration involved a wide range of modeling ap-
proaches that required careful qualifi cation to be made when the 
word  “ model ”  was used. 

  Parameter.  To a statistician, a parameter is estimated from 
sample data. This estimate is subsequently used as a descriptor of 
the data (e.g., distribution parameters). These estimations are 
done via statistical techniques that involve an assumed model for 
the underlying data. That is, a descriptive parameter estimate is 
considered the result or  output  of a statistical analysis. To a com-
puter scientist, a parameter is an argument passed to a software 
routine. That is, a parameter in an  input  that determines how the 
routine will execute. This ambiguity, along with the fact that 
models that use the technique of Bayesian updating to convert 
priors (inputs) into posteriors (outputs), adds more blurring of the 
concept of input and output required the group to provide careful 
context whenever the word  “ parameter ”  was used. 

  Sojourn time/sensitivity.  The term  “ sojourn time ”  is typi-
cally defi ned in health science as the duration of the preclinical 
phase (detectable yet asymptomatic) of disease. However, for 

simulation modeling an increased level of rigor is required. Since 
the threshold of detection may vary between different screening 
modalities, the sojourn time depends on screening modality and 
in particular on the sensitivity of the screen test used. Sensitivity, 
in turn, can be understood in terms of estimates from gathered 
clinical observations of interval cancers, or it may be defi ned 
analytically as the  “ operational sensitivity ”  the model may use to 
determine whether a particular test will be simulated as positive 
or negative in the presence of disease. Finally, the term  “ sojourn 

  Table 5.       Ancillary data sources  

Model* Additional data sources † Usage

D HIP Estimation of exponential sojourn times
BCSC Stage distributions with screening
Screening Clinical Trials Mammogram sensitivity and mean 

 sojourn times of preclinical stage and 
 their relation to age

E Two County Study Growth rate, survival duration, screening 
 threshold size

HIP Screening threshold size
G HIP, Malmo Stage-specifi c dwell times

Various studies Sojourn time
CNBSS et al. Test sensitivity

M HIP, CNBSS Screening effects beyond stage shift
S None
R CNBSS Natural history and screen parameters 

 (subsequently calibrated via SEER 
 data for U.S. population)

W WCRS Initial model building, and incidence 
 calibration

SEER Estimation of distant stage survival 
 in prescreening era

  *  Model group abbreviations: D (Dana-Farber Cancer Center), E (Erasmus Uni-
versity Rotterdam), G (Georgetown University Medical Center), M (University 
of Texas M. D. Anderson Cancer Center), S (Stanford University), R (University 
of Rochester), W (University of Wisconsin – Madison).  

  †  Key to additional data source abbreviations. HIP = Health Insurance Plan 
Project  ( 16 ) ; BCSC = Breast Cancer Surveillance Consortium  ( 17 ) ; Two  County 
Study = Swedish Two-County Trial  ( 18 ) ; Malmo = Malmo mammographic 
screening trial  ( 19 ) ; CNBSS = Canadian National Breast Screening Study  ( 20 ) ; 
WCRS = Wisconsin Cancer Reporting System  ( 21 ) ; SEER = Surveillance Epide-
miology and End Results  ( 22 ) .  

  Table 6.       Factors affecting benefi t from screening (independent of treatment)  

Model* Primary mechanism 

  Within stage 

Age Size

E Size at diagnosis  ✓ 
S Stage Shift  ✓  ✓ 
M Stage Shift †  ✓ 
D Stage Shift  ‡   ✓ 
G Stage Shift  ‡   ✓ 
R Stage Shift  ✓  ✓ 
W Stage Shift  §   ✓  

  *  Model group abbreviations: D (Dana-Farber Cancer Center), E (Erasmus Uni-
versity Rotterdam), G (Georgetown University Medical Center), M (University 
of Texas M. D. Anderson Cancer Center), S (Stanford University), R (University 
of Rochester), W (University of Wisconsin – Madison).  

  †  Mortality trends in late stage (III, IV) do not depend on stage shift. This  model 
incorporates a benefi t due to screen detection regardless of stage.  

   ‡   These models allow substantive benefi t only if a stage shift is present with 
screening.  

   §   This model bases survival benefi t on treatment only (see  Table 7 ). However, 
treatment is more effective for earlier stages and somewhat less effective overall 
in the elderly to account for historical age bias.  
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time ”  has a more general meaning in the simulation literature in 
which it is taken to mean the time spent in some state tracked by 
the simulation. Thus the term  “ sojourn time ”  requires further 
modifi cation to convey meaning in the context of simulation 
modeling in health sciences. 

  Challenges due to the nature of modeling.  Modeling is an 
iterative process with many upstream, dynamic dependencies. 
These models are thus never complete, as they embody a micro-
cosm of science itself with continual revision being made in the 
face of new knowledge or applications. At the outset, observa-
tions are made, data are collected, and preliminary analyses are 
carried out — often guided by previous work and prevailing hy-
potheses generated by clinical observation; theories are devel-
oped and models are built to test and compare those theories in 
hypothetical situations. Any change in the precursors to the 
model (observation, data, analysis technique, or theories) can 
 necessitate a change in the approach to modeling the system. The 
models themselves can form the catalyst for change in that model 
results may inform future policy direction and collections of em-
pirical data. This brief description of the information fl ow vastly 
oversimplifi es the case, as in reality the situation is far from lin-
ear and there are many internal feedback loops. The actual inter-
actions are better, albeit still incompletely, represented in  Fig. 1 .     

 The backdrop of the highly dynamic, related process of build-
ing models raises challenges both in the comparison of models 
and model results and the documentation of model structure. The 
CISNET Breast Cancer program sought to mitigate these diffi -
culties by standardizing the analysis target, key inputs, and the 
documentation approach across all models. This level of stan-
dardization was an important aspect of the success of the project. 
Standards were put into place for presentation of model output 
and documentation. These standards allowed those tasked with 
evaluating results to rapidly determine the likely reasons for dif-
ferences between the models and determine whether they were 
based in valid differences in approach and/or assumptions or if in 
fact the defi nitions of the standards needed to be clarifi ed. 

  Challenges due to uncertainty in structure and inputs.  As 
described earlier, the models involved in this collaboration often 
took different approaches and philosophies to model building. 
 Although it is unlikely there are obvious errors, given the unob-
servable nature of the cancer disease process, it is doubtful that 
any particular model is correct. There will always remain a certain 

degree of uncertainty in modeling structure. Similarly, although 
efforts were made to standardize as much as possible the raw ma-
terials each model used in this analysis, different philosophies and 
approaches necessitated that different datasets be used at times 
(see  Table 5 ). These different datasets imply different uncertainties 
in the parameters estimated from them. Although it is possible to 
quantify the uncertainty inherent in model results due to parameter 
uncertainty, it is much more diffi cult to quantify the uncertainty 
due to model structure. The standardized collaboration used by the 
CISNET group to some extent enables us to look at structure un-
certainty in a qualitative way (see Tables 6 and 7); the interplay 
between parameter uncertainty and structure uncertainty remains 
largely unknown. This diffi culty is not unique to the CISNET 
 collaboration. Indeed, this diffi culty exists in any comparison of 
results in the modeling literature. The collaborative nature of this 
effort offered an unprecedented opportunity for discourse on dif-
fering approaches, which lent important contextual clues when 
results were compared. Much of this dialog would have been im-
possible if each group worked independently to answer similar or 
related questions. This collaboration developed both models and 
tools and processes by which models can be compared.                

  REFERENCES 

   (1)   Feuer EJ. Modeling the impact of adjuvant therapy and screening mammog-
raphy on U.S. breast cancer mortality between 1975 and 2000: introduction 
to the problem.  J Natl Cancer Inst Monogr   2006 ; 36 : 2  – 6.  

   (2)   National Cancer Institute. CISNET Model Profi les. Available at:  http://
cisnet.cancer.gov/profi les .  

   (3)   Tan SYGL, van Oortmarssen GJ, de Koning JH, Boer R, Habbema JDF. 
The MISCAN-Fadia continuous tumor growth model for breast cancer. 
 J Natl Cancer Inst Monogr   2006 ; 36 : 56  – 65.  

   (4)   Plevritis SK, Sigal BM, Salzman P, Rosenberg J, Glynn P. A stochastic 
simulation model of U.S. breast cancer mortality trends from 1975 to 2000. 
 J Natl Cancer Inst Monogr   2006 ; 36 : 86  – 95.  

   (5)   Berry DA, Inoue L, Shen Y, Venier J, Cohen D, Bondy M, et al. Modeling 
the impact of treatment and screening on U.S. breast cancer mortality: a 
Bayesian approach.  J Natl Cancer Inst Monogr   2006 ; 36 : 30  – 6.  

   (6)   Lee S, Zelen M. A stochastic model for predicting the mortality of breast 
cancer.  J Natl Cancer Inst Monogr   2006 ; 36 : 79  – 86.  

   (7)   Mandelblatt J, Schechter CB, Lawrence W, Yi B, Cullen J. The SPECTRUM 
population model of the impact of screening and treatment on U.S. breast 
cancer trends from 1975 to 2000: principles and practice of the model meth-
ods.  J Natl Cancer Inst Monogr   2006 ; 36 : 47  – 55.  

   (8)   Hanin LG, Miller A, Zorin AV, Yakovlev AY. The University of Rochester 
model of breast cancer detection and survival.  J Natl Cancer Inst Monogr  
 2006 ; 36 : 66  – 78.  

   (9)   Fryback DG, Stout NK, Rosenberg MA, Trentham-Dietz A, Kuruchittham 
V, Remington PL. The Wisconsin Breast Cancer Epidemiology simulation 
model.  J Natl Cancer Inst Monogr   2006 ; 36 : 37  – 47.  

   (10)   Cronin KA, Feuer EJ, Clarke LD, Plevritis SK. Impact of adjuvant therapy 
and mammography on U.S. mortality from 1975 to 2000: comparison of 
mortality results from the CISNET breast cancer base case analysis.  J Natl 
Cancer Inst Monogr   2006 ; 36 : 112  – 21.  

   (11)   Habbema JDF, Tan SYGL, Cronin KA. Impact of mammography on U.S. 
breast cancer mortality, 1975–2000: are intermediate outcome measures in-
formative?  J Natl Cancer Inst Monogr   2006 ; 36 : 105  – 11.  

   (12)   Mariotto AB, Feuer EJ, Harlan LC, Abrams J. Dissemination of adjuvant 
multiagent chemotherapy and tamoxifen for breast cancer in the United 
States using estrogen receptor information: 1975–1999.  J Natl Cancer Inst 
Monogr   2006 ; 36 : 7  – 15.  

   (13)   Rosenberg MA. Competing risks to breast cancer mortality.  J Natl Cancer 
Inst Monogr   2006 ; 36 : 15  – 9.  

   (14)   Holford TR, Cronin KA, Mariotto AB, Feuer EJ. Changing patterns in breast 
cancer incidence trends.  J Natl Cancer Inst Monogr   2006 ; 36 : 19  – 25.  

  Table 7.       Factors affecting benefi t from treatment (independent of screening status)  

Model* ER status Age Calendar year

E  ✓ 
S  ✓  ✓ 
M  ✓  ✓  ✓  † 
D  ✓  ✓  ✓ 
G  ✓  ✓ 
R  ✓  ✓  † 
W‡  ✓  ✓  ✓ 

  *  Model group abbreviations: D (Dana-Farber Cancer Center), E (Erasmus Uni-
versity Rotterdam), G (Georgetown University Medical Center), M (University 
of Texas M. D. Anderson Cancer Center), S (Stanford University), R (University 
of Rochester), W (University of Wisconsin – Madison).  

  †  Captures not only adjuvant therapy but also better procedures and generally 
improved patient care.  

   ‡   This group models treatment as a cure/no-cure process; probability of cure 
depends on estrogen receptor (ER) status, age, and treatment type (which depends 
on calendar year).  

D
ow

nloaded from
 https://academ

ic.oup.com
/jncim

ono/article/2006/36/96/917317 by U
.S. D

epartm
ent of Justice user on 17 August 2022

http://cisnet.cancer.gov/profiles
http://cisnet.cancer.gov/profiles


Journal of the National Cancer Institute Monographs, No. 36, 2006 105

   (15)   Cronin KA, Mariotto AB, Clarke LD, Feuer EJ. Additional common inputs 
for analyzing impact of adjuvant therapy and mammography on U.S. mor-
tality.  J Natl Cancer Inst Monogr   2006 ; 36 : 26  – 9.  

   (16)   Shapiro S. Periodic screening for breast cancer: the HIP Randomized Con-
trolled Trial. Health Insurance Plan.  J Natl Cancer Inst Monogr   1997 ; 22 : 
27  – 30.  

   (17)   Ballard-Barbash R, Taplin SH, Yankaskas BC. Breast Cancer Surveillance 
Consortium: a national mammography screening and outcomes database. 
 AJR Am J Roentgenol   2004 ; 169 : 1001  – 8.  

   (18)   Tabar L, Vitak B, Chen HH, Duffy SW, Yen MF, Chiang CF, et al. The 
 Swedish Two-County Trial twenty years later. Updated mortality results and 
new insights from long-term follow-up.  Radiol Clin North Am   2000 ; 38 :
 625  – 51.  

   (19)   Andersson I, Aspegren K, Janzon L, Landberg T, Lindholm K, Linell F, 
et al. Mammographic Screening and mortality from breast cancer: the 
Malmo mammographic screening trial.  BMJ   1988 ; 297 : 943  – 8.  

   (20)   Miller AB, To T, Baines CJ, Wall C. The Canadian National Breast Screen-
ing Study-2: 13-year results of a randomized trial in women age 50–59 
years.  J Natl Cancer Inst   2000 ; 92 : 1490  – 9.  

   (21)   Wisconsin Cancer Incidence and Mortality, 1999. Madison (WI) Bureau of 
Health Information, Division of Health Care Financing, Wisconsin Depart-
ment of Health and Family Services;  2002 .  

   (22)   Ries LA, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, 
et al. (eds). SEER Cancer Statistics Review, 1975–2002, National Cancer 
Institute. Bethesda, MD. Available at:  http://seer.cancer.gov/csr/1975_2002/ , 
based on November 2004 SEER data submission, posted to the SEER Web 
site  2005 .  

   (23)   National Cancer Institute. CISNET Input Parameter Generator Interfaces. 
Available at:  http://cisnet.cancer.gov/interfaces .  

   (24)   Joensuu H, Lehtimaki T, Holli K, Elomaa L, Turpeenniemi-Huianen T, 
Kataja V, et al. Risk of distant recurrence of breast cancer detected by mam-
mography screening or other methods.  JAMA   2004 ; 292 : 1064  – 73.       

 

D
ow

nloaded from
 https://academ

ic.oup.com
/jncim

ono/article/2006/36/96/917317 by U
.S. D

epartm
ent of Justice user on 17 August 2022

http://seer.cancer.gov/csr/1975_2002/
http://cisnet.cancer.gov/interfaces

