Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899
DOI 10.1007/s00521-017-3028-2

@ CrossMark

ORIGINAL ARTICLE

A comparative review of dynamic neural networks and hidden
Markov model methods for mobile on-device speech recognition

Mohammed Kyari Mustafa' - Tony Allen” - Kofi Appiah?

Received: 9 June 2016 / Accepted: 19 April 2017 /Published online: 4 June 2017

© The Author(s) 2017. This article is an open access publication

Abstract The adoption of high-accuracy speech recognition
algorithms without an effective evaluation of their impact on
the target computational resource is impractical for mobile and
embedded systems. In this paper, techniques are adopted to
minimise the required computational resource for an effective
mobile-based speech recognition system. A Dynamic Multi-
Layer Perceptron speech recognition technique, capable of run-
ning in real time on a state-of-the-art mobile device, has been
introduced. Even though a conventional hidden Markov model
when applied to the same dataset slightly outperformed our
approach, its processing time is much higher. The Dynamic
Multi-layer Perceptron presented here has an accuracy level
of 96.94% and runs significantly faster than similar techniques.

Keywords Discrete Fourier transform - Linear predictive
cepstral coefficients - Mel-frequency cepstral coefficients -
Speech recognition - Dynamic Multi-layer Perceptron -
Hidden Markov models

< Mohammed Kyari Mustafa
mkmustafa@nda.edu.ng

Tony Allen
tony.allen@ntu.ac.uk

Kofi Appiah
kofi.appiah@ntu.ac.uk

Department of Intelligence and Cyber Security, Nigerian Defence
Academy, Kaduna, Nigeria

School of Science and Technology, Nottingham Trent University,
Nottingham NG11 8NS, UK

1 Introduction

Mobile speech recognition has become an everyday phenom-
enon. The predominant application of this technology can be
found as Siri on the Apple IPhones, Cortana on Microsoft
devices and Google talk on android devices. All three of these
systems leverage a client-server approach to achieve recogni-
tion because the speech recognition process is computational-
ly intensive. There are, however, limitations in the application
of such technology. These limitations include, but are not
limited to, the operational requirement for such systems to
maintain a constant client-server connection and the need for
efficient deployment of normalisation techniques to accom-
modate different speaker accents [1]. In addition, where the
speech technology is used for security purposes, the need for
the voice utterances to be transmitted over a network intro-
duces security concerns. An alternative approach, where the
complete speech recognition processing is performed entirely
on the mobile device, is referred to as an on-device approach.
This approach eliminates the connection-oriented problem
and offers a more secure platform. An on-device system can
also easily be adapted for embedded system use where sophis-
ticated systems are required for disabled people.

The speech recognition process involves acoustic feature
extraction and subsequent classification. The two main groups
of classifiers used to achieve recognition are respectively sta-
tistical and probabilistic in nature.

The statistical method of interest in this paper is the hidden
Markov model (HMM). HMMs are based on the concept of
Markov chains which can represent any random sequential
process that undergoes transitions from one state to another
[2]. Due to its ability to model the phonetic transition of
words, it has become widely accepted as the standard speech
recognition technique in the speech recognition community.
In this paper, the focus on HMMs is channelled towards their

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-017-3028-2&domain=pdf

S892

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899

use for on-device speech recognition. The application of
HMMs to speech recognition involves different training tech-
niques. Conventional HMM methods apply K-means cluster-
ing to cluster observations into a set of transitions [3]. Further
advancements involve the application of the Baum-Welch al-
gorithm for better training [4]. Due to their acoustic modelling
importance, support vector machines (SVMs) have also been
applied [5]. HMMs equally evolved into continuous HMM,
where the transitions between hidden states and the arrival of
observations can occur at arbitrary times [6]. This gave rise to
the application of different techniques in controlling unexpect-
ed transitions between two successive observations. These
techniques include, but are not limited to, maximum likeli-
hood estimation [7] and a semi-continuous approach, where
the unexpected transitions are managed with the introduction
of a language transition map [8]. The Sphinx II speech recog-
nition system uses the latter approach and the Pocketsphinx
speech recognition system, developed for use on some mobile
devices, is an adaptation of this system [9].

In the case of probabilistic classifiers for speech recogni-
tion, different forms of artificial neural networks have been
adopted. These range from standard feedforward neural net-
works to more complex recurrent neural networks [10-13].
The predominant feedforward neural network structure is the
Multi-layer Perceptron (MLP) neural network. MLPs are fully
connected networks with every node in the previous layer
being connected to every node in the succeeding layer [10].
MLPs are also, by nature, feedforward networks where the
direction of the connections of the respective units moves in
one direction, from the input to the output, with no connec-
tions flowing backwards. As such, this renders MLPs to be
static classifiers, which reflects how they are applied to speech
recognition tasks. The adoption of recurrent neural networks
allows the stochastic nature of speech signals to be automati-
cally considered, something which static MLPs cannot model
without the adoption of a segmentation algorithm. Speech
recognition MLPs have been applied directly to control a mo-
bile robot [10] and MLPs have been used to generate sets of
features which are then used as inputs to other classifiers [12].
In [11], MLP is used together with a Self-Organising Map
(SOM). However, in this case, the SOM is used to generate
phoneme clusters as input features for the MLP. More recent-
ly, deep neural networks (DNNs) have been shown to present
an improvement over classic MLPs [14].

This paper does not present a general comparison of HMM
and NN techniques for speech recognition but instead com-
pares the adaptation of these technologies for on-device mo-
bile use or for embedded systems (with little or no internet
connection). The speech recognition MLP, presented in this
work, adopts a dynamic input structure to

* Automatically handle the issue of speech length variability
» Conserve processing time on the mobile device

@ Springer

The baseline HMM used as a comparison was also tuned
for on-device embedded use by adopting positive integer cal-
culations with fixed point notation.

2 Feature extraction

For every speech recognition task, the first step is the extrac-
tion of relevant speech features from the speech signal. In
order to extract these speech features, the speech signal is first
broken down into frames by applying a suitable window, such
as the Hamming window [15]. The window is used to break
the respective audio samples into frames of 16 ms each, this
being within the 10-30 ms interval speculated as the time
frame within which the vocal tract maintains a fixed set of
characteristics [16]. There are no overlapping samples in the
windows used in this work.

For comparison purposes, linear predictive cepstral coeffi-
cients (LPC) and Mel-frequency cepstral coefficients (MFCC)
are extracted from the respective windowed speech samples.
The extraction of these features is explained below:

1. LPC is a feature extraction technique within which a
speech sample is approximated as a linear combination
of past speech samples [17]. Linear prediction is mostly
used in low bit rate transmission or storage of speech [16].
The LPC features are obtained by minimising the sum of
squared differences between the actual speech samples
and the linearly predicted ones. The LPC process has
become the predominant technique for estimating basic
speech parameters such as formants, spectra and vocal
tract area functions [15]. The prediction of a speech sam-
ple x(n) is given by Eq. 1:

x(n) = Y aix(n—1) (1)

T

15

where x(n) is the sample being predicted, x(n — 1) is the pre-

vious sample, P is the order and «; is the prediction

coefficient.

2. MFCCs are the coefficients of a Mel-frequency cepstrum
(MFC) that can be computed from any audio signal.
Based on the Mel scale, the MFCCs are computed by
applying a set of triangular band pass filters to the discrete
Fourier transform (DFT) of a windowed sample and then
taking a discrete cosine transform of the resulting loga-
rithmic power spectrum [18]. Many speech recognition
systems use the Mel-frequency cepstral coefficients and
their first and sometimes second derivatives, as the input
feature vectors of the speech signal. This helps to better
reflect the dynamic changes of the speech [19]. The equa-
tion for converting a speech sample frequency component
to their Mel scale equivalents is given by:

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899

S893

Mel(f) = 1127log<1 + %) (2)

where fis the frequency component to be converted to its
corresponding Mel value.

2.1 Experimentation data

There are two databases used for this work and both contain strings
of the spoken digits 1-9. The databases have different sampling
rates and details of these two databases are as given below:

1. Center for Spoken Language Understanding (CSLU2002)
database; a total of 20 speakers (11 females and 9 males)
are used from this database. Each speaker utters the digits
1-9 for a total of 16 times. This database has a sampling
rate of 8 kHz and 16 bit encoding. More details about this
can be found in [20].

2. Texas Instruments and Massachusetts Institute of Technology
Digits database (TIDIGITS); a total of 326 speakers (111
male, 114 females, 50 boys and 51 girls), divided equally
into training and testing sets, were used from this dataset.
The sampling rate for this database is 20 kHz with 16 bit
encoding. More details about this can be found in [21].

3 Automatic speech recognition classifiers

There are two ways of presenting a speech signal to a recogniser.
These two approaches respectively use either a phonetic or whole
word approach. Both approaches are investigated in this work in
order to address one of the fundamental characteristics of speech
signals, namely, the issue of speech length variability. Speech
length variability is the difference in the length of a speech signal
with respect to spoken words [22]. Speech signal lengths are
dependent on the individual uttering those words, and even the
same person uttering the same word more than once does not
guarantee that the duration of the speech will be constant for a
given word. The Dynamic Multi-layer Perceptron Neural
Network uses a whole word approach that is modified to take
account of the variability in the length of the speech signals. The
hidden Markov model approach combines both the word and
phonetic approach, as it is designed based on a phonetic ap-
proach and this pays attention to the phonemes within the words.

3.1 Standard Multi-layer perceptron
MLPs are feedforward neural network structures that provide

full connectivity between nodes in a previous layer and the
nodes in the succeeding layer. Weights are used for the

connection between the nodes of a previous layer and those
of a succeeding layer (Fig. 1).

The calculations of the outputs of each node within the
respective layers are the same. Equation 3 is used to calculate
the output.

Net[= W,'ﬂ + Z
JjePred(i)

(Wya,) (3)

where a; is the output of the preceding layer neuron, Wj; is the
weight connecting the two neurons and Wj, is the bias of the
neuron.

Backpropagation is one of the classic techniques used to
train a MLP network. The backpropagation algorithm initially
calculates the error at the output of the network using Eq. 4
and then propagates the error backwards to the hidden nodes
where the errors at those nodes are calculated using Eq. 5.
Equation 6 is then applied to update all the weights in the
network.

error, = out,(1—out,)(do,~out,) (4)
)

error; = out; (l—outj)ZerrorOW(t)jo (5

Wl + 1), = W(t), + 8 error, out; +7|W(r),~W(r-1)

where the subscript o is applicable to the output nodes and j is
applicable to the hidden layer, error is the error at a particular
node, out is the output node, W(¢) is the weight, 7 is the mo-
mentum factor and 3 is the learning rate. However, as explained
earlier, momentum is not applied in our implementation.

3.2 Proposed Dynamic Multi-layer Perceptron
implementation

Dynamism is the concept proposed to be applied to the stan-
dard MLP. Using a standard MLP would require a static num-
ber of input neurons that are then connected to the respective
units of the network. For word-based speech recognition, all
the MFCC feature vector frames, calculated for a given word,
are simultaneously presented to the networks input layer.
Generally, the input layer number is chosen, large enough to
accommodate the largest set of input vectors that the network
is expected to process. For smaller sized input vectors, the

LT

Fig. 1 Standard MLP structure

@ Springer

S894

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899

unused input neurons are binned by assigning 0 to them. In
this way, these unused neurons do not affect the calculations
within the network. However, whilst adopting such an ap-
proach standardises the inputs seen by the MLP networks,
the additional calculations required for those unused inputs
increase the processing time unnecessarily.

The idea behind the Dynamic MLP is to create a set of
networks that can cater for inputs of variable length. By doing
so0, only the active neurons required for any calculation within
the network are used. In this way, speech length variability is
automatically accommodated and computational effect is
minimised. This latter point is particularly important for on-
device mobile deployment.

All calculations within these networks are the same for a
standard MLP. Conventional backpropagation was used to train
the network with the exception that only the weights processed
during a given computation of network output were updated.
This yielded faster calculations in terms of training the network.

3.3 Dynamic MLP experimentation

The highest number of frames encountered in the TIDIGITS
database samples was 172 whilst for the CSLU database, the
highest number of frames is 62. Consequently, the network was
designed with a default input size of 172 frames resulting in an
internal input size of 2064 (172 frames * 12 features per frame).

The pseudocode in Table 1 is used to pass a digit through
the network. Word length variability is included in the net-
work by allowing the entire digit to pass to the hidden units
of the network using only the input to hidden weights corre-
sponding to the size of the input pattern, i.e. each digit only

Table 1 Pseudocode of a forward pass through the Dynamic MLP

Dynamic MLP algorithm forward Pass

For every D with Fy frames
For the N"F of D
Arrange elements in ascending numbers of [U
End
Pass IU to X
Propagate X to H using only connected W™
Forevery h, e H
Netl' = f(h,) as calculated using Eq. 6
End
Propagate Netl' to O using W'
Forevery 0" € O
Calculate Net2' using Eq. 6
End
End

D digit, F frames, [U input unit, X input, A hidden layer, Win input
weights, Netl network output at hidden layer, O output, W*** output
weights, Net2 network output at output layer

@ Springer

makes use of the number of nodes that reflect its length in the
input layer. This adaptation significantly reduces the network
calculation processing when compared to padding the input
with zeros and still having to calculate for the nodes which are
of no relevance to the required calculation.

The Dynamic MLP thus allows a digit to propagate from
the input of the network all the way to the output of the net-
work using only the number of connections it needs to get to
the output. This concept makes the input layer dynamic and, at
the same time, the weights connecting the input nodes to the
hidden nodes of the network dynamic. However, the output
nodes of the network remain the same because there are nine
digits in the training data which the network is being trained to
recognise. The output of the network thus represents the nine
digits. Both the hidden and output layers have activation func-
tions. The activation functions adopted for these layers are the
hyperbolic tangent and linear function, respectively.

The network was trained using the backpropagation algo-
rithm but without any momentum factor due to the dynamic
nature of the input and hidden units. A fixed learning rate was
also adopted to ensure uniformity in the calculation and to
detect any problems that might arise from the network becom-
ing unstable. The input, hidden and output layers were
completely flushed out when a new digit was passed into the
network. This ensures that a previous larger sample does not
affect the calculation of a new and shorter sample.

In the DMLP, the backpropagation algorithm is modified
so that only weights used by the network when a digit passed
through are modified using the backpropagation algorithm. It
can thus be said that dynamism is also implemented in the
training procedure. This is also one of the reasons for adopting
a fixed learning rate for the network. The parameters adopted
for the network are also involved in the stopping conditions
for the network. The maximum number of iterations used for
the network is 3000 iterations and the minimum error used
was 0.00001. This ensured a good balance between training
and error calculations.

3.4 Hidden Markov model implementation

The algorithm used for the hidden Markov model is based on
a readily available java library [23]. The HMM implementa-
tion initially uses K-means clustering algorithm to compute a
HMM that does not depend on the temporal dependence of the
observations. This is used as an initialiser. The Baum—Welch
algorithm is then used in a loop to better train a HMM that
models the speech signal. A total of nine HMMs are built for
each set of utterances. During testing, the system is designed
to calculate the Kullback-Leibler distance between the unseen
observation and the trained set of HMMs. The HMM with the
closest probability to the observation presented is chosen as
the candidate HMM. This in turn reflects the digit.

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899

DMLP

100.00% 88.24%

84.83% 81.79% 81.45%

66.87% 69:97% 69.32%

50 100 200 300

Hidden Nodes

80.00% 66.18%
60.00%
40.00%
20.00%

0.00%

Recognition Performance

W LPC mMFCC

Fig. 2 Dynamic MLP vs standard MLP
4 Results
4.1 Dynamic Multi-layer Perceptron results

The Dynamic MLP was compared with a standard static input
MLP for evaluation and the results of these are presented in Fig. 2.

The results presented here are for the TIDIGITS database
because it is the only database without an overlap of speakers
in the training and test files. These results show a better per-
formance for the dynamic approach and, as such, further tests
were carried out using the Dynamic MLP only. The results
presented in Fig. 3 show a further set of tests on the Dynamic
MLP with samples from both databases. The label 1 or 2
attached to the feature name is used to identify how the train-
ing data was presented to the network.

For label 1 samples, the training data was arranged in as-
cending digit number only, where all the feature vectors of the
digit 1 are presented before those of 2, 3 and so on until digit 9.
This ascension was defined by the digit number and not the
number of frames contained in the digit. The number of
frames therefore varies quite randomly during training.

In the second format, which is labelled 2 next to the feature
name, the features for the training data are extracted and the
digits are arranged in order of the ascending number of frames.
For example, the digit with the lowest number of frames comes
first, the digit with the second lowest number of frames second,

Fig. 3 Results of the final set of
experiments conducted using the
Dynamic MLP

95.27%
94.40%
96.94%
95.55%
96.38%

x
e R
g S o S X
c N o 53] —
©c o o !
g © 3 o
= ~
]
il
=
(o]
[~ 9
c - .
2 R S ®
c 2 S 3
o §3 ® <
9 S
[}
o
50 100 200
CSLU CSLU CSLU

S895
SMLP
., 60:00% e
0
2 50.00% 46.42% 48.87%
g ©41.78% I .
g “oo0 34.32% 06
L= 30.23%
9 30.00%
§ 20.00%
=
£ 10.00%
o]
& 000%
50 100 200 -
Hidden Nodes
mLPC uMFCC

all the way up to the digit with the largest number of frames.
This arrangement does not take into consideration the position
of the speaker in the database but just the number of frames per
digit within the sample. Consequently, the arrangements of the
speakers (male, female, boy and girl) are quite random because
the first digit could have come from anyone of these speakers.
This is not just limited to the speaker; it is also the same for the
digit position. For example, in the training data of the
TIDIGITS database, one sample representing the digit nine
was the one having the lowest number of frames and as such
it was the first one in the arrangement of the training data.

The results presented show that the second implementation
favours the training of the network. This implementation ap-
pears to allow the network to learn the training data slowly
over time as opposed to the much more random learning curve
of the first implementation, where the first digit could be a
digit with a higher or a lower number of frames. The second
implementation guarantees that the training data is applied
smoothly in such a way that no preceding digit in the training
data set is larger in the number of frames than the succeeding
digit. This can be seen in the results for the various formula-
tions of the hidden units.

The best performances were for the MFCC 2 features with
96.94% (CSLU100) and 93.25% (TIDIGITS300), respective-
ly. The best performance for the LPC 2 features was 95.55%
(CSLU200) and 70.89% (TIDIGITS300). The relatively

mLPC1 MFCC 1 LPC2 mMFCC2
X o © - o
~© . e ¥ X N X R
Ns R $ 3 x S 2 N % 3 - R
D 0 < r o D oM mcg ; — Sd
e¥xg | 28%% | RORT | IR RIR? | Rage
R B¥RY 5 N ooxg | Goog | Xag S@8n
o sls o B 33 S~ 33 R,R
o
o
o
o
k]
300 50 100 200 300 400 500
CcSLU TIDIGITS TIDIGITS TIDIGITS TIDIGITS TIDIGITS TIDIGITS
Hidden Nodes
Database

@ Springer

S896

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899

poorer performance of the TIDIGITS database in comparison
to the CSLU database is probably due to two reasons:

1. There are no speaker overlaps in the TIDIGITS database in
respect of the testing and training datasets whereas there are
a few overlaps with regard to the CSLU database. The
CSLU testing results therefore contain an element of previ-
ously seen samples. Secondly, the TIDIGITS database sam-
ples used for training and testing was not pre-processed to
extract only the speech sections of the audio samples.
Consequently, the TIDIGIT audio samples contained a lot
of background silence. This adversely affected the training
performance of the DMLP where the whole word, including
background silence sections, is used to train the network.

2. The MFCC feature set performs better than the LPC fea-
ture set because the LPC features are created on the as-
sumption that the vocal tract is a linear speech production
mechanism. For the TIDIGIT samples, this effect is in
addition to the LPC algorithm’s difficulty with modelling
segments of pure background silence.

4.2 HMM results

Figure 4 shows the hidden Markov model results for the same
two databases. It can be seen that the best hidden Markov
model outperforms the DMLP network results seen in
Figs. 2 and 3. However, there is a crucial advantage to all
the HMM systems which is not available to the DMLP.
Within a HMM system, separate HMMs are created for each
digit. This gives the HMM method a unique advantage over
the neural network methods because a misclassification or
wrong labelling by one HMM model need not necessarily
affect the overall recognition performance of the HMM sys-
tem. This is not the case with the neural network
implementations where all the training sequences are used to
train a single network. Any misclassification in this one net-
work will result in a misclassification overall.

Fig. 4 Hidden Markov model
results for MFCC-based word

recognition a8 ores

98.5C%
98.00%
97.50%
97.00%
96.50% 95.83%
96.00% N
95.50%
95.00%
94.50%
94.00%

Recognised Performance

4

@ Springer

96.76%

5.1425 Seconds Audio Extraction Time

3.2342
5.8672

= Computation Time MFCC

Computation Time LPC

Fig. 5 Average computation time for 5.54125 audio sample

4.3 Memory and time comparison between DMLP
and HMM

In this work, recognition performance is not the only parameter
of interest. Speed of processing on the mobile device is equally
important. It is worthy of note that the extraction of the respec-
tive features to be used for the automatic speech recognition
classifier incurs their own computation time. For example, on
the Samsung Note 3 [24], the following average feature extrac-
tion computation times were experimentally determined.

It is clear from Fig. 5 that it takes approximately a second to
extract the MFCC features from a single second of speech data
and about half a second to extract the LPC features from the
same second of speech.

In addition to the feature extraction processing times, the re-
sults shown in Table 2 compare the respective computation pro-
cessing times for the two classification methods. This computa-
tion time is taken after loading the respective audio feature vector
data unto the mobile devices. This is to ensure that the test is a
comparative test of the respective classification techniques alone.

Each test was run five times and an average taken. This is to
ensure some degree of consistency in the computation times
on the mobile devices. It should be noted that the respective
mobile devices were not programmed to isolate other activi-
ties running on them. As such, the computation times shown
include time taken by other background applications whilst
the mobile device were performing the test.

HMM Results o B
CSLYU ®mTIDIGITS

98.60%

06.04% 97.30%

-l

8
HMM States 12

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899 S897
Table2 Comparison of computation time in seconds for a total of 143.4 s of audio data for a range of mobile phones
Device Processor RAM HMM4 HMMS HMM 12 DMLP50 DMLP 100 DMLP200 DMLP 300
Galaxy S3 1.4 GHz (quad-core) 1 GB 66.1204 139.3366 201.893 0.5664 1.2288 2.3012 3.7752
Galaxy S4 1.9 GHz (quad-core) 2 GB 19.9746 38.8962 59.53 0.3326 0.6814 1.989 5.1172
Galaxy S5 2.5 GHz (quad-core) 2 GB 12.895 26.1608 39.593 0.1512 0.3376 0.6988 1.3744
Note 2 1.6 GHz (quad-core) 2 GB 84.6602 1069112 2212478 0.3426 0.7134 1.4506 23222
Note 3 2.3 GHz (quad-core) 3 GB 12.1884 26.7236 35.592 0.207 0.441 1.2524 2.3436
Table 3 Memory size for the
different applications on the HMM 4 HMM 8 HMM 12 DMLP 50 DMLP 100 DMLP 200 DMLP 300
mobile device

752 KB 805 KB 861 KB 3.25 MB 425 MB 6.28 MB 8.34 MB

The mobile devices used are good representatives of the
range of readily available common mobile devices, currently
in circulation, that are based on the android platform. The
numbers succeeding the HMM label represent the number of
states and the numbers succeeding the DMLP label represent
the number of hidden units.

In Table 2, it can clearly be seen that the four-state
HMM system is the closest in time performance to the
DMLP system. However, whilst the best performing
HMM system (HMM12) may have a superior recogni-
tion performance to the best performing DMLP system
(DMLP 100), the time involved in computing the 12-
state HMM output can be seen to be one to two orders
of magnitude greater than the DMLP computation times.
On mobile devices, this processing time differential is a
cardinal advantage for the DMLP method. Indeed, none
of the DMLP architecture performs slower than any of
the HMM architectures.

In Table 3, the sizes of memory used by the different tech-
niques are given. For the HMM, this includes the trained

Fig. 6 Further DMLP
experiments using two hidden

layers

100.00% -~ 92.97% 89.67% 92.50%

MFCC2 MFCC2 MFCC2
2nd Hidden Unlts 50

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

Recognised Performance

20.00%
10.00%

0.00%

100 200

1st Hidden Units 200 200 200

73.99% 73.07% 72.259

HMMs for the respective digits. On the other hand, the
DMLP includes the trained weights of the network. The
highest memory used is the DMLP with 300 hidden units.
However, this is 8.34 MB in total; this is not very much in
terms of current mobile devices and especially the mobile
devices used for this experiment.

4.4 Deep neural networks

In order to try and improve the performance of the DMLP
network, particularly on the TIDIGIT database, further exper-
iments were conducted using a Deep Neural Network ap-
proach. However, these experiments were conducted on a
computer, rather than mobile phone, as initial test runs of the
deep neural network experiments were found to be computa-
tionally intensive even on a computer level.

Although the results shown in Fig. 6 do show a slight
improvement over the DMLP LPC2 results shown in Figs. 2
and 3, the substantially longer processing times again make
them impractical for implementation on a mobile phone.

2 Layer Experiments

92.60% 93-86% 92.60%

89.53%

72.18% 73.24% 73.14% 77.93%

IPC2 LPC2 LPC2 MFCC2 MFCC2 MFCC2 MFCC2 LPC2 LPC2 LPC2 LPC2

50 100 200 50 100 200 300 50 100 200 300

200 200 200 300 300 300 300 300 300 300 300
Database

@ Springer

S898

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899

5 Conclusion

Two automatic speech recognition approaches adapted for use
on mobile devices are presented. The Dynamic MLP shows a
novel approach to speech recognition by adapting a conven-
tional feedforward neural network architecture to the speech
recognition process as opposed to vice versa. This method can
accommodate as input, the variable length output of voice
activity detection (VAD) algorithms and classify them without
any modifications to the input length.

Although the HMM methods do outperform the Dynamic
MLP in terms of absolute recognition performance, it can be
seen from Table 3 that all the HMMs take substantially longer
to compute than the DMLP system. Using the time for the best
performing network structure of the Dynamic MLP, it would
be safe to say that the marginal recognition performance ad-
vantage of 1.66% for the HMM is compromised by the far
longer processing time required to achieve this improvement.
Indeed, the Dynamic MLP computation time is §935.4%
faster than the HMM for each second of the test data. This is
much too large a computational time advantage to ignore for
the sake of a 1.66% performance advantage.

The computation time for the HMM is also likely to grow
exponentially over more sets of target data because HMMs are
designed and implemented for isolated recognition in such a
manner that a HMM representation of every word is created.
To test a HMM for recognition of any unknown word is to test
the word against each HMM implementation of the respective
training data. This incurs an additional computation time which
would grow exponentially. Although the computation time of the
neural network would also increase as the network size increases,
this increase is expected to be significantly less for the equivalent
HMM system as the same single network is used to process all
digits. However, future work to qualify this assertion would be
necessary.

Compliance with ethical standards

Contlict of interest The authors declare that they have no conflict of
interest.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Rose RC, Arizmendi I (2006) Efficient client—server based
implementations of mobile speech recognition services. Speech
Commun 48:1573-1589

@ Springer

10.

11.

12.

16.

17.

18.

19.

20.

21.

Rabiner LR (1989) A tutorial on hidden Markov models and
selected applications in speech recognition. Proc IEEE 77:
257-286

Juang B-H, Rabiner LR (1990) The segmental K-means algorithm for
estimating parameters of hidden Markov models. Acoustics, Speech
and Signal Processing, IEEE Transactions on 38(9):1639—1641
Audhkhasi Kartik, Osoba Osonde, Kosko Bart (2013) Noisy hidden
Markov models for speech recognition. In: Neural Networks
(IJCNN), The 2013 International Joint Conference on, IEEE, p 1-6
Zarrouk E, Ayed YB, Gargouri F (2014) Hybrid continuous speech
recognition systems by HMM, MLP and SVM: a comparative
study. International Journal of Speech Technology 17(3):223-233
Liu Yu-Ying, Li Shuang, Li Fuxin, Song Le, Rehg James M. (2015)
Efficient learning of continuous-time hidden markov models for
disease progression. In: Advances in neural information processing
systems, pp 3600-3608

Bietti Alberto, Francis Bach, and Arshia Cont (2015). An online EM
algorithm in hidden (semi-) Markov models for audio segmentation
and clustering. In: 2015 LE. International Conference on Acoustics,
Speech and Signal Processing (ICASSP), IEEE, p 1881-1885
Huang X, Alleva F, Hwang M-Y, Rosenfeld R (1993) An overview
of the SPHINX-II speech recognition system. In: Proceedings of the
workshop on Human Language Technology. Association for
Computational Linguistics, Stroudsburg, pp 81-86
Huggins-Daines David, Kumar Mohit, Chan Arthur, Black Alan W.,
Ravishankar Mosur, Rudnicky Alexander 1. (2006) Pocketsphinx: a
free, real-time continuous speech recognition system for hand-held
devices. In: 2006 LE. International Conference on Acoustics Speech
and Signal Processing Proceedings, vol. 1, IEEE, p I-1

Wijoyo S. (2011) Speech recognition using linear predictive coding
and artificial neural network for controlling movement of mobile
robot. In: Proceedings of 2011 International Conference on
Information and Electronics Engineering (ICIEE 2011), p 28-29
Eng Goh Kia, Ahmad Abdul Manan (2005). Malay speech recog-
nition using self-organizing map and multilayer perceptron.
Proceedings of the Postgraduate Annual Research Seminar

Park Junho, et al (2009) Training and adapting MLP features for
Arabic speech recognition. Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on. IEEE
Hmad N, Allen T (2013) Echo State Networks for Arabic Phoneme
Recognition. World Acad Sci Eng Tech Int J Comput Electr Autom
Control Inform Eng 7(7):904-910

Seltzer Michael L, Yu Dong, Wang Yongqiang (2013) An investi-
gation of deep neural networks for noise robust speech recognition.
In: 2013 LE. International Conference on Acoustics, Speech and
Signal Processing, IEEE, p 7398-7402

HaiJ, Joo EM (2003) Improved linear predictive coding method for
speech recognition: information, communications and signal pro-
cessing, 2003 and Fourth Pacific Rim Conference on Multimedia.
Proceedings of the 2003 Joint Conference of the Fourth
International Conference on, vol. 3, IEEE, p 1614-1618

Rabiner LR, Schafer RW (1979) Digital processing of speech sig-
nals. Institution of Engineering and Technology

Vaidyanathan P (2007) The theory of linear prediction. Synthesis
Lectures on Signal Processing 2:1-184

Kamm T, Hermansky H, Andreou AG (1997) Learning the Mel-scale
and optimal VTN mapping: Center for language and speech process-
ing, workshop (WS 1997). Johns Hopkins University, Citeseer
Plannerer Bernd (2013) An introduction to speech recognition. 28
March (2005). http://spoken-number-recognition.googlecode.com/
svn/trunk/docs/introSR.pdf, Accessed 17 Jun 2013

CSLU (2002) database Available online at https://www.cslu.ogi.
edu/corpora/spkrec/

TIDIGITS (1993) database details Available online at https://
catalog.ldc.upenn.edu/topten

http://spoken-number-recognition.googlecode.com/svn/trunk/docs/introSR.pdf
http://spoken-number-recognition.googlecode.com/svn/trunk/docs/introSR.pdf
https://www.cslu.ogi.edu/corpora/spkrec/
https://www.cslu.ogi.edu/corpora/spkrec/
https://catalog.ldc.upenn.edu/topten
https://catalog.ldc.upenn.edu/topten

Neural Comput & Applic (2019) 31 (Suppl 2):S891-S899

S899

22. Benzeghiba M et al (2007) Automatic speech recognition and
speech variability: a review. Speech Commun. 49:763—786

23. Francois JM (2016) Jahmm-hidden Markov model (HMM): an im-
plementation in Java. http://jahmm.googlecode.comAccessed on

12th January

24. Samsung Note 3 Specifications. Available Online at http://www.
gsmarena.com/samsung_galaxy note 3-5665.php . Accessed 12™

Jan. 2016

@ Springer

http://jahmm.googlecode.com
http://www.gsmarena.com/samsung_galaxy_note_3-5665.php
http://www.gsmarena.com/samsung_galaxy_note_3-5665.php

	A comparative review of dynamic neural networks and hidden Markov model methods for mobile on-device speech recognition
	Abstract
	Introduction
	Feature extraction
	Experimentation data

	Automatic speech recognition classifiers
	Standard Multi-layer perceptron
	Proposed Dynamic Multi-layer Perceptron implementation
	Dynamic MLP experimentation
	Hidden Markov model implementation

	Results
	Dynamic Multi-layer Perceptron results
	HMM results
	Memory and time comparison between DMLP and HMM
	Deep neural networks

	Conclusion
	References

