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ABSTRACT Hand-eye calibration enables proper perception of the environment in which a vision
guided robot operates. Additionally, it enables the mapping of the scene in the robots frame. Proper
hand-eye calibration is crucial when sub-millimetre perceptual accuracy is needed. For example, in robot
assisted surgery, a poorly calibrated robot would cause damage to surrounding vital tissues and organs,
endangering the life of a patient. A lot of research has gone into ways of accurately calibrating the hand-
eye system of a robot with different levels of success, challenges, resource requirements and complexities.
As such, academics and industrial practitioners are faced with the challenge of choosing which algorithm
meets the implementation requirements based on the identified constraints. This review aims to give a
general overview of the strengths and weaknesses of different hand-eye calibration algorithms available
to academics and industrial practitioners to make an informed design decision, as well as incite possible
areas of research based on the identified challenges. We also discuss different calibration targets which is
an important part of the calibration process that is often overlooked in the design process.

INDEX TERMS Calibration target, Camera-world transform, Computer Vision, Hand-Eye Calibration,
Robot-hand transform, Rotation, Translation, Vision guided robot

I. INTRODUCTION

Industrial robots have been around for decades, first gaining
popularity in the automotive industry [1]. Automotive plants
were suitable for early industrial robots because they needed
high levels of repeatability, large payloads, and moderate
speeds. Robots are also being used in a growing number
of sectors, such as chicken deboning in the food industry
[2]–[4], drug manufacturing in the pharmaceutical industry
[5], [6], and aircraft engine construction in the aerospace
industry [7]–[9]. According to the International Federation
of Robotics (IFR), over 1.7 million new industrial robots will
be deployed globally in 2021 [10], and vision systems are
now becoming a major component of many industrial robots

as they improve the capabilities of robots in operation. For
example, vision guided robots can allow for variability in
the positioning of work object or deviations in programmed
pathway without breaking the production flow [11]–[13].

Emerging applications demand that industrial robots not
only be faster, but also be able to accurately identify and
find parts that are randomly placed on moving conveyors,
stacked in containers, or on pallets [14]–[16]. Machine vision
systems, which have been around for decades, are now being
used in conjunction with robotics to aid automation systems
in the processing of such components [17], [18].

Vision guided robotics (VGR) are rapidly becoming a key
enabler for the automation of a broad range of processes in a
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FIGURE 1: Vision guided robot for pick-and-place applica-
tion [19].

wide range of industries. A typical vision guided robot has a
camera attached close to the robot hand or gripper with which
it can perceive the work environment (Figure 1). The two
major areas in the field of computer vision are the 2D and 3D
technologies. In a flat plane relative to the robot, a 2D VGR
device processes the captured images of randomly place
pieces. These images are 2D projections of the 3D spacial
pieces, which results in loss of depth information. A 3D VGR
device on the other hand, can process parts that are randomly
positioned in three dimensions (i.e., X-Y-Z) and can also
accurately determine the 3D orientation of each part. In
practice, 2D machine vision is typically accomplished using
a digital camera and software that analyses a digital image
of the part’s 2D position and orientation in preparation for
robotic handling or processing [20], [21]. 3D vision system
on the other hand, uses sensors like laser displacement, struc-
tured light and stereo camera capable of generating a point
cloud representation of a surface in 3D space [22]–[24]. The
point cloud enables the spacial reconstruction of a 3D scene,
which facilitates the handling of a wide variety of complex
objects in a challenging environment, thereby enhancing the
capabilities of robots for vision guided applications. One
particular advantage is being able to pickup objects placed
on a surface with irregular height, which would be difficult
for the 2D vision system.

Applications of vision guided robots include part assembly
[25], bin picking [26], inspection [27] etc. These robots can
either have the camera mounted in a fixed position with a
fixed field of view (eye-to-hand configuration), or have the
camera mounted on the hand of the robot (eye-in-hand con-
figuration), so that new images can be acquired by changing
the point of view of the camera. However, the robot can
only perceive the 3D world based on its own base frame.
In order for a robot to obtain an accurate estimate of the
3D position and orientation of a part relative to its own base
within the work volume, it is necessary to know the relative
position and orientation between the hand and the robot base,
between the camera and the hand, and between the object
and the camera. These three tasks require the calibration of
robot [28]–[30], camera [31], [32], and robot hand-to-camera
(hand-eye) [33], [34]. Robot calibration is needed because,
despite the fact that robots have very good repeatability,
they are poor when it comes to absolute accuracy, due to

inherent differences between the ideal and actual kinematic
parameters. Camera intrinsic calibration is required to ensure
that the images captured are of accurate dimensions and free
of lens distortion, which would otherwise introduce errors
in the measurement estimates being fed back to the robot
during operation. Hand-eye calibration ensures that the mea-
surements made by the camera is converted to the reference
used by the robot for measurement. The focus of this review
is on hand-eye calibration and its associated challenges to
robotic vision system.

The rest of the paper is organised as follows. Section II
introduces the problem of hand-eye calibration, Section III
discusses the different hand-eye calibration algorithms. A
comparative analysis of calibration target is given in Sec-
tion IV, while common challenges associated with hand-eye
calibration is presented in Section V. Finally a conclusion is
given in Section VI.

II. HAND-EYE CALIBRATION

The perception of the environment by robot can be accom-
plished using a camera. This enables navigation and manip-
ulation of objects in an unknown and dynamic environment.
This vision system involves the perspective projection and
mapping of a 3D world coordinate point onto a 2D image
plane, which can be achieved using a pinhole camera model
[35] as shown in Figure 2.

FIGURE 2: Pinhole camera model

From Figure 2, an optical ray passing through a 3D world
point P through the optical centre Oc intersects the image
plane at a point p located a distance of f (focal length)
from the optical centre. To obtain the point p in the image
plane Oi(u, v), the world coordinate points Ow first has to be
transformed to the camera coordinate at Oc. This is achieved
using the transformation Equation (1). From Equation (1), the
camera coordinate points P c = (xc, yc, zc) are realised from
world coordinate points Pw = (xw, yw, zw) using the rigid
body homogeneous transformation matrix Hc

w

(

P c

1

)

= Hc

w

(

Pw

1

)

, (1)

Equation (1) can also be expressed as
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where Rc
w and tcw denote rotation and translation respectively

from the world to camera coordinate frames. These parame-
ters are regarded as the extrinsic parameters of the camera.
The projection of the points in the camera coordinate onto
the image plane based on the pinhole camera model is given
by Equation (3).

(

u

v

)

=
f

zc

(

xc

yc

)

, (3)

FIGURE 3: Relationships between component frames for
vision guided robot.

The task of computing the relative 3D position and ori-
entation between the camera and the robot hand in an eye-
on-hand configuration, where the camera is rigidly attached
to the robot hand, is known as hand-eye calibration. More
specifically, this is the task of computing the relative rotation
and translation (homogeneous transformation) between two
coordinate frames, one centred at the camera lens centre, and
the other at the robot hand. Figure 3 shows the relationships
between the different components frame of a vision guided
robot operation. To ensure easy operation of the robot, all
commands to the robot are referenced to the robot base frame.
Hence for a complete identification of the object based on
the robot base frame, all the relationships must be obtained.
While the relationship between the robot base and the robot
hand can be realised from the robot kinematic model, the
relationship between the camera and the world (see Equation
(1)) can be obtained from camera calibration. This results
in the relationship between the camera and the robot hand
need to be computed. This relationship cannot be measured
directly because [33]

1) the measurement path may be obstructed by the geom-
etry of the sensor, the robot or other parts of the system

2) the hand and camera frames are unreachable. The
camera frame is unreachable because it is the inter-
section of various link axes while the camera frame
is unreachable because its origin is at the focus point
inside the camera.

Since the direct measurements are difficult, other ap-
proaches have been investigated to solve the problem. Earlier
approaches used non-linear optimisation of a model that cou-
pled the robot forward kinematics with the hand-eye system
[36]. These techniques are quite expensive computationally

and require estimation of a large number of variables. In
view of that, the most common technique used [33], [37]–
[39] is based on solving the homogeneous transform equation
according to Equation (4), where Ac1

c2
and Bh1

h2
are the the ho-

mogeneous transform matrices for the motion of the camera
and robot hand respectively between two positions 1 and 2,
and Xc

h
is the required robot hand to camera homogeneous

transform. If the position and orientation of the hand are
known, the position and orientation of the camera can be
simply computed, vice versa. The object can then be located
with respect to the robot base and locating information from
different views can be fused. The first challenge encountered
during hand-eye calibration is usually the estimation of the
pose of the camera relative to the world as the hand pose
can easily be acquired from the robot forward kinematic
chain. Depending on how the camera pose is estimated, the
hand-eye calibration can be regarded as either target-based or
targetless. Target-based hand-eye calibration takes advantage
of specially made visual features of known dimensions called
calibration objects or target - whose origin is set as the origin
of the world frame - to estimate the pose of the camera
using special algorithms like the Perspective-n-Point [50].
Targetless hand-eye calibration without a calibration target
uses techniques such as in structure from motion [42], [48],
tool motion tracking [49] etc, to estimate the pose of the
camera with respect to the world. These methods can prove
useful when the taking size and weight of the calibration ob-
ject into considerations as well as the size of the work space
for the robot motion. These considerations for a calibration
object usually come into play when there is strict limitation
of payload of a mobile robot such as in space application, or
sterility of the setup in medical applications. In this review,
only techniques based on target-based hand-eye calibration
are considered.

Furthermore, it is important to note that the methods
presented in this review focus primarily on the deterministic
formulation. Therefore, this review is by no means an exhaus-
tive list of the approaches to hand-eye calibration for visual
guided robots. We note that there are other key methods
available, which include (but not limited to) model based
[40], [41] and probabilistic [43]–[47] formulation of the
hand-eye calibration problem. The intent of this review is to
act as a guide to academics and industrial practitioners from
which further research in this topic area can be incited.

III. HAND-EYE CALIBRATION ALGORITHMS

A. HOMOGENEOUS TRANSFORM EQUATION

Based on the work of Shiu and Ahmad [33], the hand-
eye transform can be obtained by solving the homogeneous
transform equation given by

Ac1
c2
Xc

h = Xc

hB
h1

h2
, (4)

where, Ac1
c2

and Bh1

h2
are the homogeneous transform matrices

representation of the relative motions of the attached camera
and the robot hand between two points respectively, while
Xc

h
is the required transform between the robot hand and the
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camera as shown in Figure 4. Ac1
c2

and Bh1

h2
can be expressed

as the product of two rigid body transform given by

Ac1
c2

= Ac1
w (Ac2

w )−1, (5a)

Bh1

h2
= Bh1

b
(Bh2

b
)−1, (5b)

where Ac1
w , Ac2

w and Bh1

b
, Bh2

b
are the poses of the camera

with respect to the world frame or calibration object, and the
poses of the robot hand and with respect to the robot base
respectively for different robot positions. Equation (4) can be
represented in a matrix form as

(

RA
~tA

0T 1

)(

RX
~tX

0T 1

)

=

(

RX
~tX

0T 1

)(

RB
~tB

0T 1

)

,

(6)
where R is a 3× 3 rotation matrix and ~t is a 3× 1 translation
vector. Hence the calibration operation involves obtaining
sets of robot hand and camera poses as shown in Figure
5. While the hand poses can easily be obtained from the
robot forward kinematics using the joint encoder readings,
the camera pose is usually estimated by observing a set of
3D points provided by a calibration object and their cor-
responding 2D images using Perspective-n-point algorithm
[50], [51]. While this formulation shows a more intuitive way
to represent and solve the hand-eye problem, estimating the
hand-eye transform based on Equation (4) is not trivial. This
is because the Special Euclidean SE(3) group structure of
the homogeneous matrices must be preserved in the solution.
Hence, the solution to this form of matrix equation using
general matrix algebra [52] would not work.

FIGURE 4: Hand-eye calibration setup.

Finding methods of solving the homogeneous transform
equation that meet this requirement has been the focus of
majority of the research in hand-eye calibration. Several
solutions have been proffered over the years, each with its
strengths and weaknesses. They can be grouped based on
how the rotation and translation parameters are estimated
as separated or simultaneous solutions. In the separated
solutions, the rotation parameter is first estimated based on
representing Equation (6) as

FIGURE 5: Calibration process flow using homogeneous
transform equation.

(

RARX RA
~tX + ~tA

0T 1

)

=

(

RXRB RX
~tB + ~tX

0T 1

)

.

(7)
hence,

RARX = RXRB , (8a)

RA
~tX + ~tA = RX

~tB + ~tX . (8b)

If RX is known, then Equation (8b) becomes linear and ~tX
can then be estimated. The different techniques that focus
on the parametrisation of RX include, Angle-axis [33], [37],
Lie algebra [38], Quaternions [39] and Kronecker product
[53]. For the details of the implementations of these algo-
rithms, see the listed references above. Based on the practical
considerations, generally, this group of solutions is compu-
tationally fast but suffers in terms of accuracy, especially
in the translation estimates. This is due to the assumption
that no relationship exist between the rotation and translation
parameters, hence their separate estimation. However, these
two parameters are tightly coupled with high level of non-
linearity [54] and estimating them separately would lead to
propagation of errors from the rotation estimates onto the
translation estimates.

The simultaneous solutions provide a way of solving for
the rotation and translation parameters simultaneously, either
analytically or by way of numerical optimisation. Represen-
tative implementations based on analytical approach include
Quaternions [55], Screw motion [56], Dual quaternions [57],
Kronecker product [58], Dual Tensor [59], and Dual Lie
algebra [60], while implementations based on numerical
optimisation include Gradient/Newton optimisation method
[61], Linear-matrix-inequality [62], Alternative linear pro-
gramming [63], and Pseudo-inverse [64]. These methods
can generate highly accurate results and generally avoid the
problem stated earlier for the separated solutions. However,
their implementations are usually complex which may affect
their computational speed. Furthermore, the optimization
methods may suffer from the problem of not guaranteeing
convergence, being trapped in a local minima of the cost
function or dependent on a good starting estimate. A compar-
ison of these methods approaches based on the accuracy and
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the computational speed is shown in Table 1. The accuracy
criteria is based on the Euclidean norm of the combined
rotation and translation error (unitless) for N robot move-
ments derived from Equation (4), as given by Equation (9).
The computation time is in seconds, based on execution on
a MacBook Pro 2017 with i7-3.5Ghz CPU along with the
MATLAB r2018a software [65].

Error =
1

N

√

√

√

√

N
∑

i=1

‖AiX −XBi‖2. (9)

It is important to note that the values in Table 1 can
only be considered as an overview of what can be expected,
especially due to the fact that it is devoid of any measure-
ment uncertainty. This is a largely ignored area of research
when considering hand-eye calibration, as only a hand-full
of works [45], [54], [65], [66] has taken measurement uncer-
tainty into consideration given the large number of research
outputs in this area. However, it is worth knowing that the
accuracy of the calibration methods can be improved by
increasing the number of robot movements used during the
calibration process, maximising the angular spread between
the different robot movements, minimising the distance be-
tween the camera and the calibration target and minimising
the distance moved by the robot arm between two positions
[37].

B. REPROJECTION ERROR MINIMISATION

The homogeneous transform equation relies on the hand and
camera pose information to estimate the hand-eye transfor-
mation. As such, errors in these pose estimates will affect
the end result of the calibration. While the hand pose errors
can be minimised by calibrating the robot [67], through
reprojecting the image of the calibration pattern at each hand
position and minimising the error between the real image and
the reprojected image, the required hand-eye transform can
then be estimated as shown in the process flow in Figure 6.

FIGURE 6: Calibration process flow using reprojection error
minimisation.

Reprojection error minimisation is a well-known tech-
nique used in computer vision for pose estimation [68],
[69], 3D measurements [70] and shape reconstruction [71]
[72], with high level of accuracy and robustness. It shows
how precise an estimated 3D world point X̂ recreates the

FIGURE 7: Reprojection error.

true projection x on the image (see Figure 7). If P is the
projection matrix of the camera, then the image projection x̂

can be expressed as x̂ = PX̂ , where e(x, x̂) represents the
reprojection error is the Euclidean distance between x and x̂.
By minimising e the true projection matrix can be obtained,
and if the camera calibration is known, then the pose of the
camera can be realised implicitly.

The main advantage of this technique over the homoge-
neous transform equation is that it directly takes images of
the calibration object without requiring explicit pose estimate
of the camera, which may otherwise contribute to errors.
The Perspective-n-Point (PnP) algorithm is usually used in
the estimation of the camera pose information from the
pattern images [73], [74]. However, this can be problematic
when using cameras with narrow field of view such as in
thermographic cameras [75]. Furthermore, the formulation
of the homogeneous transform equation is perfectly suited
to normal cameras whose optics are modelled using the
pinhole camera projection model. When considering vision
sensors with different optics, such as in X-rays with source-
detector projection model (see Figure 8), it becomes difficult
to use the homogeneous transform formulation as the typical
pinhole projection model does not provide a proper represen-
tation of its optics. One way of achieving this is by using pose
graph optimisation [76] which estimates relatives pose of an
object based on a network of observed pose sequences. With
pose graph optimisation, it becomes possible to extend the
calibration to vision sensors with different optical projection
model like in source-detector model, where the source pose
and the detector pose can be reliably represented in the pose
graph.

FIGURE 8: Source-detector projection model. Light ray from
the source passes through a world object P and is projected
on the detector at point p
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TABLE 1: Speed and accuracy comparison of different approach to solving the homogeneous transform equation. Speed is in
milliseconds while the accuracy is unitless, based on the Euclidean norm of the combined rotation and translation given by
Equation (9)

Methods Type
Computation Speed

(milliseconds)
Accuracy (×10−3)

Angle-axis [37] Separated 40.50 12.046
Lie algebra [38] Separated 35.95 6.825
Quaternions [39] Separated 10.19 6.826

Dual quaternions [57] Simultaneous, Analytical 38.30 6.708
Kronecker product [58] Simultaneous, Analytical 57.29 7.265

Linear-matrix-inequality [62] Simultaneous, Optimisation 14.58 7.980
Alternative linear programming [63] Simultaneous, Optimisation 80.86 7.149

Pseudo-inverse [64] Simultaneous, Optimisation 8.82 7.613

C. ARTIFICIAL NEURAL NETWORK

Artificial neural network (ANN) is motivated by the neural
system in the brain and is one of the most commonly used
tools in machine learning [77]. In its basic form, it consists
of layers of interconnected nodes, each representing a mathe-
matical function. The strength of ANN comes from its ability
to model highly non-linear functions that map an input to
an output (see Figure 9). Hence, its application in pattern
recognition [78], robotics [79], signal and image processing
[80] and nonlinear system state estimation [81]–[83] have
been very successful. An ANN model is obtained by training
the network with a set of input and corresponding output data
to obtain a set of optimised network parameters. The trained
model with its optimised parameters can then be applied to
an appropriate input to get the expected output.

FIGURE 9: A simple artificial neural network with two
hidden layers.

Employing ANN in hand-eye calibration can be thought
of as finding a mapping between the hand coordinate with
respect to the robot base and the respective image coordinate
of the calibration object. This problem can be posed as
A = fn(B), where A and B are the robot’s hand coordinate
and calibration image coordinate respectively and fn is the
function depicting the non-linear ANN model. With a trained
model, the required hand coordinate for a corresponding
object position as observed from the camera can be obtained.
An advantage of this formulation is that it can be used
without the knowledge of the camera parameters or pose es-
timation [84]. This comes from the strong ability of ANN to
generalise non-linear relationships between variables, which
also makes it suitable for handling noise [84].

While ANN has some comparative advantages over the

methods of homogenous transform equation and reprojection
error minimisation, it is important to note that the solutions
provided by ANN are usually unexplainable [85]. This can
lead to mistrust of the system and difficulty in troubleshoot-
ing problems. Furthermore, the performance of an ANN
model is highly dependent on the network structure used [87]
for which there is no define rule for appropriate specification.
As such, it is common to select a network structure based on
trial-and-error and users experience.

Parameter over-fitting is another limitation of ANN [88].
This is usually attributed to the failure to properly generalise
the model on the available data set, where the model is
too simple that could not learn enough, or the model is
too complex that it learn too much and over-fits the data.
Techniques for preventing over-fitting includes simplifying a
complex model, stopping the training early when error starts
to increase, data augmentation and regularisation [89].

Table 2 shows a comparison of the methods of homo-
geneous transform equation, reprojection error minimisation
and artificial neural network for hand-eye calibration.

IV. CALIBRATION TARGET

The calibration target (object) is a very important piece of
a calibration process, be it for camera calibration or hand-
eye calibration. This subject is rarely discussed when deal-
ing with calibration and often times, the decision to use a
particular calibration target is not objective with more focus
on lens distortion modelling and parameter optimisation [90].
Calibration patterns such as checkerboards and circles are the
most used [91] (see Figure 10). This is due to the ease of
which they can be created with sufficient accuracy, and their
data points can be obtained easily using standard image pro-
cessing algorithms [91]. During calibration, the calibration
pattern captured by the camera can undergo perspective or
non-linear distortion, or both. While the perspective distor-
tion is due to the relative 3D position of the points, the non-
linear distortion is due to camera lens distortion. How the
resulting distortion affects the different calibration patterns
determines their reliability.

A. CHECKERBOARD TARGET

Checkerboard target is the most common calibration pattern
[93]–[96]. The interest points are the corners of the squares,

6 VOLUME 4, 2016
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TABLE 2: Homogeneous transform equation vs reprojection error minimisation vs artificial neural network for hand-eye
calibration.

Homogeneous transform equation Reprojection error minimisation Artificial neural network

Requires explicit camera pose estimation Camera pose estimation is implicit Does not require camera calibration or pose
estimation

Suited to camera that can be described with
pinhole camera model

Because it uses direct images from the
camera, it can accommodate other camera

models

Model generalisation means it can
accommodate other camera models

No issue with overfitting of solutions Solutions can be prone to overfitting Parameter over-fitting can be a limitation
Computation time of 0.142 s [76] Computation time of 0.272 s [76] Computation time of 2.355 s [84]

Accuracy of 1.715 mm [76] Accuracy of 1.380 mm [76] Accuracy of 0.923 mm [84]

(a) Checkerboard

(b) Circle

FIGURE 10: Different types of calibration patterns [92]

which can be detected as the intersection of the lines that
makeup the square edges. Mathematically, these intersection
points are the saddle points which can easily be detected as
points where the first derivative goes to zero. The detection
algorithm usually starts by binarising the image, followed
by filtering to ensure that the size and organisation meet the
dimension and structure specified by the user. The main dis-
advantage of checkerboard targets is that it is usually difficult
to get the exact boundary of the corners [97]. However, the
detection of the corners of the squares can usually be done
with sufficient level of accuracy because the corners, being
infinitely small are mostly invariant to perspective and lens
distortion [91].

Because of the alternating colours of adjacent squares,
the checkerboard target can be made rotation-invariant by
making the number of rows and columns even and odd
respectively, or vise-versa. Otherwise, with both rows and
column either even or odd, the pattern creates a 180-degree

ambiguity that can be problematic for multi-camera calibra-
tion, where similar point needs to be identified by multiple
cameras like in the calibration with stereo cameras.

B. CIRCULAR GRID TARGET

Circular grid targets are based on circles with the feature
point being at the centre of the circle. Appropriate circles in
the target can be detected using characteristics like circularity
and convexity, and bad featured circles can be eliminated.
While the circles themselves are easy to detect and to be
filtered, unlike the checkerboard target, they are not invariant
under perspective and lens distortion as shown in Figure
11. Under perspective projection, the circles are imaged as
ellipses. Ideally, this can be solved using image rectification,
however, the additional lens distortion on the ellipses adds
some bias to the detected points, which in general would
require a more complex algorithm to correct.

FIGURE 11: Circular grid under perspective (left) and lens
(right) distortion [92].

Just as in checkerboard targets, the circular grid target can
be made rotation invariant for multi-camera view. This is
done by using asymmetric grid pattern as shown in Figure
12.

FIGURE 12: Asymmetric circular grid pattern [98].
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C. DISCUSSIONS

Checkerboard and circular grid are the most widely used
patterns for vision system calibration. The choice of pat-
tern used depends on the application constraints such as
accuracy, complexity of detection algorithm, distortion, etc.
The feature points for checkerboard pattern are the intersec-
tion of the lines that can easily be obtained using standard
corner detection strategies [99]. For circular grid patterns,
the feature point commonly used is the centre of mass
of the circle pixels. Often times the estimated position of
checkerboard corner, or circle centre do not fall at the exact
point and further computation would be required for sub-
pixel accuracy [91]. Generally, the mathematics involved for
realising sub-pixel accuracy for circular grids is much more
complex than for checkerboard pattern [91]. This complexity
is compounded by the fact that the feature point for circular
grid is affected by both radial and perspective bias. Hence
the accuracy of circular grid depends on how well the true
centre of the circle can be determined. Figure 13 illustrates
the effect of radial distortion on the accurate detection of the
features for checkerboard and circular targets. In this illustra-
tion the radial distortion coefficient k1 as given in Equation
(10) is increased from −2 to 2, where ki, i = 2, 3, ... are
the distortion coefficients, rd is the distortion radius, (xu, yu)
and (xd, yd) are the undistorted and distorted image points
respectively. Table 3 shows a summary of the comparison
between the properties of checkerboard and circular grid
patterns.

xu = xd(1 + k1r
2

d + k2r
4

d + · · · ) (10a)

yu = yd(1 + k1r
2

d + k2r
4

d + · · · ). (10b)

FIGURE 13: Accuracy evaluation for feature points detec-
tion for checkerboard (corners and edges) and circular grid
(centroid and conics) targets for increasing levels of radial
distortion k1 [91].

D. OTHER CALIBRATION TARGETS

Other calibration targets exist with the aim of overcoming
the limitations of the checkerboard and circular calibration
targets. Most of these come with some form of encoding
marker. An example of such is the CharuCo target shown in
Figure 14.

FIGURE 14: CharuCo target [100].

In the CharuCo target, the light squares are uniquely
encoded. Thus, this makes CharuCo target possible to carry
out calibration even with part occlusion or poor image condi-
tions such as in inhomogeneous lighting, while maintaining
the advantage that the intersection of the square edges or
interest points can easily be recovered, when an ordinary
checkerboard or circular grid target under these conditions
would normally fail. The main drawback of this calibration
target is the complex algorithm required for the detection and
decoding of the patterns.

V. COMMON CHALLENGES OF HAND-EYE

CALIBRATION

Hand-eye calibration is an active field of research in robotics
and computer vision mainly due to the importance of pre-
cision and accuracy in these industries. For example, while
an accuracy level of 1 mm may be required for spot welding
operation in the automotive industry, an accuracy measure of
at least ten to twenty-fold would be required in the aerospace
industry [101]. Similar accuracy levels can also be found in
robotic applications in the health industry, where safety is of
utmost importance [102]. Achieving this level of accuracy is
a major challenge in hand-eye calibration for robots due to
a number of factors such as data asynchronicity, noise and
limited motion range.

A. DATA ASYNCHRONICITY

The hand-eye calibration problem is constrained on data from
two sources: the eye (camera) and the hand (robot). This
constraint requires correspondence in the data stream from
both sources, which may not be practically possible, resulting
in temporal misalignment in the data [103]. This temporal
misalignment may be due to the differences in the operating
frequency of the sensors, difficulty in synchronising the
trigger for the data capture on both sources or missed data
in either stream. Many solutions to hand-eye calibration are

8 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 3: Comparison of checkerboard and circular grid calibration patterns.

Checkerboard Circle

Feature points Corners and edges Centroid and conics

Detection Complexity
Features can easily be resolved

even in the presence of distortion
Feature detection is usually
complicated by distortion

Perspective distortion No Yes
Effect of lens distortion (See

Figure 13)
low High

Occlusion
It may be possible to interpolate

lines to infer intersection
Connecting distorted points to infer
intersection is not usually possible

Sub-pixel accuracy

Simple interpolations from already
acquired points can be used to
achieve sub-pixel accuracy for

other points

Special techniques are required to
achieve sub-pixel accuracy

offline in nature [38], [39], [53], [64],where the calibration
setup is made, complete pose data set for both the hand and
the eye with respect to the robot base and world respectively
are acquired, and computation of the required hand-eye trans-
form made. Regardless of the fact that the acquisition of both
sets of data are made in discrete steps, data asynchronicity
still forms a major problem which affects the correspondence
of the data. Offline calibration nonetheless is not suitable
for certain applications. An example is in critical operations
like robot assisted surgery (RAS), where frequent changes
in setup and recalibration is an expensive operation that
must be dealt with on the fly [104]. This type of application
require online calibration [105], where data is continually
being captured and used to update the calibration algorithm,
rendering the need for data synchronisation on both sources
very apparent.

One solution to the problem of temporal misalignment
is the use of timestamp [106]. By timestamping the data
from both sources, users could manually or programmatically
synchronise the data streams and also avoid missing data.
Cross-correlation techniques can also been used to achieve
data synchronisation for hand-eye calibration as in [107],
[108]. Normalising and resampling the data before the cross-
correlation operation can be used to ensure that differential
data length caused by time delay or different sampling rate
do not affect the result. A more elegant solution can be found
in the use of a real-time embedded operating system for the
control of the data capture and synchronisation operation
[109]. This, however, would require compatibility with dif-
ferent sensors and robot systems and can quickly make the
setup less attractive in terms of cost and complexity.

B. NOISE

Noise is a major problem in hand-eye calibration, which
arises as a result of perturbations in the robot-camera assem-
bly. This causes some degree of uncertainty in the calibration
results. A direct impact of the noise in hand-eye calibration
is the need to use measurements from multiple coordinate
frames (greater than the theoretical minimum) for the esti-
mation of the hand-eye transform [37]. The required hand-
eye transform is estimated from a system of equations based
on the rigid body transform of the robot-camera assembly,
which normally results in an overdetermined system [33].

In an ideal scenario, with no noise in the system, because
the measurements are physically constrained to be consistent
with the robot-camera assembly, the set of equations could
be solved by a simple least square method. Since there are
more equations than unknowns in the presence of measure-
ment noise, the equations becomes inconsistent and multiple
frames or robot motions would be required to accurately
estimate the system variables.

Noise in robot hand-eye calibration can be categorised into
two forms. These are noise as a result of the robot motion and
the camera motions. Noise from the robot motion directly
affects the kinematic model of the robot as they are caused
by measurements from the joint encoders or optical trackers
in the robot. The error in measurement can be due to various
factors such as kinematic errors, non-kinematic errors and
joint errors.

• Kinematic errors: Kinematic errors are related to and
have direct impact on the kinematic model of the robot
[110], [111]. These may be due to manufacturing and
assembly tolerances, geometry of the robot components
such as orthogonality or parallelism or the position of
the reference frame.

• Non-kinematic errors: Unlike kinematic errors, non-
kinematic errors are due to the mechanical characteris-
tics of the robot components such as stiffness, blacklash
elasticity and impact of temperature [112], [113].

• Joint errors: Joint errors are directly related to the error
in motion measured at individual joints of the robots
by the joint encoders and are caused by the sensors
themselves [114], [115].

Noise from the camera motions is a direct consequence of
camera calibration, which can result from low camera quality,
poor calibration parameter estimates, low quality calibration
pattern etc. These errors, while they can be small from a
camera calibration perspective [116], can be propagated to
the estimates of the hand-eye calibration.

C. LIMITED MOTION RANGE

The range of allowable motion of the robot hand during cali-
bration have a direct impact on the results of the calibration.
Large motions in the robot hand has the effect of suppressing
noise in the setup that can arise due to perturbations [37].

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104514, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Despite this advantage, not every application is able to permit
a wide motion range. In RAS, only a small motion range
of the surgical tool is permitted. This is usually constrained
to within the vicinity of the trocar entry ports [112]. This is
done to minimise the damage that can be done to surrounding
tissues at the entry ports [117]. In pick-and-place applications
like in sorting and assembly facilities, the constraint is the
field of view of the camera outside in which the operation
of the robot is not feasible [118]. In other instances, the
robot motion is limited to a particular area to provide a safe
environment in which human operators can operate [119],
[120]. In these applications, the robot is controlled by an
embedded control system that specifies and limits the motion
of the hand to a given work space. While the allowable range
of motion of the robot hand cannot always be controlled,
a lot of gain can be achieved by implementing proper path
planning algorithm and pose selection methods to obtain
a well conditioned robot hand-eye constraints [37], [121],
[122].

VI. CONCLUSION

In this review, different solutions to hand-eye calibration
were discussed with the aim of presenting their strengths and
weaknesses. The purpose was to provide necessary informa-
tion that would be required for implementation by academics
and industrial practitioners, as well as encourage further
research. The most common formulation of the problem
requires finding a solution to the homogeneous transform
equation AX = XB. A lot of research have be done in this
area, with solutions found using angle-axis representation
of the rotation parameter, Lie algebra, Quaternions, Dual
Quaternions, Screw motion, Kronecker product as well as
using optimisation techniques. Each of the resulting algo-
rithms differ in their level of accuracy and computational
requirement, which needs to be taken into account by aca-
demics or industrial practitioners depending on their design
constraints. Alternate methods that solve the problem using
reprojection error minimisation and artificial neural network
are also presented. The main advantages with the method of
reprojection error minimisation are error avoidance due to
camera pose estimation and the ability to work with camera
models (e.g. like source-detection model used for X-rays)
other than the pinhole projection model. While the method of
artificial neural network also simplifies the problem by using
only images taken by the camera, network parametrisation
and over-fitting may limit its usage.

Different considerations for choice of calibration pattern
are also discussed, with checkerboard and circular grid pat-
terns being the most common calibration targets. While sub-
pixel accuracy can be achieved using either of the target
choices, circular grid targets usually require more complex
algorithms. How the patterns respond to perspective and lens
distortion play a huge role their reliability, with circular grid
targets being more susceptible to distortions that must be
corrected. The CharuCo target on the other hand embeds
encodings on its pattern to avoid the limitations of the most

commonly used checkered board pattern.
Finally, we discuss about some common challenges that

are expected in the calibration of robots eye-hand system.
While proper planning and appropriate calibration setup can
improve the calibration estimate, it is sometimes difficult
to meet all the conditions for improved accuracy and a
compromise has to be made. Data asynchronicity, noise and
limited motion range are identified as some of the challenges
of hand eye calibration that can also gain improvement from
proper path planning, calibration setup and robot calibration
prior to hand-eye calibration. In general, for accurate vision
guided robotic operation, there has to be proper calibration of
the robot to correct the joint variables and robot parameter,
calibration of the camera to determine its accurate pose
relative to world measurements, and then calibration of the
hand-eye system to obtain the transformation of the camera
relative to the robots hand.
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