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ABSTRACT
Motivation: A common task in analyzing microarray data
is to determine which genes are differentially expressed
across two kinds of tissue samples or samples obtained
under two experimental conditions. Recently several
statistical methods have been proposed to accomplish
this goal when there are replicated samples under
each condition. However, it may not be clear how these
methods compare with each other. Our main goal here
is to compare three methods, the t-test, a regression
modeling approach (Thomas et al., Genome Res., 11,
1227–1236, 2001) and a mixture model approach (Pan
et al., http://www.biostat.umn.edu/cgi-bin/rrs?print+2001,
2001a,b) with particular attention to their different model-
ing assumptions.
Results: It is pointed out that all the three methods are
based on using the two-sample t-statistic or its minor
variation, but they differ in how to associate a statistical
significance level to the corresponding statistic, leading
to possibly large difference in the resulting significance
levels and the numbers of genes detected. In particular,
we give an explicit formula for the test statistic used in the
regression approach. Using the leukemia data of Golub
et al. (Science, 285, 531–537, 1999), we illustrate these
points. We also briefly compare the results with those of
several other methods, including the empirical Bayesian
method of Efron et al. (J. Am. Stat. Assoc., to appear,
2001) and the Significance Analysis of Microarray (SAM)
method of Tusher et al. (Proc. Natl Acad. Sci. USA, 98,
5116–5121, 2001).
Contact: weip@biostat.umn.edu

INTRODUCTION
An exciting development in genomics is the use of
microarray technology to simultaneously monitor the
expression levels of thousands of genes (or expressed
sequence tags; Brown and Botstein, 1999; Lander, 1999).
A common task is to compare the expression levels of
genes in samples drawn from two different tissues or at

two different time points or conditions. Specifically, it is of
interest to detect genes with differential expression under
the two conditions. In the early days, the simple method of
fold changes was used and now it is known to be unreliable
(Chen et al., 1997) because statistical variability was not
taken into account. Since then, many more sophisticated
statistical methods have been proposed (e.g. Chen et al.,
1997; Efron et al., 2000; Ideker et al., 2000; Newton et
al., 2001; Tusher et al., 2001; Lin et al., 2001; Pan et
al., 2001a). It has also been noticed that data based on
a single array may not be reliable and may contain high
noises (Lee et al., 2000). As the technology advances,
microarray experiments are becoming less expensive,
which makes the use of multiple arrays (or multiple spots
on each array) feasible. In this paper, we consider the
detection of differentially expressed genes with replicated
measurements of expression levels of each gene under
each condition.

A straightforward method is to use the traditional two-
sample t-test (e.g. Devore and Peck, 1997). Thomas
et al. (2001) proposed a regression modeling approach.
Pan et al. (2001a) suggested a mixture model approach,
which follows the basic idea of Efron et al. (2000) and
Tusher et al. (2001). However, it is not clear how these
methods compare with each other. For practitioners to
choose a method, it is important to elucidate various
modeling assumptions underlying each method. In this
paper, we comparatively review the three methods, the
t-test, the regression approach of Thomas et al. (2001),
and the mixture model approach of Pan et al. (2001a).
In particular, we give an explicit form of the test statistic
in the regression method, facilitating the discussion of
the connections and differences among the three methods.
We apply the three methods to the leukemia data of
Golub et al. (1999). We also briefly discuss the results of
applying the Empirical Bayesian (EB) method of Efron
et al. (2000) and the Significance Analysis of Microarray
(SAM) method of Tusher et al. (2001) to the same
leukemia data.
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All the methods are not restricted to any specific
microarray technology. From now on, the expression
level can refer to a summary measure of relative red to
green channel intensities in a fluorescence-labeled cDNA
array, a radioactive intensity of a radiolabeled cDNA
array, or a summary difference of the Perfect Match (PM)
and Mis-Match (MM) scores from an oligonucleotide
array. The gene expression levels may have been suitably
preprocessed, including dimension reduction, data nor-
malization and data transformation (e.g. Dudoit et al.,
2000; Efron et al., 2000; Li and Wong, 2001; Kerr et al.,
2000; Yang et al., 2000). To focus on the main issue, we
assume that all the methods use the data preprocessed in
the same way.

METHODS
Data
Suppose that Y jk is the expression level of gene j in array
k ( j = 1, . . . , n; k = 1, . . . , K1, K1 + 1, . . . , K 1 + K 2).
Suppose that the first K 1 and last K2 arrays are obtained
under the two conditions respectively.

A general statistical model is

Y jk = a j + b j xk + ε jk, (1)

where xk = 1 for 1 � k � K1 and xk = 0 for
K1 + 1 � k � K1 + K2, and ε jk are random errors with
mean 0. Hence a j + b j and a j are the mean expression
levels of gene j under the two conditions respectively.
Determining whether a gene has differential expression is
equivalent to testing for the null hypothesis

H0: b j = 0 against H1: b j �= 0.

A statistical test consists of two parts. The first is
to construct a summary test statistic. The second is to
determine the significance level or p-value associated
with the test statistic. The p-value is usually calculated
based on the null distribution of the test statistic (i.e. the
distribution of the test statistic under H0), which may be
specified or estimated via modeling assumptions.

To focus on the main issue, we use α = 0.01 as
the genome-wide significance level, and we use the
Bonferroni adjustment to deal with multiple comparisons.
Hence the test- or gene-specific significance level (for
a two-sided test) is α∗ = α/(2n). We do not consider
other possibly better adjustment methods for multiple
comparisons (e.g. Dudoit et al., 2000; Thomas et al.,
2001). Most, if not all, statistical tests can be modified
accordingly for a multiple comparison adjustment.

In the following, we review the three methods along the
line.

The t-test
There are several versions of the two-sample t-test,
depending on whether the sample size (i.e. K1 and K2)

is large and whether it is reasonable to assume that gene
expression levels have an equal variance under the two
conditions (Devore and Peck, 1997, Sections 10.1–10.2).
Because usually both K1 and K2 are small, and there is
evidence to support unequal variances (e.g. Thomas et al.,
2001), we will only discuss the t-test with two indepen-
dent small Normal samples with unequal variances.

Let the sample means and variances of Y jks for gene j
under the two conditions be

Ȳ j (1) =
∑K1

k=1 Y jk

K1
, Ȳ j (2) =

∑K1+K2
k=K1+1 Y jk

K2

and

s2
j (1) =

∑K1
k=1(Y jk − Ȳ j (1))

2

K1 − 1
,

s2
j (2) =

∑K1+K2
k=K1+1(Y jk − Ȳ j (2))

2

K2 − 1
.

The t-statistic is

Z j = Ȳ j (1) − Ȳ j (2)√
s2

j (1)/K1 + s2
j (2)/K2

. (2)

Under the normality assumption for Y jk , Z j approxi-
mately has a t-distribution with degrees of freedom

d j = (s2
j (1)/K1 + s2

j (2)/K2)
2

(s2
j (1)/K1)2/(K1 − 1) + (s2

j (2)/K2)2/(K2 − 1)
.

This t-test was proposed by Welch (1947). Its method of
calculating the degrees of freedom is similar to the idea of
the Satterthwaite approximation. The good performance
of Welch’s t-test, compared with many other alternatives
(e.g. approximating d j by K1 + K2 − 2), has been well
documented (e.g. Scheffe, 1970; Best and Rayner, 1987).

We will use the Welch t-test throughout. Note that
the Welch t-test is specifically designed to handle the
possibility of having unequal variances. If we ignore the
part of multiple comparison adjustment, Dudoit et al.
(2000) adopt the same t-statistic, but calculate the p-value
by permutation.

A regression modeling approach
Thomas et al. (2001) proposed a regression modeling
approach. In their original formulation, data preprocess-
ing and testing for differential expression are coupled
together. To focus on the main issue, we only consider
the testing part of their approach throughout the paper.
Then their model is the same as (1) (after ignoring the
preprocessing step). Treating (1) as a regression model,
they proposed to estimate (a j , b j ) using the weighted
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least square method, and then to estimate the variance of
b̂ j using the robust or sandwich variance estimator, say
Var(b̂ j ). Their test statistic is

Z ′
j = b̂ j

/√
Var(b̂ j ),

with reference to the (asymptotically) normal distribution.
Thomas et al. observed that the result based on using

Z ′
j is close to that of using the t-statistic Z j . But because

they did not give an explicit formula for Z ′
j , a theoretical

explanation was unavailable. Next we give an explicit
formula for Z ′

j , which will shed light on the nature of
Z ′

j . Note that (1) can be formulated as a linear regression
problem. If we denote the corresponding design matrix as
X , it is easy to verify that X ′X is block-diagonal. Hence,
the least-squares estimates of (a j , b j ) are independent
with each other for different genes. In fact, it is easy to
verify that the least-squares estimate of b j is

b̂ j = Ȳ j (1) − Ȳ j (2).

Then, as pointed out by Drum and McCullagh (1993), the
robust variance estimator of b̂ j is

Var(b̂ j ) = s2
j (1)

K1

K1 − 1

K1
+ s2

j (2)

K2

K2 − 1

K2
,

which can be also verified directly.
Hence, it can be seen that the statistic Z ′

j of Thomas et
al. has a similar form to the usual t-statistic Z j with the
minor difference in how to estimate the variances: rather
than the unbiased sample variances as used in Z j , the
maximum likelihood estimator of the variance (under the
Normality assumption for Y jks) is used in Z ′

j . It is obvious
that Z ′

j and Z j are equivalent as both K1 and K2 tend to
the infinity. However, for small K1 and K2, Z j is preferred
due to the unbiasedness of its variance estimator involved.

Furthermore, using a standard Normal distribution to
calculate the p-value for Z ′

j is based on the assumption
that both K1 and K2 are large, which however does not
hold in many microarray experiments. Therefore, as
acknowledged by Thomas et al., the Normality assump-
tion for Z ′

j may be too strong and may not work well in
practice.

Note that the use of the sandwich variance estimator
proposed by Thomas et al. (2001) is novel. It works
asymptotically even if random errors ε jks in (1) have
different variances for different j , or even for the same
gene j under the two conditions. More often, for a linear
regression model like (1), it is assumed that ε jks are a
random sample (iid) from the same distribution, and hence
have the same variance. If we ignore the preprocessing that
corrects array and other effects, the latter assumption on
iid ε jks is taken by Kerr et al. (2000).

A mixture modeling approach
A common problem with the above t-test and the regres-
sion approach is their strong assumptions on the null dis-
tributions of the test statistics. In contrast, following the
idea of Efron et al. (2000) and Tusher et al. (2001); Pan
et al. (2001a) proposed to estimate the null distribution
directly. The method takes full advantage of the existence
of replicated data, but it does require that both K1 and K2
are even numbers.

A key step is to construct the following null statistics:

z j = Y j (1) p j/K1 − Y j (2)q j/K2√
s2

j (1)/K1 + s2
j (2)/K2

, (3)

where Y j (1) = (Y j1, . . . , Y j K1), Y j (2) = (Y j,K1+1, . . . ,
Y j,K1+K2), p j is a random permutation of a column vector
containing K1/2 1s and −1s respectively, and q j is a
random permutation of a column vector containing K2/2
1s and −1s respectively. Suppose that the distribution
density functions of z j and Z j are respectively f0 and
f . Under the weak assumption that the random errors ε jk
have a distribution symmetric about its mean 0, then under
H0, z j and Z j have the same distribution f0 = f .

Using z j s and Z j s we can estimate the distributions f0
and f respectively. We will discuss how to estimate f0 and
f later. For the moment, suppose f0 and f are known (or
more precisely, taken at their estimates). For any given Z ,
we can use the likelihood ratio test statistic

L R(Z) = f0(Z)/ f (Z)

to test for H0. A small value of L R(Z), say L R(Z) < c,
provides evidence to reject H0. The cut-off point c is
determined such that the type I error rate is

α

n
=

∫
L R(z)<c

f0(z) dz, (4)

where α is the genome-wide significance level.
Now we discuss how to estimate f0 and f . Pan et

al. proposed using a Normal mixture to model each
distribution:

f0(z; 
g0) =
g0∑

i=1

πiφ(z; µi , Vi ),

where φ(·; µi , Vi ) denotes the normal density function
with mean µi and variance Vi , and πi s are mixing
proportions. 
g0 represents all unknown parameters
{(πi , µi , Vi ) : i = 1, . . . , g0} in a g0-component mixture
model. The number of components can be selected
adaptively. Similarly, a Normal mixture model can be
used for f .

The Normal mixture model is flexible and powerful,
and is widely used in many applications. It is usually
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fitted by maximum likelihood using the Expectation–
Maximization (EM) algorithm (Dempster et al., 1977).
To determine the number of components g0, we can use
various model selection criteria, of which the Bayesian
Information Criterion (BIC; Schwartz, 1978) is favored in
some empirical studies (Fraley and Raftery, 1998):

BIC = −2 log L(
̂g0) + νg0 log(N ),

where L(
̂g0) is the maximized likelihood function and
νg0 = 3g0 − 1 is the number of independent parameters in

g0 . In using the BIC, one first fits a series of models with
various values of g0, then picks up the g0 corresponding to
the first local minimum of BIC (Fraley and Raftery, 1998).

We used the EMMIX, a stand-alone Fortran program
for fitting a Normal mixture model using maximum
likelihood method. It was implemented by McLachlan et
al. (1999) and is freely available from the web at http:
//www.maths.uq.oz.au/∼gjm/emmix/emmix.html. It has
many interesting features, including multiple starts of the
EM algorithm and calculation of model selection criteria.

RESULTS
Data
We apply the methods to the leukemia data of Golub
et al. (1999), which consists of 27 Acute Lymphoblas-
tic Leukemia (ALL) samples and 11 Acute Myeloid
Leukemia (AML) samples. The goal is to find genes with
differential expression between ALL and AML. Thomas
et al. also analysed this data set. Since the mixture model
approach requires even numbers of samples, we randomly
take the first K1 = 26 ALL samples and last K2 = 10
AML samples for use. There are n = 7129 genes in each
sample. As mentioned earlier, we take the genome-wide
significance level at the usual α = 0.01 level, and use the
Bonferroni method to adjust for multiple comparisons.
Hence the gene-specific significance level being used is
α∗ = 0.01/(7129 ∗ 2) = 7.014 × 10−7.

Data preprocessing is accomplished for each sample by
subtracting its median and dividing by its quartile range
(the difference between the first and the third quartiles).
Note that rather than the commonly used mean and
standard deviation, we used the median and quartile range
because the latter two are more robust estimators for the
center and the dispersion of a distribution respectively. All
the methods are applied to thus preprocessed data.

Fitted mixture models
We fitted three mixture models for either f0 or f with 1–3
components (Table 1). Based on BIC, we can see that a
two-component mixture is the best for each and the fitted
models are:

f0(z) = 0.479φ(z; −0.746, 0.697) + 0.521φ(z; 0.739, 0.641),

Table 1. BIC for fitted mixture models with various numbers of compo-
nents g

g 1 2 3

f0 21 656.7 21 585.4 21 598.2
f 28 986.1 28 833.3 28 857.1
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Fig. 1. Histograms and fitted mixture models (solid lines) for z j
in (a) and for Z j in (b). In (a) the dotted line is a t-distribution
with 34 degrees of freedom. In (b) the dotted line is the fitted f0.

and

f (z) = 0.518φ(z; −0.318, 1.803) + 0.482φ(z; 0.781, 4.501).

Figure 1 presents the histograms and the fitted models. For
comparison, the density function of a t-distribution with
degrees of freedom 34 is imposed in Figure 1a. It can be
seen that the t distribution has much heavier tails than the
estimated f0. For Figure 1b, we present both the estimated
f0 and f . It can be seen that, unsurprisingly, f has heavier
tails than f0.

The LR function is depicted in Figure 2. Using the
bisection method (Press et al., 1992, p. 353) to solve (4),
we obtain the cut-off point c = 0.000 3437, yielding a
rejection region of {Z : Z < −4.8877 or Z > 4.4019}
for H0.

Total number of genes with differential expression
The test statistics Z j and Z ′

j are easy to calculate. But the
three methods have different rejection regions for H0.

For t-test, because the degrees of freedom d j vary
with j , the rejection region is gene-specific: {Z : |Z | >

t (α∗, d j )}, where t (α∗, d j ) is the upper α∗-percentile for a
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Fig. 2. The likelihood ratio function.

t-distribution with degrees of freedom d j . The distribution
of n calculated d j s ranges from 9 to 34 with mean and
median 17.8 and 19.6 respectively. Note that the smaller
the d j , the large the t (α∗, d j ). To give a rough idea of
the rejection region, we consider the conservative situation
d j = 34: the rejection region is {Z : |Z | > 5.8369}.

For the regression modeling method, since the null
distribution is assumed to be a standard Normal, the
rejection region is {Z ′ : |Z ′| > 4.8246}, where 4.8246 is
the upper α∗-percentile for a standard Normal distribution.

As described earlier, the rejection region for the mixture
model method is {Z : Z < −4.8877 or Z > 4.4019}.

Comparing the rejection regions of the three methods
and the estimated null distribution and a t distribution
in Figure 1a, we can see that the t-test is probably too
conservative. Unsurprisingly, the t-test detects total 20
genes with significant expression changes, whereas the
regression method and the mixture model method find 157
and 187 genes respectively.

Thomas et al. provided some biological justifications for
many identified genes.

Top genes with differential expression
Tables 2 and 3 list the top 25 genes which are more highly
expressed in AML and in ALL respectively. In general,
the regression and the mixture model methods give very
similar rankings; this can be explained by the closeness
of Z j to Z ′

j . In particular, it is reassuring that the two
spots of the same gene, TCF3 (E2A), in Table 3 are ranked
closely as number 14 and 16 by both methods. The results
of the three methods are in good agreement in Table 3.

However, only the top six genes in Table 2 are identified
as such by all the three methods. This may be due to
the fact that the absolute values of the test statistics in
Table 3 are much larger than those in Table 2. In other
words, there is stronger evidence to suggest differential
expression for the top genes more highly expressed in
ALL than that for those more highly expressed in AML.
In fact, according to the mixture model method, only the
top 16 genes in Table 2 are identified as having significant
expression change.

Note that the ranking of the t-test is based on the
corresponding p-values. Since the degrees of freedom
of the null distribution in the t-test are gene-specific,
the resulting ranking is different from that based on the
test statistics Z j . Thomas et al. (2001) reported a good
agreement between the t-test and the regression approach.
The reason is that they used a fixed number (36) for
the degrees of freedom in the t-test (Zhao, personal
communications). If we do it that way, then the same
conclusion can be drawn. Also, since the null distributions
for the regression method and the mixture model method
are fixed (i.e. non-gene-specific), the ranking based on
Z j or Z ′

j should be the same as that based on the
corresponding p-values.

For the purpose of comparison, we also give the ranking
results taken from Thomas et al. (2001). Most of the genes
listed are also reported by them. However, the specific
ranking may be very different. This may be largely due
to the different methods used in preprocessing the data.
This demonstrates the importance of data preprocessing.

DISCUSSION
A comparative summary of the three methods
We have given an explicit expression of the test statistic
Z ′

j for the regression approach of Thomas et al., from
which we can see that it has a similar form to the
t-statistic, which is also used in the mixture model
approach. Hence, the three methods usually give similar
results in terms of the test statistics. However, they
differ in how to determine the statistical significance
level (or rejection region). For small sample sizes, both
the t-test and the regression approach depend on the
strong parametric assumptions, the t-distribution of Z j
(or equivalently, the Normality assumption on the random
errors) and the Normal distribution of Z ′

j respectively.
It is possible that these parametric assumptions are
violated in practice when small sample sizes are more
common, though the two methods are asymptotically
valid (with large sample sizes). In contrast, the mixture
model approach estimates the null distribution directly.
It takes advantage of the existence of multiple samples
to construct the null scores z j s, and the large number of
genes makes it feasible to estimate the null distribution f0
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Table 2. Top 25 genes more highly expressed in AML than in ALL

Gene Probe Z j Z ′
j t rank Regression rank Thomas et al. rank

FAH M55150 −7.875 −8.248 1 1 1
Neuromedin B M21551 −5.767 −5.963 2 2 2
CDC25A M81933 −5.540 −5.778 6 3 4
NAB50 U63289 −5.508 −5.724 3 4 14
FTL M11147 −5.426 −5.638 4 5 12
Metargidin U41767 −5.394 −5.617 5 6 10
LYN M16038 −5.284 −5.563 – 7
LTC4S U50136 −5.264 −5.541 – 8 3
Metallothionein I−B M13485 −5.096 −5.343 17 9 –
IGIF D49950 −5.042 −5.296 23 10 8
PPlase M80254 −5.023 −5.281 – 11 21
Inositol 1,3,4-trisphosphate 5/6-kinase U51336 −5.001 −5.216 10 13 –
Zyxin X95735 −4.976 −5.242 – 12 6
ATP6C M62762 −4.933 −5.174 22 14 9
CMKBR7 L08177 −4.894 −5.139 – 15 –
Chloride channel (putative) 2163bp Z30644 −4.884 −5.089 11 16 19
Thrombospondin 1 U12471 −4.847 −5.051 14 17 5
MDU1 Antigen M21904 −4.795 −4.996 16 19 –
Proto-oncogene BCL3 U05681 −4.783 −5.002 18 18 –
GST-II U77604 −4.765 −4.918 7 20 –
Calnexin D50310 −4.723 −4.914 13 21 15
Polyadenylate binding protein II Z48501 −4.712 −4.895 9 22 17
Sodium channel protein M81758 −4.628 −4.789 8 24 –
HoxA9 U82759 −4.592 −4.824 – 23 13
PLCB2 M95678 −4.558 −4.779 – 25 16

Table 3. Top 25 genes more highly expressed in ALL than in AML

Gene Probe Z j Z ′
j t rank Regression rank Thomas et al. rank

P48 X74262 8.083 8.286 1 1 2
ACADM M91432 7.113 7.278 3 2 11
Macmarks HG1612-HT1612 6.945 7.149 2 4 5
MYL1 M31211 6.929 7.151 4 3 4
Proteasome iota chain X59417 6.722 6.896 5 5 3
Adenosine triphosphatase, calcium Z69881 6.683 6.830 8 6 17
C-myb U22376 6.587 6.742 7 7 1
IEF SSP 9502 L07758 6.535 6.742 6 8 18
Inducible protein L47738 6.467 6.624 9 9 7
hdlc1 U32944 6.394 6.532 13 11 20
DHPS U26266 6.364 6.573 10 10 –
Cyclin D3 M92287 6.303 6.457 11 12 14
MB-1 U05259 6.250 6.378 18 13 8
TCF3 (E2A) M65214 6.169 6.355 12 14 6
CRYZ L13278 6.047 6.222 14 15 9
TCF3 (E2A) M31523 6.007 6.141 21 16 16
Nucleolysin TIA-1 M77142 5.986 6.109 25 19 –
Thymopoietin beta U09087 5.968 6.124 15 18 13
MCM3 D38073 5.948 6.130 16 17 19
SRB U38846 5.928 6.103 17 20 –
SPTAN1 J05243 5.868 6.026 20 23 22
Transcriptional activator hSNF2b D26156 5.859 6.027 19 22 10
ALDR1 X15414 5.822 6.071 – 21 21
HKR-T1 S50223 5.807 6.013 – 24 25
T-complex protein 1, gamma subunit X74801 5.743 5.878 – – –
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(and f ) nonparametrically. Note that the null distribution
f0 is for random errors, not for the gene expression
levels. Of course, the mixture model method (as the
EB method of Efron et al. and SAM) also has its own
modeling assumptions: it is assumed that the random
errors have symmetric distributions, and after a suitable
standardization (here we divide them by the sample
variances), the random errors from all the genes have a
common distribution. We believe that these assumptions
are weak and reasonable. In particular, they are weaker
than the Normality assumption used in the t-test.

Note that the Normality assumption in the t-test is
required only for small K1 and K2. If both K1 and K2 tend
to the infinity, d j also goes to the infinity, implying that
the null distribution reduces to a standard Normal. Thus,
if both K1 and K2 are large, such as >30 as suggested
by many introductory statistics textbooks (e.g. Devore and
Peck, 1997, p. 352), one can use a standard Normal as the
null distribution for the t-test. The asymptotic Normality
assumption for the null distribution of Z ′

j in the regression
approach also requires large K1 and K2. Hence, with large
K1 and K2, both methods are essentially nonparametric.

With practical numbers of samples (i.e. small K1 and
K2), however, the power of the t-test is limited (due to
the too small degrees of freedom), whereas the Normality
assumption for the regression approach is more likely
to be seriously violated. These are the situations where
the mixture model approach and other similar approaches
(Efron et al., 2000; Tusher et al., 2001) are more attractive.
An advantage of the regression approach is its flexibility:
it can be extended to model more complex biological
processes (Zhao et al., 2001). An attractive point of the
mixture model approach is its use for sample size/power
calculations (Pan et al., 2001b).

A brief comparison with other approaches
The Wilcoxon rank sum test (equivalent to Mann–
Whitney test) has also been used as an alternative to
the t-test in two-sample comparisons with microarray
data. Because it is nonparametric, it avoids the pos-
sibly questionable parametric assumption used in the
t-test. However, as demonstrated by Thomas et al., the
price we pay for the robustness of the Wilcoxon test is
the loss of power: when applied to the leukemia data,
it does not find any gene with significant expression
change. This is also related to another often neglected
issue: the Wilcoxon test requires that the two samples
have distribution functions with the same shape (with
the only difference in their location parameters). This
implies, strictly speaking, that it is not applicable if the
expression levels of a gene may have unequal variances
under the two conditions, which is exactly the same
reason why we prefer the t-test with unequal variances
to that with an equal variance. These same issues remain

with the use of other permutation-based nonparametric
tests.

The mixture model approach follows the novel idea of
the EB approach of Efron et al. (2000) and of the SAM of
Tusher et al. (2001): estimating the null distribution using
z j s. They belong to the same family with the same basic
modeling assumptions. Here, we give a brief comparison
of these methods by applying them to the same leukemia
data. The general conclusion below is similar to that of Pan
et al. (2001a). To save space, we do not go to the details
of the EB and SAM methods; the reader is referred to the
above references for more details.

For the EB approach, Efron et al. (2000) proposed
a logistic regression method to estimate the likelihood
ratio statistic L R(Z) (Figure 3a), which is close to
that obtained by the mixture method (Figure 2). Using
L R(Z), Efron et al. derived a lower bound of the
posterior probability that a gene with the t-statistic Z j
has differential expression, Pr(Event | Z j ). The posterior
probability is drawn as a function of Z in Figure 3b.
The qualitative conclusion is the same as other methods:
as |Z j | increases, there is stronger evidence to reject
H0. Corresponding to the rejection region by the mixture
model method, the estimated posterior probabilities are
Pr(Event | −4.9) = 0.978 and Pr(Event | 4.4) = 0.982.
The posterior probability is closely related to the so-
called False Discovery Rate (FDR; Efron et al., 2001).
The FDR is used as an alternative to controlling the
false positive rate (i.e. type I error rate) in handling
multiple comparisons (Benjamini and Hochberg, 1995). A
potential problem is that, since only the lower bound of
the posterior probability is actually estimated and given,
the interpretation of the result in terms of significance
level may be conservative. Nonetheless, there are many
interesting features in the EB approach.

As pointed out by Efron et al., SAM is best suited
to detecting a small number of genes with differential
expression, which is not true for the leukemia data. Pan
et al. (2001a) also pointed out a problem with SAM
under these situations. Although the SAM was originally
designed to control the FDR, if desired, it can also be
directly applied to control the type I error. Using B = 20
versions of random permutations of z j scores, one can
calculate the expected order statistics of z j s, z̄( j). If we
use s = 2, the estimated false positives and total positives
are 0.1 and 297 respectively. If we use s = 2.1, the
estimated false positives and total positives are 0 and 267
respectively. Figure 4 presents the results of SAM using
s = 2, where the identified 297 genes with differential
expression are those satisfying |Z( j)− z̄( j)| > s with Z( j)s
being the order statistics of Z j s. Since simulation is used
in SAM, it is in general difficult to obtain results for a
given type I error α∗. On the other hand, there are many
attractive points of SAM. For instance, it does not have
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Fig. 3. The results of the EB method: (a) the likelihood ratio function
using the logistic regression method; (b) the estimated posterior
probability function.
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Fig. 4. The results of SAM. Any gene corresponding to a point out
of the bounds of the dotted lines is interpreted as having a significant
expression change.

strong parametric assumptions and does not involve any
complex estimation procedures (i.e. only order statistics
are involved). In particular, it compares Z j s of all the
genes collectively with their z j s. In contrast, many other
methods test gene by gene, which may be less efficient.
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