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Abstract Precision agriculture, and more specifically

Site-Specific Crop Management (SSCM), has been imple-

mented in some form across nearly all agricultural

production systems over the past 25 years. Adoption has

been greatest in developed agricultural countries. In this

review article, the current situation of SSCM adoption and

application is investigated from the perspective of a

developed (UK) and developing (China) agricultural

economy. The current state-of-the art is reviewed with an

emphasis on developments in position system technology

and satellite-based remote sensing. This is augmented with

observations on the differences between the use of SSCM

technologies and methodologies in the UK and China and

discussion of the opportunities for (and limitations to)

increasing SSCM adoption in developing agricultural

economies. A particular emphasis is given to the role of

socio-demographic factors and the application of respon-

sible research and innovation (RRI) in translating agri-

technologies into China and other developing agricultural

economies. Several key research and development areas are

identified that need to be addressed to facilitate the delivery

of SSCM as a holistic service into areas with low precision

agriculture (PA) adoption. This has implications for

developed as well as developing agricultural economies.

Keywords remote sensing, decision support, responsible

research and innovation, digital soil mapping

1 Introduction

Emerging in the mid-1980s, precision agriculture (PA) is a

farming management concept based on observing, measur-

ing and responding to variability in agricultural production

through the employment of the right technologies in the

right place at the right time in the right way to improve

production while minimizing environment impacts[1]. The

technologies and methodologies for PA are always

evolving with advances in technology and improvements

in our understanding of the actual needs in agriculture.

Site-Specific Crop Management (SSCM) is one facet of PA

for cropping systems. SSCM is defined as an information

technology-based agricultural management system to

identify, analyze and manage spatial and temporal

variability within field crops for optimum profitability,

sustainability, and the protection of the environment[2].

SSCM has become a popular approach in developed

agricultural systems with field comparisons between

uniform and variable fertilizer applications clearly demon-

strating that there are advantages to management at scales

finer than the field scale[3]. The need for differential in-field

management is due in part to the interactions of variable

natural soil formation factors and processes associated with

anthropogenic soil management activities, generating

considerable spatial variability in soil properties, such as

texture, structure, depth, pH, stoniness and chemical

fertility, at both the farm and field levels[4,5]. In conven-

tional farming, seeds, fertilisers, herbicides and pesticides

are typically applied uniformly at a field average, leading
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to over-application in some places and under-application in

others. In contrast, SSCM allows growers to improve

efficiencies in input use by adjusting to the observed

variations within fields.

A SSCM strategy has several key attributes for

measuring and managing the within-field spatial variability

of soil and the environment and its impact on crop growth/

productivity. Geo-referenced spatial measurements are

now possible due to the rapid development, miniaturisation

and improved accuracy of global navigation satellite

system (GNSS) technology, of which the USA’s global

positioning system (GPS) is the most commonly used.

GNSS has been widely employed in machinery guidance,

auto-steering and controlled traffic farming systems. A

range of commercial soil and crop sensors, which are

GNSS-linked, are available to measure the within-field

variability of different soil and crop parameters and

monitor their evolution in space and time. Another key

element that makes SSCM possible is variable rate

technology (VRT) that allows precise differential seeding,

fertilising and spraying and is able to respond to the

observed spatial soil and plant information. A geographic

information system (GIS) based farm management infor-

mation system (FMIS) is required to transform all types of

data and information into maps (or something similar) that

farmers can understand and utilize to drive spatial

agronomic decision-making.

SSCM has increased substantially in the UK over the

past two decades, predominantly for nutrient management.

VRT was named one of the Top 5 PA technologies in both

2013 and 2014 by the Precision Ag magazine and is a

driving force to improve productivity using variable

fertiliser application technology[6,7]. To support the recent

increase in VRT decision-making, multi-spectral satellite

images for fertiliser application and for soil mapping have

been increasingly used by famers in the UK. Data solutions

(i.e., data integration) are also emerging as a key tool for

PA and was also one of the Top 5 PA technologies listed in

both 2013 and 2014 by the Precision Ag magazine[6,7]. The

2012 Farm Practices Survey reported that 22% of English

farms used GNSS, 20% used soil mapping and 11% used

yield mapping. These numbers represented an increase of

8%, 6% and 4% respectively compared with the 2009

results[8]. The reasons cited for the increase in the UK are

to reduce fertiliser and agrichemical input costs (indicated

by 63% of farms), to improve accuracy of application

(indicated by 76% of farms) and to manage crops to soil

conditions (indicated by 48% of farms).

It is recognized that the degree of PA development varies

from one place in the world to another due to the

differences in technology (availability and support),

agronomy, economy and culture[1]. PA adoption is

relatively high in developed countries, such as the UK,

USA and Australia, especially compared to countries in the

Global South, such as China. Recent research in China has

highlighted limited awareness and adoption of PA

technologies on family farms in China[9] and suggests

that PA technologies currently mainly hold relevance for

larger farms[10]. This is thought to be due to the lack of

technology relevance to smaller farm scales, and issues

with the land fragmentation of growing family farms,

which makes it difficult to apply these technologies[11] and

can hinder financial investment in agricultural technology

more broadly[12]. However, this is not to say that research

on PA in China (or other large developing countries) is not

advanced or widespread. In China, The National Engineer-

ing Research Centre for Information Technology in

Agriculture (NERCITA) was established in 2001 to

promote PA research and application. There were also

several PA research centers set up in institutions such as the

China Agriculture University[13]. PA was in the national

863 Programme (State High-Tech Development Plan) and

tens of demonstration farms have been established in

China to showcase PA systems[13,14]. Laser guided land

levelling systems for smoothing and reshaping field

surfaces, especially for irrigated land, and GPS guided

auto-steering have been adopted in China in recent

years[15]. The gap in PA adoption in China (and other

developing countries) has been in the translation from a

research to a commercial context. There are many reasons

for this, but in part due to a lack of capacity in the industry

and in the population to exploit technology and a lack of IT

infrastructure to support PA[16].

The agricultural landscape in China is changing quickly

in response to the rapid economic development that has

occurred over the past three decades and the latest round of

land reforms. As a result, non-commercial small plot

holdings are diminishing and commercial farms and larger

family-run farms are emerging. This shift in production

size provides opportunities and a demand for PA

development in China. Furthermore, issues arising from

the degradation and deterioration of farm land and the

national cap on total national usage of fertiliser and

pesticides by 2020 is also forcing Chinese growers to

improve productivity. PA, and more particularly SSCM,

has a potentially critical role to play in achieving this

improved productivity.

It is clear that agriculture globally faces many different

challenges in a rapidly evolving technological world. To

better understand these challenges, this paper aims to

review: (1) the current status of the key SSCM technol-

ogies; (2) the opportunities and limitations of SSCM

adoption in China and the UK; and (3) the future direction

of SSCM and PA.

2 Key PA technologies

PA involves data collection, data analysis and information

management, all of which are supported by technological

advances in positioning systems, sensor design, remote

sensing systems, computer processing, and communica-

Zhenhong LI et al. Comparing precision agriculture in the UK and China 117



tion technologies. The ‘state-of-the-art’ in each of these

technologies will be briefly reviewed in the following

sections.

2.1 Global navigation satellite systems (GNSS)

Different PA applications required different positioning

accuracy[17]: (1) low accuracy (meter level) can be used for

asset management, tracking and tracing; (2) medium

accuracy (sub-meter level) can be used for tractor

guidance, via manual control, for lower accuracy opera-

tions such as spraying, spreading, harvesting bulk crops

and for area measurement and field mapping; (3) high

accuracy real time kinematic (RTK) systems (centimeter

level) can be used for auto-steering systems on tractors and

self-propelled machines (harvesters and sprayers) and for

precision operations such as planting. In PA, it is well

recognized that GNSS are the major enabler of ‘precision’.

GNSS represents a constellation of satellites providing

signals from space transmitting positioning and timing data

with global coverage. A GNSS receiver employs trilatera-

tion to determine its position on or near the earth’s surface

by timing signals from four or more GNSS satellites. There

are two fully operational GNSS systems at present, the

United States’ GPS and the Russian Federation’s Global

Orbiting Navigation Satellite System (GLONASS). The

Chinese Beidou Navigation Satellite System is still being

deployed, but provides operational coverage in regions

such as Asia, Australia and New Zealand. The European

Union’s Galileo system is in initial deployment phase,

scheduled to be fully operational by 2020.

Due to various error sources, including satellite orbit

errors, receiver clock errors and atmospheric delays,

standalone GNSS provides worldwide positioning services

with an accuracy of 3–5 m at best. There are several

commonly used techniques for improving GNSS perfor-

mance:

(1) Differential GNSS. The base station with a high

precision coordinate determines the pseudorange correc-

tions to GNSS satellites in view and sends them to rovers

using a data link, and the rovers incorporate the corrections

into their position calculations. DGNSS services (e.g., UK

General Lighthouse Authorities’ (GLAs) public marine

Differential Global Positioning System, and China Beidou

Radio Beacon-Differential Beidou Navigation Satellite

System (RBN-DBDS)) can provide a meter positioning

accuracy but degrade as the rovers move away from the

base location[18].

(2) Space-based augmentation system (SBAS). SBAS

broadcasts regional pseudorange correction signals from

geostationary satellites instead of from the ground-based

reference stations as for DGNSS. SBAS examples include

European Geostationary Navigation Overlay Service

(EGNOS) within Europe and South-east Asia, the wide

area augmentation system (WAAS) within North America,

the GPS and geo-augmented navigation (GAGAN) within

India and the multi-functional satellite augmentation

system (MSAS) within Japan. The typical accuracy of

the EU EGNOS is< 3 m[19], which has been found useful

for agricultural users.

(3) Real time kinematic (RTK) GNSS. Using carrier

phase measurements (instead of pseudorange measure-

ments only for Differential GNSS and SBAS), RTK GNSS

establishes the most reliable and accurate solution for

GNSS applications in real time, producing typical errors of

less than 2 cm. This level of precision is not needed for

general site-specific farming, but it does permit treatment

of small specific locations, such as a plant-specific

operation, and is essential for precision guidance, con-

trolled traffic farming, mechanical inter-row weed control,

inter-row sowing or crop thinning. In its basic form, a

single reference RTK is located at a known point close to

where the vehicle operates and communicates with rovers

through a radio-transmitter. Rovers determine their posi-

tion using algorithms that incorporate ambiguity resolution

(i.e., determining the number of carrier cycles between the

satellite and the rover receiver) and differential correction.

Note that ambiguity resolution is not required for

Differential GNSS or SBAS since they utilize pseudorange

measurements rather than carrier phase measurements. The

main issue with single reference RTK is that the accuracies

obtained are distance dependant. Therefore, the greater the

distance between the reference and the roving receivers,

the less accurate the results will be. This is because the

atmosphere present at each receiver cannot be assumed to

be identical and as such, cannot be eliminated from

the observations. Baselines greater than approximately

30–70 km (depending on conditions and hardware) are

said to be the maximum without jeopardising data quality.

A new reference station would then have to be established

beyond this point. Accuracies for short baselines can be in

the range of 2–3 cm[20]. With a network RTK system, such

as Leica’s SmartNET in the UK, there is no need for

surveyors to set up their own reference stations, as a

network of reference stations are available which provide

corrections and eliminate the distance dependant errors.

Figure 1 shows the overlap of the reference network ranges

so that areas which are covered by more than one reference

station can have more than one set of corrections sent to the

rover. The accuracies of the computed rover positions can

be maintained over larger distances between the reference

stations and the rover. The main disadvantages of network

RTK include: (1) the price of subscribing to an already

established system, and (2) the effects of the distance

and height difference between the rover and the nearest

station. The typical positioning accuracy of RTK GNSS is

10–20 mm horizontally and 15–30 mm vertically[21]. As of

April 2015, network RTK GNSS surveying is available in

Great Britain through three commercial service providers,

Leica’s ‘SmartNet’, Trimble’s ‘VRS Now’ and Topcon’s

‘TOPNet+’. All of these services rely largely on the

Ordnance Survey’s high density ‘OS Net’ network of
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around 160 continuously recording GNSS stations (Fig. 1).

In China, there is no RTK GNSS service available across

the whole country, although local RTK networks have been

rapidly developed in the past few years[22]. It is clear in

Fig. 1(b) that there is only a limited number of GNSS

stations available in western, southern and north-eastern

China.

(4) Precise point positioning (PPP) GNSS. PPP differs

from RTK in the sense that it does not require access to

observations from reference stations but provides an

absolute positioning instead of the location relative to the

reference station as RTK does. A dual-frequency GNSS

receiver is required to remove the first order effect of the

ionosphere. PPP can achieve the same level of accurate

positioning as RTK GNSS with potentially lower capital

and running costs[23,24]. Precise satellite information (e.g.,

precise satellite clock and orbit) is required to be generated

at processing centers, and broadcast to rovers. Recent

studies demonstrated a multi-layer processing scheme for

PPP regional augmentation to avoid processing large

reference networks and suggested the positioning accuracy

of 12, 10, and 25 mm in east, north, and vertical directions

can be obtained in real time[24,25].

2.2 Soil mapping

Variability in soil is the major driver of variation in crop

production, assuming no undesirable management effects.

Detailed spatial soil information is critical for effective

SSCM. With increased precision in soil data, farmers can

make better decisions by targeting crops, inputs and

technologies more efficiently. The national soil map

(NSM) of England and Wales consists of 747 soil series

that are distributed in 300 soil associations (Soil Survey

Staff, 1984). NSM is very informative on general soil

conditions and there are semi-detailed surveys at the scale

of 1:5000 to 1:50000, but the majority of the UK is still

only mapped at the scale of 1:250000. Maps at this scale

lack detail of the within-field variability of soil properties,

such as texture, depth, organic matter, stone content and

pH, and are insufficiently precise for SSCM. Soil survey

maps in China are at an even coarser resolution and often at

a scale of 1:12000000[26]. Providing better, relevant, soil

information at the farm and field scale will be needed for

SSCM to be effective in China.

High-resolution soil mapping methodologies fall into

two categories: traditional and digital approaches. The

former relies on soil survey with pits and cores and an

expert soil scientist’s interpretation. The latter utilizes

sensor technologies and quantitative data-fusion techni-

ques to model and predict soil properties and in some cases

it may incorporate traditional knowledge via soft-comput-

ing approaches. Digital soil mapping techniques are

becoming more common and effective for intra-field

applications[27].

(1) Traditional soil survey. Figure 2 shows a typical

example of data derived from a traditional pit survey, with

such approaches common for characterizing soil variability

in high-value horticulture and viticulture systems pre-

planting. In this approach, a soil surveyor’s expertise is

used to partition the landscape into different soil types

based on subjective multi-attribute field judgments of

intrinsic soils characteristics. It does not usually require

revision, but it is a slow, expensive process, hence its use in

high-value cropping systems.

(2) Soil nutrient mapping. Most commercial nutrient

surveys globally are performed as manual surveys, but are

much quicker than a traditional soil survey as it only

focuses on soil nutrients relevant for crop growth.

Georeferenced soil samples are collected in the field,

usually only from the topsoil (e.g., for arable fields, UK

0–15 cm; China 0–20 cm), on a grid at a density of

typically 1 sample per ha in the UK (i.e., multiple samples

per field (Fig. 3)) and are sent directly to a laboratory for

Fig. 1 Distribution of continuous GNSS stations. (a) OS Survey Net stations in the UK in 2015 (BIGF, 2015); (b) CORS stations in China in 2017.
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Fig. 2 Example of a descriptive soil map generated from a soil pit survey by a chartered surveyor on a vineyard site (reproduced with

permission from Taylor & Minasny[28]).

120 Front. Agr. Sci. Eng. 2019, 6(2): 116–136



analysis of a few key soil nutrients. According to the soil

nutrient analysis, a nutrient map is generated to show

within-field nutrient distributions. This is used for

phosphorus (P), potassium (K) and magnesium (Mg) in

the UK, nutrients that are relatively stable in the soil

system. Soil nitrogen, particularly mineralisable nitrogen

(N) is rarely mapped in this way as it is more transient in

the soil. This method gives relatively dense data and is

possible as the collection and laboratory systems in the UK

(and other developed agricultural economies) are well

developed. This means that soil can be quickly gathered

and analyzed, with turn-around times of typically less than

one week. The method does incur labor and laboratory

costs and is typically done on approximately a 5-year cycle

by UK growers. In China, soil nutrient sampling is often

performed at a density of 1 sample per 10 ha or coarser

(i.e., normally multiple fields per sample).

(3) Apparent electrical conductivity (ECa) and on-the-go

soil sensing. Several on-the-go soil sensors exist that are

capable of assessing a soil response, with the most

common sensors being ECa sensors. Two types of ECa

sensors exist: (i) electromagnetic induction (EMI) sensors

that are non-contact sensors, and (ii) electrical resistivity

(ER) sensors that are invasive sensors requiring contact

with the soil. Both EMI and ER systems can be mounted,

linked to a GNSS and towed behind a vehicle to provide

high spatial density ECa information. The ECa response is

affected by multiple soil properties that influence electrical

conductivity, including texture (clay %), clay mineralogy,

soil moisture content, salinity, cation exchange capacity,

pH, temperature and organic matter level[29]. On-the-go

ECa surveys are relatively quick but do require careful

interpretation and ground-truthing as the ECa response is a

relative not an absolute value. To obtain actual maps of soil

properties, such as a clay percentage map, a local

calibration function is needed. This in turn requires soil

sampling, but usually at a much lower sample density than

that used for nutrient mapping.

(4) Bare soil imagery and remote sensing. It is well-

known that there are several factors affecting the diffuse

reflectance spectra of soil in the visible and near infrared

range. These include mineral composition, organic matter,

soil moisture, and soil texture[30] along with surface

roughness. Bare soil images have often been used, when

available, to identify soil variability within fields. A recent

advance on this is the development of commercially

available high-resolution soil brightness products (e.g.,

AgSpace Ltd., Swindon, UK). Using the red, blue, green

and near infrared reflectance, an algorithm classifies the

reflectance and generates a ‘soil brightness’ (SOB) map

(Fig. 4(b)). It is clear that there is a spatial correlation

between the traditional soil survey, SOB map, crop vigour

map and the final yield map (Fig. 4). In the UK and other

regions, where cultivation is a common practice, SOB

maps can be generated from historical, archived satellite

imagery and allow farmers to see where variation occurs in

Fig. 3 Example of a commercially supplied soil nutrient (phosphorus) map generated for University of Newcastle’s Cockle Park Farm,

Northumberland. Black points indicate the sampling locations.
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their fields and, alongside their agronomist, create

management zones based on the spatial differences. SOB

is unable to explain what factors the variation relates to but

coupled with a farmer’s knowledge of their land it can be

used as an inexpensive alternative to soil surveying.

Similar to the ECa mapping, this method requires careful

interpretation and some ground-truthing, but it is very

rapid and can be applied quickly over much larger areas

than is possible with ground-based soil sensors or manual

sampling approaches.

It is no coincidence that the most successful SSCM

service providers in the UK have all had a firm business

model for delivering high-quality spatial soil data to

growers. Different companies target different technologies

to generate and ground-truth soil information, but all

deliver sub-field scale soil maps and prescription variable-

rate fertiliser and lime requirement maps. Growers can

quickly see a benefit for variable fertiliser, seed rate and

lime application, particularly in situations where non-

application is recommended and the input is directly saved.

The success of correctly targeting variable fertiliser, seed

rate and lime is reflected in uptake of these approaches by

over a fifth of British farms.

For SSCM to be adopted successfully in China (and

other developing agricultural economies), comparable soil

information must also be delivered, particularly to the

larger farms. At the moment this data are not available to

all growers. Although a soil database has been established

and is available to the public via a website[26], the data are

still in a low spatial resolution and difficult to utilize for PA

practice or practical farming. Without accurate high-

resolution soil information it is difficult, if not impossible,

to correctly identify agronomic drivers of spatial crop

production.

2.3 Remote sensing of crop attributes

In PA, remote sensing is based on the interaction of

Fig. 4 Cirencester Park Farms, Cirencester, Gloucestershire: (a) bare soil image; (b) soil brightness map (SOB); (c) normalized

differences vegetation index (NDVI) map showing crop vigour mid-season (red = low to green = high); (d) yield map (red = low to blue =

high). All maps are overlaid with polygons indicating changes in soil types within the field. Images courtesy of Courtyard Partnership Ltd.,

UK.
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electromagnetic radiation with soil or plant material and

involves non-contact measurements of radiation reflected

or emitted from agricultural fields[31]. An early example of

remote sensing for PAwas the use of Landsat imagery, one

of the first earth observation satellites for civilian use, to

estimate the spatial patterns in soil organic matter, soil

phosphorus and crop yield potential[32] and understanding

the growing environment and production potential still

dominates applications of earth observation to PA[33].

Earth observation can be performed from three different

types of platforms: satellite, aerial and ground-based

platforms. These are differentiated by altitude and distance

to the target (crop), which influences the potential

resolutions achievable and the potential for external

interference in the data, such as cloud presence and

atmospheric effects on data from satellite and to a lesser

extent, aerial platforms. It is clear from Fig. 5 that the

frequency of cloud-free conditions varies from place to

place and from season to season[34]. The overall frequency

of cloud-free conditions is about 20% in the UK, with the

highest frequency in the summer[35], a period when there is

little agronomic intervention in production. However,

northern and western regions are cloudier than southern

and eastern areas of the UK[36] where arable agricultural

land use is concentrated. The overall frequencies of cloud-

free conditions in western China are about 60%, much

higher than those in Southeast and Northeast China

(typically 20%–30%)[34]. The highest cloud-free frequency

in China was in boreal autumn, while the lowest was in

boreal winter, a period when information on initial crop

establishment and growth in winter cereals is desirable.

The wavelengths used in most agricultural remote

sensing applications cover only a small region of the

electromagnetic spectrum. The visible region of the

electromagnetic spectrum ranges from approximately 390

to 700 nm, the infrared region extends from 700 nm to

1 mm, and the microwave from 1 mm to 1 m. Both the

visible and near-infrared (NIR, 700–1050 nm) regions are

commonly used in agricultural remote sensing and

applications of these data are well developed and

commercially exploited. Where specific wavelengths

within this region exhibit sensitivities to vegetation

parameters, such as color or chlorophyll content, these

act as a proxy for measures of crop type, development and

health. Images, however, captured in these wavelengths are

affected by cloud cover. Data in the microwave region is

less affected by cloud cover and potentially more suited to

areas where cloud cover during key agronomic stages is

common, such as is the case in the UK and parts of China.

Microwave surface interaction is dependent on the

geometric and dielectric properties of the vegetation and

is further influenced by parameters of the radar system

such as wavelength, polarization, and incidence angle.

Historically it has been difficult to unstitch these elements

to establish fully unique signatures for different crops.

More recently, research and development are being

focused on radar observations in the microwave region

for estimating crop varieties and biomass variation with

great success[37,38].

There are several key factors to consider when employ-

ing remote sensing for a particular PA application,

including the spatial, spectral, radiometric and temporal

resolution of the data.

(1) Spatial resolution of a sensor is the size of the

smallest object that can be detected as separate to its

surroundings and is determined by the instantaneous field

of view of the sensor and platform height. Frequently, the

quoted spatial resolution of an image corresponds to the

size of an individual image pixel. The smaller an area

represented by one pixel, the higher the resolution of the

image. Increasing numbers of high spatial resolution

satellite images have been or are becoming available,

e.g., 0.31 m WorldView-3 and 0.25 m TerraSAR-X

(Table S1). The spatial resolution required depends on

the decision and end management operation to be

performed. For example, crop scouting and weed identi-

Fig. 5 Seasonal frequencies of cloud-free conditions across the globe derived from six years of Terra MODIS Atmosphere Monthly

Global Product (from March 2000 to February 2006)[34]. (a) Boreal spring (March–May); (b) boreal summer (June–August); (c) boreal

autumn (September–November); (d) boreal winter (December–February).
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fication may require very high-resolution imagery

(< 0.5 m) to identify small infestations and potentially

individual plants (for example from terrestrial or low-

altitude aerial platforms[39]). In contrast, if differential

fertiliser application is limited by the width of the spreader

(typically 24 m in the UK) then lower resolution imagery

(5–10 m pixels) is sufficient to make a sensible manage-

ment decision. In Chinese production systems, agronomic

equipment tends to be smaller in scale (typically 3–5 m)

permitting finer scale management and therefore requiring

higher spatial resolution (smaller pixel) imagery. Both the

UK and China are characterized by small field sizes (< 20

ha) in cereal production systems. This creates limitations

on the use of imagery with larger pixel sizes (> 10 m) as

there are relatively few pixels per field and many are mixed

pixels incorporating edge effects. The number of ‘pure’

pixels per field on which to base an agronomic decision is

therefore small. In larger fields, typical of cereal produc-

tion in Eastern Europe, Australia and North America

(often> 50 ha) this effect is diminished.

(2) Spectral resolution refers to the number of bands and

the wavelength width of each band. A band is a narrow

portion of the electromagnetic spectrum. Narrower wave-

length widths can be measured by higher spectral

resolution sensors. Multispectral imagery measures several

wavelength bands (typically 3–10 bands), such as visible

green or NIR. Hyperspectral imagery measures energy in

narrower and more numerous bands (typically> 20 and

usually> 100) than multispectral imagery. The narrow

bands of hyperspectral imagery are more sensitive to subtle

variations in reflectance with wavelength and, therefore,

have a greater potential to detect crop stress than multi-

spectral imagery. For example, recent research has

demonstrated the potential of hyperspectral data to detect

nitrogen stress in potato[40] and water stress in cereals[41],

among numerous other applications. However, for space-

borne instruments, physical limitations result in trade-offs

in instrument design, so that hyperspectral data are not

generally available at high spatial resolution[42]. Such data

acquisition therefore requires ground sensors, costly

airborne acquisition or, as an emerging technology, the

use of unmanned aerial vehicles. However, it is clear from

Table S1 that the number of spectral bands available for

analysis from satellite platforms has improved, from four

bands for Landsat 1 to eight bands for WorldView-2 and 13

bands for Sentinel-2, while bandwidths decreased from

60 to 40 nm or less. This trend is continuing, with the 2014

launch of WorldView-3 (16 bands and 1.24 m spatial

resolution for visible––NIR bands) and future planned

missions such as EnMap (OHB System AG and DLR) and

HyspIRI (NASA).

(3) Radiometric resolution refers to the sensitivity of a

sensor to variations in the radiance levels detected. The

higher the radiometric resolution of a sensor, the more

sensitive it is to detecting small differences in reflectance

values, allowing subtle variations in earth surface

characteristics to be detected.

(4) Temporal resolution refers to how often a remote

sensing platform can provide coverage of an area. Satellite

temporal resolution has improved from 18 days for

Landsat 1–3 to 1 day for WorldView-3 (Table S1). High

earth orbit geostationary satellites can provide continuous

sensing while low earth orbiting satellites can only provide

data each time they pass over an area. Revisit times vary

from a few days to a few weeks. Remote sensing acquired

from cameras or scanners mounted on airplanes and

unmanned aerial vehicles (UAVs) can acquire data at user-

defined intervals and can potentially be used to provide

data for applications that require more frequent sensing at

higher spatial resolutions than satellites can provide.

Effective revisit times for both airborne and satellite

systems can be extended by cloud cover that can interfere

with the data from a scheduled overpass. Alternatively,

proximal sensors using the same sensor technology can be

located in fields or attached to agricultural equipment

(terrestrial systems) to provide timely and frequent

temporal resolutions. These systems can collect informa-

tion during any management operation and usually provide

the most flexibility for growers, although the recent rapid

rise in the availability of UAV platforms has also allowed

greater flexibility and end-user control in airborne data

acquisition[43]. Other flexible approaches have also been

developed to utilize low-cost ground-based sensors, such

as smart phones, for example the development of the

‘CanopyCheck’ smart phone tool for monitoring potato

canopy development (NIAB CUF, Cambridge, UK),

designed to be used directly by growers.

One common application of remote sensing in SSCM is

to use imagery to quantify ground cover and greenness.

This information can be fed into crop models as an

indication of the N status of the crop and therefore the

nitrogen requirement of the crop. Typically, satellite

images are obtained a few weeks to a few days before

fertiliser application and a prescription map generated for

differential N application in a field. For terrestrial systems

with on-board proximal sensors, the sensing and decision-

making can be done in real-time as the tractor and spreader

traverse the field. Managing N fertiliser on the crop canopy

is quick and cost effective in comparison to soil mineral N

testing but it does not actually quantify the available soil N.

Satellite-based sensing systems are rapidly expanding

and evolving. Table S1 lists the satellite platforms and

sensing systems that have previously been available, are

currently available or will soon be available to UK and

Chinese users. It is clear that prior to 1990 there were very

few options, with a very long revisit time for applications

to agriculture. Even in the 1990s, sensor options were

limited and pixel size was restricted to 20 m or greater for

multispectral sensors. In agricultural systems with smaller

field sizes, as is the case in both the UK and China, large
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pixel sizes create problems with mixed pixels at field

boundaries and limit the amount of usable information

over a field. In contrast, users now have access to many

more systems with both higher spatial and temporal

resolution. Multispectral sensors with< 6 m pixel size

are available from Chinese, North American and Eur-

opean-based platforms (Table S1), with more planned. The

result is that satellite systems are much more amenable for

agricultural applications, provided that costs permit service

providers to access data from multiple systems. This has

been mirrored by an increase in the use of satellite-based

imagery by third-party agronomic service suppliers in the

UK over the past 5 years. Service suppliers can now

confidently deliver satellite-based products to growers.

Another advantage is that satellite information, especially

information that relates to crop vigour and biomass, are

routinely collected and archived providing a historical

record of crop growth that can be accessed by new entrants

to PA globally in both developed and developing countries.

Another emerging area for optical sensing in both the

UK and China is crop scouting. The deployment of

unmanned aerial vehicles with cameras now permits

growers to achieve very high-resolution images (< 0.1 m

pixels) of production systems. Satellite imagery is typically

too coarse (> 5 m pixels) to distinguish anomalies in a

field, such as a weed infestation, until they are having an

impact on production. Correctly processed high-resolution

imagery has the ability to identify very small effects and

permit targeted early intervention to avoid crop losses. In

the UK, this approach is being used to target management

of black grass (Alopecurus myosuroides) control. In both

the UK and China, commercial UAV applications are

governed by aviation rules which place some restrictions

on service provision.

2.3.1 Hyperspectral imaging system (HIS)

The development and application of imaging systems on

unmanned aerial vehicles/systems (UAVs or UASs) and

unmanned ground vehicles (UGVs) has increased drama-

tically over the past 5 years[44]. This has enabled

deployment of more advanced imaging systems, in

particular hyperspectral imaging systems (HIS). UAV-

HSI or UGV-HIS (> 15 bands) provide more information,

higher spatial and spectral resolution, than commercial

multi-spectral imaging (MSI), as well as providing

flexibility with data collection. The system includes a

UAV or UGV body, flight or ground control system, HSI

sensors and oil/electric energy.

(1) UAV and UGV involve platforms for plant informa-

tion collection near, or up to 4 km from the ground. The

UAV body could be a multi-rotor, helicopter, fixed-wing,

blimp, or flying wing[44]. The gross weight (6–318 kg) and

payload capacity (7–67.5 kg) increases with the growing

cost of each UAV. The UGV platforms, phenomobiles or

stationary platforms, are relatively more flexible than the

UAV[45]. Payload capacity, including multi-sensors, is

larger than the UAV platform, while data collection speed

is limited.

(2) The flight control system of a UAV, one key

technology of a UAV system, is the core of the whole flight

process, including take-off, flying in the air, executing

tasks and recovery. Generally, UAV flight details, includ-

ing flight height, flight speed, flight location, and missions,

can be pre-set by a rout planning tool, and transmitted to

the flight control system through a data transceiver. For

field UGV platforms, the diverse UGV control systems are

based on the designed objectives. The Field Scanalyzer at

Rothamsted Research, Harpenden (UK), for example, is

one stationary field solution platform for field phenotyp-

ing, moving along designed fixed rails[46]. Some tractor-

based systems, e.g., low crop UGV by NERCITA[47], can

be remotely controlled based on GNSS (Section 2.1).

(3) Hyperspectral imaging sensors are configured to

obtain information from a large number of narrow and

continuous bands. In contrast, HSI with high spectral

resolution collects more information on spectral character-

istics of the crop in field and spectral differences between

crops than MSI. Given the commercial application, small,

light, and low-cost HSI sensors should be considered for

deployment on UAV platforms. XiSpec, which is 26 mm�

26 mm � 31 mm and 31 g, is the world’s smallest HSI

camera, and is suitable for UAV and UGV platforms[48].

NERCITA also developed one HSI, mircro-Agrihawk

2014, to deploy in a UAV platform weighing 900 g. A

UAV or UGV platform equipped with hyperspectral

sensors, is becoming a promising approach for high

throughput monitoring of plant variables, e.g., measure-

ments of biomass and nitrogen in wheat and barley[49],

hydrological soil surface characteristics[50], chlorophyll

content and green biomass of pasture and barley[51], water

status[52], and pest and disease monitoring[53,54]. Hyper-

spectral imagery deployed on UAVor UGVovercomes the

shortcomings and complements the advantages of satellite

imagery and hyperspectral field data regarding spectral

resolution, spatial resolution and data acquisition

flexibility[55].

2.3.2 Light detection and ranging (LiDAR)

LiDAR technology can be mounted on UGV, UAV or

aircraft platforms and provides detailed three dimensional

information on the ground surface in the form of an x, y, z

coordinate ‘point cloud’ and intensity measurements. This

point cloud can provide the basis for generating digital

elevation models and models of vegetation canopies. In a

research context, on-ground or airborne unmanned LiDAR

sensor platforms have shown promise for generating

data on, for example, crop biomass[56], grain yield[57],

leaf area[58], and nitrogen status[59] and for crop
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phenotyping[60]. Airborne LiDAR has been shown to

successfully estimate maize height and biomass at the

tasseling stage in Gansu Province, China[61], while in the

UK, it has been used to monitor the agri-environ-

ment[62,63]. Detailed digital elevation models derived

from airborne LiDAR can also allow the modeling of

water flow, accumulation and runoff from fields[64].

Uptake of LiDAR methods in agriculture in the UK and

China remains low, with barriers including data avail-

ability, sensor cost and required level of processing

expertise, as well as challenges in accurately estimating

crop parameters in dense, low canopies, for example, early

in the growing season[61]. However, data availability is

improving (airborne LiDAR for much of the UK is now

freely available from the UK Environment Agency) and

further miniaturisation and development of LiDAR

technologies, including multispectral and hyperspectral

LiDAR sensors, will offer new possibilities for PA,

including monitoring of crop biochemistry[65].

2.3.3 Portable hand-held sensors

Portable hand-held sensors have been developed for crop

growth parameter measurement, based on several channels

with high throughput spectrum signal. They provide

measurements of some specific crop parameters, such as

normalized difference vegetation index (NDVI) or canopy

cover (CC), with sensors that are small, low-cost and

suitable for field use. More importantly, these portable

hand-held sensors could also be fixed in the field for high

frequency temporal monitoring of crop growth status.

Some commercialized products that have been developed

included the SpectroSense2 Meter for NDVI (Skye

Instruments Ltd., Llandrindod Wells, UK)[66], the Force-

A Dualex Scientific (Force-A, Orsay Cedex, France)[67],

Decagon SRS-NDVI (Decagon devices, Washington,

USA)[68], and CropSense (NERCITA, Beijing, China)[47].

Taking the CropSense as an example (Fig. 6), the diagnosis

models of crop growth status of CropSense are the core of

the CropSense app; it is based on a long time-series of crop

monitoring data collected over the past 15 years in China’s

major grain producing areas. The crop modeling is

sensitive to the change of crop condition at the key growth

stages of wheat, corn, and rice. The common monitoring

and diagnosis parameters include the NDVI, leaf-area

index (LAI), vegetation fraction (FVC), chlorophyll

content (Cab), yield and nitrogen fertilizer amount (Nc).

The CropSense app is also customized to provide simple

and clear information such as seedling condition, disease

and pest condition, drought and health condition for

primary agriculture managers and family farmers.

2.4 Harvest and production sensors

Remote sensing provides an indication of how a crop

develops in size and vigour during the season. On-

harvester sensors allow the actual production to be

measured and audited at harvest. Sensors for cereal

Fig. 6 Workflow of the CropSense system developed by NERCITA, China
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production systems are the most advanced, although yield

monitors are available for most crops. Production sensors

that are available for mounting on-combine for cereal

systems include:

(1) Yield monitors. Yield mapping refers to the process

of collecting geo-referenced measurements of crop yield

while harvesting (an example in Fig. 4(d)). Yield monitors

for cereal production were introduced in the early 1990s

and are sold standard on new combines in developed

countries. However, despite the accessibility of this

technology, UK growers do not routinely collect and use

these data, nor do they ensure that yield sensors are

properly calibrated at harvest. Only a small percentage

(8%) of UK growers are using the information[69].

(2) Moisture sensors. The actual yield must be corrected

against the moisture content in the crop. Moisture content

of grain can vary considerably across a field. Grain

moisture sensors are a standard part of all yield monitoring

systems. They provide information on where grain

moisture, which is ultimately related to soil moisture, is

low or high in a field at harvest. Grain moisture sensors are

typically capacitance-based sensors and very susceptible to

error with any surface moisture, a common harvest

problem in the UK.

(3) Protein sensors. As well as measuring quantity in

combinable crops, harvester-mounted quality sensors are

also commercially available[70]. Currently these systems

are not commercially supported in the UK and are only

used in research situations; however, quality sensing is a

key parameter in assessing the productivity and profit-

ability of a crop.

Crop production is weather dependent and seasonal. To

assess the effects of weather or other unpredictable factors,

the temporal variation of yield distribution within fields

over multiple years (ideally 5 years or longer) should be

collected and evaluated to define areas with potentially

high and low yields[71]. The indifference to yield data

collection in the UK is therefore a concern for effective

future implementation of many systems. Without yield

data, production is not properly spatially audited. If data

are not collected at harvest it is lost, unlike biomass and

vigour data that can be retrospectively mapped from

archived satellite images. When combined with soil,

landscape variables, other environmental factors and

management (inputs), the processed yield maps can be

used to investigate productivity and efficiency spatially

within a field[71]. This informs differential management in

subsequent seasons. While only anecdotal, the indifference

to yield mapping can be traced to the inability of growers

to effectively use the information and the time, albeit small,

to set up the equipment during a hectic time of year

(harvest). Both points, particularly the former, are valid

arguments. SSCM service providers in the UK have often

not provided effective pathways for yield map processing

and decision support that includes yield maps. The success,

and fiscally quantifiable success, of variable rate fertiliser

management based on soil nutrient mapping and biomass

sensing has lessened the importance of yield maps for in-

season management in the UK. As a result, there appears to

be less appreciation in the farming community of the latent

value of yield maps, especially for interpreting seasonal

(temporal) effects on production.

In China, the situation with yield mapping of cereals,

including rice and maize, has not been fully surveyed but

the technology is not widely utilized for a number of

reasons: (i) a lack of farmers’ interest, (ii) the high cost of

GNSS coupled yield monitors, (iii) the incompatibility

between yield monitors and tractors, and (iv) a lack of

technology support. Regardless of the reasons for the lack

of access and adoption of yield monitors, the lack of

historical yield data in commercial Chinese production

systems will also provide a stumbling block to PA

implementation. As for the UK, if yield data are not

collected at harvest, it is lost.

2.5 Variable rate technology (VRT)

VRT refers to any technology that enables users to vary the

rate of management operations, including crop inputs.

Typically, this combines a variable rate control system with

a GNSS on agricultural machinery and equipment. In the

UK, most agricultural machinery sold, including seed

drills, fertiliser spreaders and sprayers, are now capable of

variable-rate application. Variable fertiliser spreader and

seed drills are not widely available in the Chinese market,

however, although a limited number of farms and research

institutions have started to apply VRT for fertiliser and

seed.

There are three different approaches to implementing

variable-rate applications (VRA):

(1) Manual approach. The machinery operator is

responsible for varying the application rates on the

controller during the operation;

(2) Map-based approach. A differential prescription map

is generated from prior soil and/or crop mapping

information and analysis. The prescription map is

uploaded to the controller (computer system) that controls

an actuator (or similar) capable of automatically changing

the rate of input/management as the machinery moves

across a field.

(3) Sensor-based approach. Appropriate sensors

mounted on farm machinery are used to assess crop or

field conditions in real-time as an operation is being

performed. This real-time information is passed to a

controller that instantaneously determines an optimum

rate, based on a predetermined formula, to vary application

rates ‘on-the-go’.

For application purposes GNSS are not needed for (1)

and (3), however without them the operation cannot be

recorded and analyzed later. Option (2) is conditional on

access to a GNSS. In the UK, VRT is well developed but

the agronomic success of VRA is dependent on the quality
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of the decision process used. This is the same the world

over, including in China. A poor decision will yield the

wrong result even if the VRA is correctly done. The three

approaches above each have different limitations. A

manual approach relies on the operator to correctly

(subjectively) identify and respond to variation, while

also ensuring that the equipment is operating correctly.

This is a difficult task for even skilled operators. The

prescription map approach permits a quantitative analysis

that can be followed by validation and discussion with the

grower before implementation. This should allow pre-

scription maps to be manually adjusted based on local

expert knowledge to generate the best decision based on

available information and knowledge. However, this is a

time-consuming approach and is reliant on good commu-

nication and knowledge exchange between growers,

agronomists and SSCM service providers. Real-time

approaches are also quantitative but assume that this

local knowledge is captured within the software (decision

support system). This is rarely true in current systems, so

the variable applications are rarely done optimally,

although better than a uniform application. Also, ‘on-the-

go’ systems are often unable to respond to anomalous

situations in fields without direct, manual operator

intervention.

Correct VRT provides benefits through[72]:

(1) Economically improved crop yields via the optimal

use of inputs;

(2) Improved in-field equipment efficiency and;

(3) A smaller environmental footprint by minimizing the

over-application of inputs and thereby reducing the risk of

pesticide and fertilizer runoff or leaching into the

environment.

It should be noted that the effort involved in managing

variable rate inputs does raise costs, and that VRT requires

good knowledge of machinery and good compatibility

between hardware (different pieces of equipment) and

software (controlling) systems. On most farms, tractor

implements and controllers are often purchased from

different manufacturers and cross-compatibility and com-

munication issues can reduce reliability and increase user

frustration, creating a barrier to adoption[14]. This is true in

both developed and developing countries, primarily

because the driving factor of maintaining market share is

the same in both situations. The issue of cross-compliance

is being addressed in developed countries and developing

countries should gain from this, either through better co-

operation between large manufacturers or via intervening

third-party controllers, such as Frontier’s iSOYL iPad

application (Frontier Agriculture Ltd., Witham St. Hughs,

Lincolnshire, UK) that are able to link different systems.

Hopefully, the limitations in communication protocols that

have been a part of SSCM in the UK for the past 20 years

will not be replicated in China as VRT becomes more

common.

2.6 GIS-based farm management information system

(FMIS)

GIS is a computer system allowing the visualizing,

questioning, analyzing and interpreting of spatial and

temporal data to understand their relationships, patterns

and trends. An effective GIS should consist of two

fundamental components: precise map data and powerful

computer software to perform calculations and analysis.

The basic functions of a GIS are:

(1) To store different layers of information, which for

SSCM should include soil maps, soil nutrient levels,

remotely sensed data, and crop yields;

(2) To display geo-referenced data adding a visual

perspective for interpretation;

(3) To combine and manipulate data layers to produce a

desired spatial/temporal analysis.

More specifically, FMIS is a GIS-based system for

collecting, processing, storing and disseminating data and

information needed to carry out operations on-farm. A

recent study[73] suggested that FMIS should meet the

following requirements:

(1) Have a design aimed at the specific needs of farmers;

(2) A simple user-interface;

(3) Automated and simple-to-use methods for data

processing;

(4) A user-controlled interface allowing access to

processing and analysis functions;

(5) Integration of expert knowledge and user prefer-

ences;

(6) Improved integration of standardized computer

systems;

(7) Enhanced integration and interoperability;

(8) Acalability;

(9) Interchange-ability between applications;

(10) Low cost.

Unsurprising there are few software platforms available

that meet all these requirements. In the 1990s and 2000s,

FMIS software was sold and marketed as a stand-alone

package. With the rise of cloud-computing capabilities and

fast broadband internet services, even to rural areas, the

trend in the UK nowadays is strongly toward web- or

cloud-based FMIS. This approach takes the processing

onus off the grower and also provides more ready access

for SSCM service providers to data. Web-based delivery

and processing was recognized as one of the Top 5 PA

technologies in both 2013 and 2014 by the Precision Ag

magazine[6,7]. The web-based or cloud-based FMIS

enables farmers and their agronomists and fertiliser adviser

to access information simultaneously and anywhere with

an internet connection. It provides the ability for growers to

download prescription map files (e.g., a nutrient manage-

ment plan or seed rate plan) direct to a computer/tablet/

controller in a tractor with 3G/4G signals. Stand-alone

software packages on fertiliser recommendations have
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been developed in many provinces in China but the

majority of systems have only been installed in computers

within agricultural extension offices. Farmers have little

access to the software. Web-based or cloud-based packages

will enable farmers to access or use FMIS more easily.

2.7 The evolution of smart and digital agriculture

Agriculture, like the rest of society, is an area for the

development and deployment of smart, networked tech-

nologies. In the first instance, smart agriculture is likely to

revolve around the networking and connectivity of existing

systems. For example, data transfer from tractor/machinery

to databases has historically relied on farmer intervention.

Improved connectivity will remove the need for this

intervention and ensure that all production data are

properly aggregated, archived and made available for

farm management[74]. Smart agriculture will be dependent

on communications connectivity, which is still limited

even in ‘developed’ countries such as the UK, USA and

Australia[75,76]. Availability in developing agricultural

economies, especially higher speed broadband connectiv-

ity, is unreported but likely to be limiting to smart

agriculture in ‘developing’ countries as well. Smart and

digital agriculture is in its infancy, but the ability to

automate much of the data transfer and analysis will

transfer the decision process in agriculture and should be

applicable to all types of production systems, both large-

scale and small-scale farming systems, regardless of the

level of mechanisation in production. The CropSense

sensor described above, is a good example of an existing

technology that would be enhanced by being ‘connected’

and applicable to nearly any cropping systems.

3 PA adoption and responsible research
and innovation (RRI)

PA adoption in China in general lags behind the UK; as an

example, only 25% of farmland in one of the most

advances growing regions, Heilongjiang Province, uses PA

technologies[9]. The national average will be much lower.

In contrast, the UK had 22% national adoption of GNSS-

controlled steering in 2012 with a rising trend. This did not

include adoption of other PA technologies[8].

The key drivers that affect the intention to adopt PA

technologies fall into three categories[77]: (1) competitive

and contingent factors, such as soil quality, farm size, and

location; (2) financial resources, such as costs reduction,

total income, and land tenure; (3) socio-demographic

factors, such as Farmers’ education, familiarity with

computers, access to information via service provider

and technology sellers.

The recent review available[77] reported that farm size

was the most important driver affecting PA adoption,

followed by farmers’ confidence with computers. In

England, the number 1 barrier to adoption identified by

producers was that the technology was not cost effective

(Fig. 7)[8]. This is linked to farm size and turnover but also

to the ability of systems to demonstrate a return on

investment. This is often complicated by the fact that many

PA technologies provide a social and environment benefit

that is difficult to translate into a fiscal value[78].

In the view of US dealers and service providers, the two

most potent limitations to adopting PA techniques are farm

income and cost of precision services, but both financial

barriers have significantly reduced from 2004 to 2013[79].

In China, the most important limitation factors are farm

income, farmers’ education level, farm size and land

ownership[13]. In addition, lack of detailed soil information

also constrains PA adoption. With increased precision of

soil maps, farmers will be able to make better decisions or

use of land by targeting crops, inputs and technologies

more efficiently.

Another barrier noted in the VRT section, but applicable

across the entire SSCM and PA system, is the lack of a

globalized standardization for electronic communication in

agriculture. In particular, co-operation among large

agricultural equipment manufacturers about effectively

implementing information transmission between farm

machinery has been slow. Commercial entities have a

conflict between being ‘open-access’ and protection of

their proprietary products that can cause compatibility

issues with equipment and computer systems from other

manufacturers.

Basic and applied research in China was recognized at

the 18th National Congress of the Communist Party of

China (2012) as a priority if the quality of life of Chinese,

and indeed global, citizens is to be improved. Policy

translation of PA requires understanding of how the

innovation process affects all stakeholders, including

Fig. 7 Pie chart visualizing the reasons for farmers in the UK not

adopting PA technologies collected from a Farm Practices Survey

in 2012 from the Department for Environment Food and Rural

Affairs[8].
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agricultural workers, local residents, and rural commu-

nities. A summary of these key stakeholders can be seen

below (Fig. 8). Knowledge exchange between key actors

and stakeholders will also ensure the inclusive adoption of

novel agricultural technologies, which will ensure their

implementation aligns with the preferences and priorities

of end-users and local communities. In addition, ethical

issues (for example in relation to environmental, health or

socio-economic impacts of agricultural practices) must

also be addressed. It is noteworthy that there are ethical

concerns associated with not adopting a technology as well

as with the unintended effects of technology implementa-

tion[80,81]. Therefore, the concept of RRI is clearly an

important part of evolving policy agendas, but it has yet to

be defined and made operational across different contexts

and areas of application.

The importance of RRI as a part of institutional

innovation activities is well recognized[82,83] and requires

both systematic inclusion of stakeholder views and the

social, economic, ecological and ethical parameters[84]. It

has also been proposed that RRI can also support the

introduction of technologies that touch primarily upon

socially sensitive issues[85]. These might relate to ethical

concerns, but also to the way in which local communities

are (re)structured as a consequence of technology

implementation. This may be particularly relevant in the

case of agricultural technologies, as local communities

may be highly dependent both economically and socially

on the agricultural systems in which they are embedded.

RRI is intended to help designers and manufacturers of

new technologies identify and accommodate public,

stakeholder and end user concerns when developing a

new technology by engaging with a wide range of relevant

actors in an interactive, transparent process. This is true for

both developed and developing agricultural economies. To

date, social-economic considerations have not been well

incorporated into SSCM adoption in developed countries,

and in some cases the failures of SSCM technologies can

be linked to a failure to address these issues[86]. The

concept of ‘knowledge exchange’ is also central to the

development of effective RRI. However, the impacts of

such RRI processes on policy and innovation trajectories

have been frequently difficult to assess[87,88].

Capacity and knowledge of emerging agri-food tech-

nologies (e.g., in the case of precision farming) has been

acknowledged as a limitation to adoption. In China,

agronomic services to growers are mainly provided by

local public extension agronomists. RRI must involve

engagement and knowledge exchange not only with the

growers but also the people that provide agronomic

support. Affected communities (primarily rural) also

need to be consulted, not least because community

structures (for example, the skills profile and community

arrangements) may be affected by new agronomic

specializms being introduced into the social mix and shifts

in employment patterns may result in social displacement

of hitherto employed groups. Likewise, technical services

are provided mainly via government agents. Engagement

at the government level, as well as the grower level, is

critical to success. Participatory approaches must be used

to engage all levels of the production and service supply

chain[89], and its impacts on agricultural technology

policies evaluated[90]. Public participation regarding pre-

ferences for technology implementation and consumer

Fig. 8 Schematic view of the key stakeholders and their perceived roles in the innovation process in Chinese agriculture
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research regarding the ‘refining’ of final products may

optimise the innovation trajectories for agri-food technol-

ogies[91]. It is important to recognize that RRI does not

assume a unidirectional communication process between

stakeholders, and the principal of ‘knowledge exchange’ is

a useful mechanism to ensure that a dialog between all

actors and stakeholders, including the general public, is

optimised.

Taking RRI activities through to impact is something

which has infrequently been assessed, or indeed operatio-

nalised. For example, Owen & Goldberg[82] have observed

that time lags exist between the development of novel

innovations (e.g., nanotechnologies or genetically mod-

ified organisms), understanding of their wider impacts, and

implementation of appropriate governance. This has led to

repeated calls for more anticipatory and adaptive

approaches to technology implementation. A key chal-

lenge is pragmatic implementation of RRI policies, and the

agri-technology sector is an example of where effective

RRI strategies are required[92]. Despite difficulties in

making the RRI concept in agri-food production systems

operational, effective agri-food technology innovation is

contingent on understanding its impacts on both local

communities and the supply chain.

RRI is facilitated by agri-food systems that are strongly

vertically integrated from the farm to the consumer or, in

the direct case of SSCM, from the field to the processor.

This relates to vertical integration in product flow,

information flow and service flow. In this context, Chinese

agricultural production systems potentially hold a con-

siderable advantage over many developed agricultural

systems as service provision is still strongly integrated

through government agencies. In the UK, agronomic

services are provided via multiple commercial entities. The

services supplied are fragmented, with different companies

promoting different technologies and methodologies that

suit their core business model, not the business model of

the grower. This provides a barrier to growers being able to

access a ‘total’ SSCM service for their own production

system. In China, the dominance of government agronomy

and agri-machinery agencies in providing support provides

an opportunity to provide effective support to PA adoption.

Unlocking this latent potential will be contingent on

effective government policy and the development of

capacity for PA service provision within these government

agencies. The latter is a particularly difficult proposition

and a known limitation to adoption[86,92] and will require a

coherent national approach.

4 Opportunities for SSCM development in
China and other developing agricultural
economies

The previous two sections have reviewed, compared and

contrasted the key technologies used in SCM and

identified the socio-technological needs associated with

technology translation. The generation of these two

sections has helped to structure the way forward for

SSCM and PA in China (and other developing agricultural

economies) and to set some key questions for framing

future research, development and knowledge exchange

activities. These can be summarized as following.

4.1 Optimisation of approaches to collect spatial and

temporal data

Developing agricultural systems lag behind developed

systems in the amount of spatial information that could be

or is collected in cropping systems. In some cases this data

are lost; however for other data layers, archived remotely

sensed data can be used retrospectively to generate

information. Satellite-based sensors therefore have a key

role to play in providing archived soil and crop informa-

tion. Agriculture in developing countries is generally

characterized by higher labor inputs and lower levels of

mechanization. Consequently, there are options for the

development of novel sensing systems and crop diagnostic

tools to gather ancillary crop and soil data from the labor

force. In these systems, the higher labor component may

actually enable an easier route to measuring crop

parameters, particularly crop quality attributes and crop

protection issues (pest/disease pressure).

Key questions: What and where are the spatio-temporal

information gaps in the agri-systems? What technologies

are needed to fill these gaps––are new sensors/systems

needed or are there transferable options? What are the

limitations to collecting relevant information?

4.2 Better understanding of agronomic relationships

Merging data sets from various sources may provide new

insights into the spatial variability of crop performance and

thus lead to a better understanding of the impact and

interactions of soil properties, topography, climate,

management and other factors on crop productivity. The

key to unlocking this is to ensure that good crop data,

including quality as well as quantity data, is collected in

every production system. If data and information cannot be

ground-truthed and validated it cannot be used with

confidence in any agronomic decision-support. Collecting

large quantities of sensor data, particularly satellite data, is

now fairly easy and routine. Collecting ‘real’, quality-

controlled on-ground data remains a major limitation to PA

research and extension.

Key questions: What are the relationships between

measurements, management and crop growth/yield? What

are the optimal approaches to merge different data sets?

What extra information can be extracted when merging

different data sets?
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4.3 Spatial decision support systems

Technological failures and shortfalls in the adoption of PA

can generally be linked to an inability to generate a good

decision from the technology, rather than a failure of the

technology itself. Agri-tech that provides good data but

cannot be translated into a sensible, effective decision will

not be adopted by growers. The most successful PA

technologies all have effective decision support and can be

linked to improved productivity and profitability. For

example, GNSS guidance and auto-steering systems have a

very simple decision process––Am I driving straight and

parallel at an exact distance from my last pass? This can be

linked to reduced overlap and inputs. Agronomic decisions

that are responding to crop growth and potential growth are

much more complex. Adding a spatial variance dimension

makes them even more complex. In these situations,

incorrect decision-making renders good data redundant

and makes producers distrustful of new technologies. If PA

is further adopted in the UK or is to become common

practice in China, spatial decision support structures must

be in place to support the growers’ use of technology. In

many cases, this will be reliant on good spatial crop

modeling, an area which has not been well advanced in

developed agricultural systems.

Key questions: What will be an appropriate spatial

decision support systems (DSS)? All in One? Customized

(with specific aspects only)? How should it be delivered?

How should local knowledge be incorporated?

4.4 Assessment of economic and environmental benefits of

PA

In nearly all current applications, SSCM is a spatialized

systems approach to improved production efficiencies.

While adoption of agri-technologies is usually driven by an

economic benefit, there are many potential social and

environmental benefits to the adoption of an SSCM

strategy. If the social and environmental benefits can be

metricized or translated into a fiscal value, then the true

value of SSCM could be determined and used by growers

to inform decisions on adoption. Currently, such metrics do

not exist and growers make decisions mainly on an

economic basis. Proper demonstration of potential benefits

from a production, social and environmental perspective in

different regions will increase farmers’ awareness and in

turn adoption of PA.

Key questions:What will be appropriate criteria/metrics

for assessment of the value of technology? Is it required to

be expressed in monetary form? Will policy or attitudes

permit socio-environmental value to be ‘paid’ to a

producer?

4.5 Big data and data sharing

PA and SSCM has always been information rich but is

becoming increasingly so. More data can be beneficial if

used properly, but equally can lead to ‘information

overload’ and result in a confused decision process for

end-users. Big data management is key to ensuring that

only relevant and reliable information is fed forward into

decision support structures. With particular consideration

of remotely sensed data, which is becoming increasingly

important for SSCM, the latest generation of earth

observation (EO) missions will produce a nearly continual

stream of high-dimensional data. This unprecedented

increase in data will, however, come with its own

challenges not least data access and processing. The

development of computationally efficient techniques for

converting massive amounts of remote sensing data into

time critical operational services is imperative for the

widespread reliance and uptake of EO technologies.

Metadata and uncertainty analysis has an important role

to play in this domain and this area must not be neglected

or lost as more data becomes available. This is not an issue

unique to agriculture, regardless of whether it is in a

developed or developing countries, and the agriculture

community needs to work with other domains to optimize

‘big data’ analysis.

Cloud-computing and data-sharing developments are

also integral to the success of a big data approach in

agriculture. These will be critical in developing countries

as it minimizes the computing infrastructure and capacity

that is needed ‘in country’.

Key questions: What will be the best way to process

next-generation agricultural data? How can data sharing be

done cost-effectively and maintaining data security? How

will communication regulations in China impact on data-

sharing and cloud-computing agronomy? How does

agriculture link into the big data community for its own

benefit?

4.6 Smart devices

Linked to cloud-computing is the functionality of everyday

smart devices that can be adapted to agricultural uses. The

advantage is that this technology is almost as ubiquitous in

developing countries as in developed countries. Therefore,

developments on this platform can be quickly transferred.

Multiple apps already exist for single purpose applications,

e.g., crop scouting and canopy area, and more integrated

systems for tablet PCs are in development or have recently

been released in the UK and USA. Smart devices are

internet-enabled and are effective data-sharing tools as

well as basic sensing systems. Typically, sensing is done

via image analysis using a camera function but there exists

a real opportunity to augment the sensing and diagnostic

capabilities of smart devices through add-ons and to

develop new apps for smart phone/tablet for field use.

Key questions:What will be the more effective ways for

the users to collect, analyze, interpret and share informa-

tion, in terms of both smart devices and apps? How ‘good’
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is this data for validation? Is crowd (farmer)-sourcing of

information valid for good decision support?

4.7 Knowledge exchange and transfer (KET) requirements

A range of technologies and knowledge are in place which

makes PA viable. However, PA adoption rates vary from

place to place, highlighting the importance of KET[86].

There is a need to ensure that technology adoption is

facilitated and not hindered through socio-economic

factors. The structure of the Chinese agricultural economy,

with its strong vertical integration in its agronomy and

machinery service supply, provides a method for the

federal government to support and promote adoption. This

will likely require some fusion of commercial and

governmental services to fill technology and knowledge

gaps, and this will provide challenges. Access and

availability of information and communication technology

(ICT) services will also determine the potential for KET for

SSCM and PA adoption.

Key questions: How is agri-tech implemented in a

society that is not highly technologically advanced? What

are the best methods for education of the populace in

technology? How does China (federal governments)

ensure capacity for service support in a potentially rapidly

evolving and expanding technology field? What infra-

structure is required to support ICT services in rural

communities?

The topics and the key questions posed above address

issues associated with technology development, integra-

tion and acceptance. While wide ranging, they are not

intended to be exclusive items but to provide a pathway for

PA going forward. Likewise, these topics and questions

should never be considered in isolation. The linkages

between the topics will be important––smart technologies

must link to big data structures and address known or

desired agronomic decision process. PA will not be

effected by having one smart, connected system but rather

an integrated, ‘smart’ system of systems.

5 Conclusions

Despite their potential, PA and SSCM have not been

universally adopted in highly mechanised, developed

agricultural systems. Adoption rates in the UK are rising,

mainly in response to better developed agronomic services

based on the maturity of existing technologies. Agricul-

tural systems that have a very low rate of technology

adoption will have the opportunity to benefit from these

mature technologies and to learn from the mistakes made

in economies that have had a higher level of SSCM

adoption. Many SSCM services, especially satellite-based

service, that are currently available in the UK, could be

quickly deployed into China. Global developments in ICT

have significantly reduced the gap in potential technology

transfer from developed to developing economies. How-

ever, successful adoption will also be reliant on how the

technology is presented and integrated into the agri-food

system. Key limitations to technical adoption of SSCM

will be costs (and benefits), a lack of service capacity and a

lack of access to key data layers, including high-resolution

soil maps and historical spatial crop production data.

Socio-economic limitations are likely to be associated with

issues of acceptance by growers, communities and

administrative agencies and the changes that the technol-

ogies induce in production practices and the rural

economy. Research into this area has been very limited

to date and will be critical to further adoption in both

developing and developed agricultural systems.
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